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Introduction
One of the main motivations for studying new families of 

statistical distributions lies in the increased flexibility of fitting various 
datasets that cannot be properly fitted by existing distributions [1]. 
In many applied areas, such as environmental and medical sciences, 
engineering, biological studies, lifetime analysis, actuaries, economics, 
as well as finance and insurance; there is a clear need for extended 
forms of these distributions [2,3]. The normal distribution is the most 
popular probability model having wider applications in solving real life 
problems. When the number of observations is large, it can serve as an 
approximation to other probability models [4,5].

The normal distribution is also called Guassian distribution, 
named after the German Mathematician Carl Freidrich Gauss (1777-
1855) who introduced it in connection with the theory of error [6]. 
The probability density function (pdf) and the cumulative distribution 
function (cdf) of the normal distribution with location parameter 
−∞<μ<∞ and scale parameter σ>0 [7,8]:
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Attempts to generalize the Normal distribution have led to the 
development of Skewed Normal distribution [9], the Beta-Normal 
distribution [10], the Generalized Normal distribution [11], the 
Kumaraswamy-Normal distribution [12], the McDonald-Normal 
distribution [13], the modified Beta-Normal distribution [14], the 
Gamma-Normal distribution [15], the modified Gamma-Normal 
distribution [16], the Kummer Beta-Normal distribution [17], and a 
host of others. These distributions are proven to be more flexible than 
the classical Normal distribution when applied to the real life datasets 
[18].

Several generalized families of distributions have been proposed 
in the literature. For instance, the Beta-G [19], the Kuraraswammy-G 

[20], Transmutted family of distributions [10,Gamma-G (type 1) 
[21], McDonald-G [22], Gamma-G (type 2) [23], Gamma-G (type 3) 
[24],Log-Gamma-G [25], Exponentiated T-X [26], Logistic-G [27], 
Gamma-X and Weibull-X [28], Logistic"-X [29], Weibull-G [30], 
Beta Marshall-Olkin family of distribution [31], and many others are 
available in literature. The focus of this research article is the Weibull-G 
family of distributions [32,33] which can be obtained by using the odds 
ratio of failure rate because they highlighted the Normal as one of the 
distribution that can be obtained by their Weibull generator.

The use of four-parameter distribution should be sufficient for most 
practical purposes, and at least three-parameter are needed in such 
distributions [34], but doubted any noticeable improvement arising 
from including a fifth- or sixth parameter. The Weibull-G family of 
distributions have been adopted by several notable researchers among 
to generate known theoretical models such as the Weibull-Exponential 
distribution [35], Weibull-rayleigh distribution [25], and Weibull-
Frechet distribution [26]. In this research paper, a proposition ofa 
probability model called a Weibull-Normal distribution, also to be 
known as Weimal distribution, which resulted from hybridizing 
Weibull and Normal distributions by utilizing the Weibull-G family 
generator [21].

The Weibull-Generalized (Weibull-G) Family of 
Distribution

Given any continuous baseline distribution with cdf G (x,ξ) and 
pdf g(x,ξ) aiming at providing greater flexibility in modeling real-life 

*Corresponding author: Akintunde OA, Department of Mathematics, Faculty of 
Science, Federal University Oye Ekiti, Ekiti State, Nigeria, Tel: +2348034253309; 
E-mail: oyetunde.akintunde@fuoye.edu.ng

Received September 26, 2018; Accepted October 25, 2018; Published October 
31, 2018

Citation: Akintunde OA (2018) Statistical Hybridization of Normal and Weibull 
Distributions with its Properties and Applications. J Appl Computat Math 7: 424. 
doi: 10.4172/2168-9679.1000424

Copyright: © 2018 Akintunde OA. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Statistical Hybridization of Normal and Weibull Distributions with its 
Properties and Applications
Akintunde OA*
Department of Mathematics, Faculty of Science, Federal University Oye Ekiti, Ekiti State, Nigeria

Abstract
The normal distribution is one of the most popular probability distributions with applications to real life data. In 

this research paper, an extension of this distribution together with Weibull distribution called the Weimal distribution 
which is believed to provide greater flexibility to model scenarios involving skewed data was proposed. The 
probability density function and cumulative distribution function of the new distribution can be represented as a 
linear combination of exponential normal density functions. Analytical expressions for some mathematical quantities 
comprising of moments, moment generating function, characteristic function and order statistics were presented. 
The estimation of the proposed distribution’s parameters was undertaken using the method of maximum likelihood 
estimation. Two data sets were used for illustration and performance evaluation of the proposed model. The results 
of the comparative analysis to other baseline models show that the proposed distribution would be more appropriate 
when dealing with skewed data.

https://www.omicsgroup.org/articles-admin/admin/Articles#29


Citation: Akintunde OA (2018) Statistical Hybridization of Normal and Weibull Distributions with its Properties and Applications. J Appl Computat Math 
7: 424. doi: 10.4172/2168-9679.1000424

Page 2 of 5

Volume 7 • Issue 4 • 1000424J Appl Computat Math, an open access journal
ISSN: 2168-9679 

datasets; a Weibull generalized family of distribution, according to 
Bourgeignon et al. [21], will have a cdf G (x,ξ) defined by:
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The above integral yields:
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The corresponding pdf is given by:
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Where g(x,ξ) and G (x,) are the respective pdf and cdf of the baseline 
distribution indexed by parameter vector ξ, where α>0 and β>0 are the 
scale and shape parameters respectively.

In eqn. (5) gives the pdf of any Weibull-G family of distribution 
and is most tractable when both cdf and pdf have simple analytic 
expressions. The major benefit of the Weibull-generator expressed in 
eqn. (3) lies in its ability to offer more flexibility to the extremes of the 
pdf and this makes it more suitable for analyzing data with high degree 
of asymmetry.

The Weibull-Normal distribution

Taking into account the pdf and cdf of the normal distribution as 
given in eqns. (1) and (2) with location parameter μ∊  and dispersion 
parameter α>0. The respective cdf and pdf of the proposed four-
parameter Weibull-Normal distribution can be obtained from eqns. 
(4) and (5) as follows:
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The plots of the pdf and cdf of the new Weibull-Normal distribution 
for the selected parameter values and plotted and it was observed that 
the cdf of the Weibull-Normal distribution increases as x increases and 
approaches one ax x gets larger. The different pdf plots of the Weimal 
distribution under different parameter values indicate that a it is 
negatively skewed distribution and hence it will be very appropriate 
in modeling skewed real-life datasets unlike the symmetric normal 
distribution. It is interesting to note that whenever α=β=1, then the 
Weimal distribution becomes normal and that all parameter values 
affect the graph of the pdf in different directions and different rates.

Useful extensions

Extensions in eqns. (6) and (7) can be derived using the concept of 
exponentiated distributions as follows:

Consider the exponentiated normal (EN) distribution as stated 
by Nadarajah and Kotz [6] with power parameter α>0 defined 
byY∼EN(a,μ,σ) with cdf and pdf given respectively by:
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By expanding the exponential term in eqn. (7) using power series 
and utilizing the generalized binomial theorem while substituting, we 
can re-write in eqn. (7) as:
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Using the result in eqn. (8), we can now express the pdf of the 
Weimal distribution as a linear combination of exponentiated 
(exponential-G) density functions as:
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Denotes the exponential normal pd f (X∼EN(β(k+1)+j,μ,σ) and the 
coefficient of the distribution wj,k is given by:
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By integrating the pdf in eqn. (9) with respect to x, we obtain the 
corresponding cdf as:
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If β>0 is a real number (positive non-integer), we can expand the 
last term in eqn. (12) as:
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Where 

Combining in eqns. (12) and (13), the Weimal cd f can be expressed 
in eqn. (12) as:
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By differentiating in eqn. (14) and changing indices, we can obtain 
the pdf of the Weimal distribution as:
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In eqn. (15) is the pdf of the Weimal distribution defined as 

a linear combination of EN pdf. So now, several properties of the 
Weimal distribution can be obtained by exploition the properties of 
EN distribution.
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Some Properties of the Weibull-Normal Distribution
Ordinary moments

Moments are used to study some of the most important features 
and characteristics of a random variable such as mean (central 
tendency measure), variance (dispersion measure), skewness (Sk) and 
kurtosis (ku).

Let X1,X2,…,Xn denote a random sample from the standard 
Weibull-Normal (Weimal) distribution obtained from equation (14) 
for μ=0 and σ=0, that is Weimal (α,β,0,1).

The nth moment of X can be obtained as:
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Now, substituting for ∅(x) and ∅(xγ-1) in equation (16), using 
binomial expansion and simplifying, we have:

( )
11

0 0

12 / ,
2

rr

n r
r p

r
r n p

p
µ η

π

− −∞ −

= =

− 
=  

 
∑∑ 			              (17)

Where /(n,p) represents the (n,p)th probability weighted moment 
(PWM) for any n and p positive integers of the standard normal 
distribution and is found as follows:
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Now, according to Nadarajah [27],

(f)n=Γ(f+n)/(f)					                   (19)
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where in eqn. (19) is the Lauricella function of type A [28], using 
these definitions in eqns. (19) and (18) can be expressed as:
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Given that p+n is even.

Combining in eqns. (17) and (21), it can be expressed that the nth 
moment of the standard Weimal distribution in terms of the Lauricella 
function of type A [6,8,9]
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The central moments

The nth central moments or moment about the mean of X, say μn 
can be obtained as:
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The variance of X is the central moment of order two (n=2) and is 
given as:

( ) 2
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Where 2
iµ  and ( )2

1
iµ  are the second ordinary moment and first 

ordinary moment squared respectively which could be obtained using 
in eqn. (22) as follows:
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For n=1, we therefore obtain the mean of the standard Weimal 
distribution from eqn. (22) as:
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Similarly, when n=2, we derive the following expression for the 
second moment as:
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Hence, the variance of X ∼ Weimal (α,β,0,1)which is the second 
central moment of X is obtained as:

( ) 2 2
2 1  ( )i iVar X µ µ σ= − = 			                (28)

Using in eqns. (26) and (27), respectively.

The coefficient of skewness is the standardized third central 
moment of X about the mean and can be obtained using the expression:
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Whereas the coefficient of kurtosis is the standardized fourth 
central moment of X about the mean and is given by
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Where σ can be obtained using eqn. (28) while μ3 and μ4 are 
obtained using eqn. (23).

Moment generating function (mgf)

A general way of organizing all the moments into one mathematical 
object is called the mgf. In other words, the mgf generates the moments 
of X by differentiation, that is for any real number say k, the kth 
derivative of Mx(t) evaluated at t=0 is the kth moment μk of X.

The mgf of a standard Weimal random variable X∼ Weimal 
(α,β,0,1) can be obtained as:
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Where n and t are constants, t is a real number and 
i
nµ  denotes the 

nth ordinary moment of X and can be obtained in eqn. (22) as stated 
earlier.
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Characteristics function (cf)

The characteristics function (cf) has many useful and important 
properties which give it a central role in statistical theory. Its approach 
is particularly useful in analysis of linear combination of random 
variables.

A representation for the cf is given by:
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Simple algebra and power series expansion proves that:
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Where 2
i
nµ  and 2 1
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nµ +  are the moments of X for n=2n and n=2n+1 

respectively and can be obtained from i
nµ  in equation (25) as:
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And 
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Order statistics

Order statistics have been used in a wide range of problems including 
robust statistical estimation, detection of outliers, characterization 
of probability distribution, goodness of fit tests, entropy estimation, 
analyses of censored samples, reliability analysis, quality control and 
even researches bordering on strength of materials. In this section, 
closed form expression for the pdf’s of the ith order statistics of the 
Weibull-Normal (that is, Weimal) distribution is derived.

Suppose X1,X2,…,Xn is a random sample from the standard Weimal 
distribution and let X1:n, X2:n… Xi:n denote the corresponding order 
statistic obtained from this sample. The pd f,f1:n(x) of the ith order 
statistic can be obtained by:
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Using eqns. (6) and (7), the pd f,f1:n(x) of the ith order statistic X1:n 
can be expressed from equation (37) as:
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Hence the pdf of the minimum order statistic X(1) and maximum 
order statistic X(n) of the Weimal distribution respectively given by:
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Estimation of parameters of Weimal distribution

The estimation of the parameters of the Weimal distribution is 
presented using the method of maximum likelihood in this section. 
Let X1,X2,…,Xn be a random sample from the Wemal distribution with 
unknown parameter θ=(α,β,μ,σ)T. The total log-likelihood function for 
θ is obtained from f(x) as follows:
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Let l(θ)=L(X1,X2,…,Xn/α,β,μ,σ) therefore
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Meanwhile differentiating l(θ) partially with respect to each of the 
parameters:α,β,and σ and setting the results to zero gives the maximum 
likelihood estimates of the respective parameters. The partial derivative 
of l(θ) with respect to each parameter or the score function is given by:

( )  , , , n
l l l lU θ θ θ θθ
α β µ σ

 ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ 

Where the components of the score vector U(θ)=(Uα,Uβ,Uμ,Uσ) are:
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Maximization in eqn. (42) can be performed by using well 
established routines like nim-routine or optimize in the R-statistical 
package. Setting these equation to zero, (that is,U(θ)=0) and solving 
them simultaneously yieds the maximum likelihood estimate
( )  ˆ  MLE ofθ θ . These equations cannot be solved analytically and 
therefore statistical softwares can be used to solve them numerically by 
means of iterative techniques like Newton-Raphson method.

Conclusion
In this research article, a new-four-parameter probability model 

named Weibull-Normal distribution (also to be known as Weimal 
distribution) resulting from the hybridization of two well-known 
probability models, namely: Weibull distribution and Normal 
distribution, is introduced. The new probability model extends the 
classical normal distributions by adding skewness to it. An obvious 
reason for generalizing a classical distribution is the fact that the 
generalization provides more flexibility to analyze real-life data. The 
new distribution has proved to be versatile and analytically tractable 
during the generalization process. The Weimal identity function can 
be expressed as aalinear combination of exponentiated normal density 
functions, thereby enabling derivations of vital mathematical properties 
comprising of moments, moment generating function, characteristics 
function and order statistics. The estimation of the parameters has been 
approached by the method of maximum likelihood.
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