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Abstract
Real-world data (RWD) often consist of positive or negative studies and the data may be structured or unstructured. In this case, the validity of real-
world evidence (RWE) that derived from RWD is a concern for providing substantial evidence regarding the safety and efficacy of the test treatment 
under investigation. The validity of RWD/RWE is essential, especially when it is intended to support regulatory submission. In practice, studies with 
positive results are more likely accepted in RWD, which may cause substantial selection bias. In this article, a quantitative form of selection bias is 
defined and studied. Based on the form of bias, three reproducibility probability-based approaches are proposed to estimate the true proportion of 
positive studies in the structural and unstructured data. The reproducibility probability-based approach provides effective bias adjustment when the 
proportion of significant studies in RWD is different as designed power based on the result of simulation study. The Estimated Power approach and 
Bayesian approach provide robust and effective bias adjustment in most cases and the Confidence Bound approach provide huge and effective 
adjustment only when bias is larger than 10%. The proposed adjustment method in conjunction with other treatment effect specification method is 
useful in estimating the treatment effect based on RWD.
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Introduction 

Real-world data (RWD) refers to the data relating to patient health status 
or the delivery of health care routinely collected from various sources (FDA) 
[1]. The source of RWD includes electronic health record (EHR), medical 
claims databases, products and diseases registries, data from randomized 
clinical trials, and so on. As indicated in the US Food and Drug Administration 
(FDA) draft guidance on Framework for FDA’s Real-World Evidence Program, 
real-world evidence (RWE) refers to the clinical evidence about the usage 
and potential benefits or risks of a medical product derived from an analysis 
of RWD (FDA) [2]. In practice, RWE is often generated by different designs 
or investigations, such as pragmatic clinical trial (PCT) and prospective or 
retrospective observational studies. 

Although randomized controlled trials (RCTs) are the gold standard 
for evaluating the safety and efficacy of pharmaceutical drugs, RCTs are 
conducted under specific or controlled environment, which do not reflect real 
clinical practice [3]. In practice, RCTs limit generalizability due to strict inclusion 
and exclusion criteria, as well as high costs and long duration, causes people 
to consider RWE as alternative clinical evidence [4]. Not only RWE can make 
up for the drawbacks, but it also can provide treatment effects evidence in more 
diverse applied settings due to the massive volume of data, as well as provide 
evidence of some rare disease drug development due to the data availability in 
multicenter trial and EHR. Therefore, the challenge faced by biostatisticians is 
how to generate robust RWE from RWD and integrate it into drug development 
and regulatory review; in other words, map RWE to Substantial Evidence [5].

In order to map RWE to substantial evidence (current regulatory standard 

and can only be obtained through the conduct of RCTs), researchers often 
focus on the following aspects. First, it is to determine the difference in 
evidence provided by RWD and data collected by RCTs (i.e., gap analysis 
between RWE and substantial evidence). Second, it is to evaluate whether the 
RWD is robust and representative of the target population (i.e., data relevancy 
and selection bias) [6]. In addition, data quality or data reliability is the most 
crucial part of evaluating RWD because of the volume and multiple sources 
nature of RWD. Finally, it is to assess whether historical data is suitable for 
data borrowing (e.g., the use of Bayesian inference) for efficient quantitative 
analysis in order to meet the current regulatory standard [7]. In this article, we 
will focus on the validity of RWD/RWE (i.e., the presence of selection bias and 
information bias).

As indicated by Chow SC [7], a mathematical model with statistical analysis 
was performed, which considers the biased positive studies proportion, 
providing a systematic way to evaluate the validity of RWD from the regulatory 
perspective [7]. The most recent guidance on RWD clearly indicates that the 
“relevant impacts of unstructured data on data quality should be documented in 
the protocol and analysis plan”. As indicated in FDA (2021), unstructured data 
refer to the data within EHR, either as free text data fields (such as physician 
notes) or as other non-standardized information in computer documents (such 
as PDF-based radiology reports). All these data need further processing (such 
as the deep learning algorithm with a significant amount of human aid) to 
extract valid clinical information, which inevitably brings bias. In this article, we 
study the validity (in terms of selection bias) of unstructured data and divide 
datasets into four classifications as shown in (Figure 1). Therefore, we will 
give a new model with further statistical analysis and simulation, as well as 
apply our model in RWD setting to prove the valuable insight from regulatory 
perspectives. In the Section 2, the statistical method for studying the validity 
of real-world data is briefly outlined. This section includes the estimation of 
the selection bias using three proposed reproducibility probability-based 
approaches. In the Section 3, simulation studies were conducted to examine 
the robustness and efficiency of the proposed methods. In the Section 4, the 
limitations and relative advantages of the proposed methods are compared 
with other bias adjustment methods. Section 5 provides some concluding 
remarks.

Statistical methods

The validity of real world data: Let rwdµ  be the true mean of the target 
population study’s target patient group, s nsandµ µ  be the true means of data 
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sets from positive and negative studies done in the same target population. 
Also, let s nsandµ µ and s nsandµ µ be the true means of data sets of structured data and 
unstructured data. In addition, let ρ be the true proportion of structured data 
conducted on the target population, and let 21r and r  and 21r and r be the true proportions of 
positive result within the structured data and unstructured data, respectively. 
Assume that there is no treatment-by-centre and treatment-by-study interaction 
in multicentre studies for illustrating. Following (Figure 1), we have

( ) ( )1 , 1rwd s nsµ ρµ ρ µ= + −

( ) ( )1 11 , 2s P Nr rµ µ µ= + −

( ) ( )2 21 , 3ns P Nr rµ µ µ= + −

Usually, N Pµ δ µ< < , where δ is the clinical meaningful treatment effect. 
In other words, the estimate effect of a study larger than δ would be considers 

a positive study. Besides, usually in practice, we would expect 
1 1
2 ir< ≤ . In 

particular, if 1ir = , then μ would degrade to Pµ µ= . 

Then, for illustration purpose, we assume that all the studies included in 
the RWD are parallel design studies, and all positive and no positive studies 
share same sample size, denoting .P N ijn nd xan  denote the clinical response 
of the patient i in the jth positive study, i=1,…,nP and j=1,…,sn, where n is the 
number of studies included in the RWD. Besides, denote the clinical response 
of the patient i in the jth no positive study, i=1,…,nN and j=1,…,(1-s)n. If ρ and 

ir  are given, the bias of mean of RWD, rwdµ  is   

( ) ( )ˆrwd rwdBias Eµ µ µ= −

( )(1 )ˆ ˆs nsE ρµ ρ µ µ= + − −

 ( ) ( ) ( )1 1 2 2[ ( 1 ) 1 ( )]ˆ 1ˆ ˆ ˆP N P NE r r r rρ µ µ ρ µ µ µ= + − + − + − −

( ) ( )( ) ( ) ( )( ) ( )( ) ( )1 2 1 21 ) 1ˆ ˆ1 1 4P P N Nr r E r r Eρ ρ µ µ ρ ρ µ µ= + − − + − + − − −      

Where

1 1

ˆ 1 Pnsn

P ij
j iP

x x
snn

µ
= =

= = ∑∑

 ( )
( )1 n

1 1

ˆ 1
1

Ns n

N ij
j iN

y y
s nn

µ
−

= =

= =
− ∑ ∑

And

1 2(1 )s r rρ ρ= + −

Based on the equation 4, if we assign ρ and ir  certain value, we can gain 

the bias as shown in Table 1. From Table 1, we can find that the different ρ and 
ir  correspond different selection bias. 

In practice, however, ir  are unknown. For a given RWD, estimation of ir
( ˆ. ,ie ρ ,i=1,2) is based on the number of positive studies in RWD. Similarly, the 
estimation of ρ (ie. ˆ,P ) is based on the number of structural data in RWD. 
However, ir  usually be overestimated, since positive data are more likely 
published and included in historical data (S.C Chow, 2020). Therefore, we have

( )ˆ i iiE r r + ∆=

Therefore, the bias of mean of RWD, μrwd is given by

( ) ( ) ( )( )ˆˆ ˆ1ˆˆrwd rwd s nsBias E Eµ µ µ ρµ ρ µ µ= − = + − −

( ) ( ) ( )1 1 2 2[ ( 1 ) 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( 1 ˆ )]p N p NE r r r rρ µ µ ρ µ µ µ= + − + − + − −

For simplicity, if we neglect . ,i j∆ ∆  where i≠j, then the bias of mean of 
RWD can be simplified to

( ) ( ) ( ) ( )1 2 1 5ˆ ˆrwd P NBias µ ρ ρ µ µ≈ ∆ + ∆ − −  

Considering the power calculation, by (1), the variance of μrwd is given by

( ) ( ) ( ) ( )
22

22 2ˆ ˆ1 1 6
1

NP
rwd

P N

Var s s
n Snn S nn

σσµ σ
  

= = + −     −   

Where
2 2

1 1

1 ( )
Pnsn

P ij
j iP

x x
snn

σ
= =

= −∑∑

( )
( )1 n

2 2

1 1

1 ( )
1N ij

j iN

y y
s nn

σ
−

= =

= −
− ∑ ∑

 
Figure 1. Model that consider unstructured data.

Table 1. Selection bias when ρ and r1 are given.

𝝆 r1 r2 Selection bias

0 0 0 ( )N NE µ µ
∧

−

0 0.5 0.5
1 1( ( ) ) ( )
2 2p Np NE Eµ µ µ µ

∧ ∧

− + −

0 1 1 ( )p pE µ µ
∧

−

0.5 0 0 ( )N NE µ µ
∧

−

0.5 0.5 0.5
1 1( ( ) ) ( )
2 2p Np NE Eµ µ µ µ

∧ ∧

− + −

0.5 1 1 ( )p pE µ µ
∧

−

1 0 0 ( )N NE µ µ
∧

−

1 0.5 0.5 ( )( ) ( )( )1
2

ˆ ˆ1
2P P N NE Eµ µ µ µ− + −

1 1 1 ( )p pE µ µ
∧

−
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If we take derivative above, then

       
( ) ( )

22

1

ˆVar 7NP
rwd

P Nr n n n
σσρµ

 ∂
= −    ∂  

( ) ( )
22

2

1Var ˆ 8NP
rwd

P Nr n n n
σσρµ

 ∂ −
= −    ∂  

In practice, the variance in positive studies is larger than in negative 
studies, since difference between controlled group and referred group is 
larger in positive study. If the gap of sizes of positive and no positive studies 

is not huge, we have 
22
NP

P Nn n
σσ

> . Thus, ( )ˆrwdVar µ  is an increasing function 

of 1 2r and r . Furthermore, the power of the RWD can be calculated by the 
probability:

 

22
2 2{ | , , , , ,  }NP

P N P N i
P N

P r and
n n

σσ µ µ σ σ ρ>

Based on the data availability of RWD.

Estimation of uP - uN 

Let ( , )P PL U and ( , )N NL U  be the (1 )100%a− for Pu and Nu . Under the 
assumption of normality, we have

          
1 /2

ˆ
ˆ( , ) p

P P P a
p

L U u Z
snn
σ

−= ±

1 /2
ˆˆ( , )

(1 )
N

N N N a
N

L U u Z
s nn

σ
−= ±

−

According to Chow’s assumption (2020), when selection bias does exist, 
it is reasonable to assume the positive studies and no positive studies are 

different. In this case, we assume ( , )P PL U  and  ( , )N NL U  
would not have intersection. At some extreme case [7], PL  is close to NU . 
Then, we have

  
1 /2 1 /2 

(1

ˆ ˆ
)

ˆ ˆp N
P a N a

p N

u Z u Z
snn s nn
σ σ

− −− ≈ +
−

Therefore, the distance of P Nu and u and P Nu and u can be calculated as the estimation 
of P Nu u− , we have

( )
( )

1 1
2 2

 9
1

ˆ ˆˆ ˆ p N
P N a a

p N

u u Z Z
snn s nn

σ σ
− −

− ≈ +
−

Reproducibility probability: The definition of reproducibility probability is 
the estimated power (EP) of a future trial using the information from previous 
trials. In theory, different trials are independent; the probability of achieving a 
statistically significant result from the new trial would be identical with previous 
studies if these trials apply the same study design and hypothesis, regardless 
of the outcome of previous trials. When AH  is true, the probability of gaining a 
significant result is the power of the test [8,9]

( ) ( )| |AP T c H P T c θ> = >

Where HA is the alternative hypothesis and θ is an unknown parameter or 
a vector of parameter (Shao & Chow, 2002). Even though trials are independent 
to each other, it reasonable to use the previous trials information in RWD to 
refer a later trial. Reproducibility probability could be estimated through (i) the 
estimated power (EP) approach, (ii) the confidence bound (CB) approach, 
which is more a conservative approach than EP approach and (iii) Bayesian 
approach, a more sensible approach to obtain reproducibility [9]. 

To illustrate EP approach, consider a control group and reference group 
trial with unequal variances. Let ijx  be the jth subject in the ith group (i = 
1,2) and distributed as 2( , )i iN u σ  respectively, in which 2 2

1 2σ σ≠ . Therefore, 

assuming n1 and n2 are large, statistics T is shown as

 

1 2
2 2
1 2

1 2

x xT
s s
n n

−
=

+

Then, T asymptotically has normal distribution N(θ,1), where

1 2
2 2
1 2

1 2

 u u

n n

θ
σ σ

−
=

+

Therefore, the reproducibility probability can be calculated by replacing θ 
by its estimate statistics T

( ) ( )0.975 0.975 (10)P̂ T x z T x z= Φ − +Φ − −      
The EP approach would provide an optimistic result that the adjustment 

of bias might be inadequate when applied in our proposed approach. The CB 
method would yield a more cautious estimation of reproducibility probability.

Considering the trial setting mentioned before, the CB approach considers 
a 95th percent lower confidence bound as the reproducibility probability. 
Therefore, CB approach provides the estimation of reproducibility probability 
as follow equation.

( ) ( )0.9752 11T x zP
∧

−  = Φ −   
    Furthermore, the Bayesian approach provides a clear definition of 
reproducibility. To be more specific, we assume the unknown parameter θ is 
a random vector with priori distribution π(θ), which is known. Then, we can 
define reproducibility        probability is the conditional probability of |T|>c in the 
future trial, which can be shown as

( ) ( ) ( ) ( )| | | 12p T c x p T c x dθ π θ θ> = >∫  
where T is T statistics based on future data set and π(θ|x) is the posterior 
density of θ given x. 

Considering the same setting in EP approach part, if the variance, 2σ , is 
known, then reproducibility probability is

( ) ( ) ( ) ( ) ( ) ( )0.975 0.975
0.975 0.975 | # 13

2 2
T x z T x z

z z x dθ θ π θ θ
− − −   

Φ − +Φ − − = Φ +Φ      
   

∫      (13)

Where
1 2
2 2

1 2

x xT

n n
σ σ

−
=

+

when ( ) 0.975| |T x z> , the probability close to

 

0.975( )( )T x z| | −
Φ

2

Estimation of Δi (i=1,2)

The proportion of positive studies in RWD, r̂ , is highly likely overestimated, 
since positive studies are more likely collected. In other words, r̂  is likely larger 
than the true proportion r. 

According to the definition of reproducibility probability, r can be estimated 
by reproducibility probability of observing a significant result based on the 
mean and variance of response in RWD. The probability can be represented 
as follow equation:

{     |   ˆ }ˆB Bp P future study is positive u andµ σ σ= ≡ ≡
The interpretation of the reproducibility probability under this setting is that 

we expect to gain p × 100 significant studies if the similar experimental setting 
trial conduct 100 times based on the observed mean response ( ˆ )Bµ  and 

standard deviation ( ˆ )Bσ  in RWD. To be more specific, with RWD, we have
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2 2
1 1 0 2

1 0
1 0

ˆ ˆ
 ˆ ˆ  ˆ ˆB B

n nu u u and
n n
σ σσ +

= − =
+

where 1̂u  and 0û  are the pooled means of controlled and reference group 
in RWD, n1 and n0 are the sizes of controlled and reference group of pooled 

RWD, and 
2
1σ̂ and 2

0σ̂  are the estimated variances of the controlled and 
reference group, respectively. Then, the T statistic is shown as

1 0

1 0

ˆ
ˆ

m m B

m m B

n n u
n n

T
σ+

=

where nm1 and nm0 are the median sample sizes of controlled and reference 
group in studies included in RWD. Therefore, the bias of positive proportion, 

.i∆  can be represent as

ˆ ˆi i ir p∆ = −

Simulation study

In this part, we used the method proposed in chapter 2 to adjust bias 
in simulation studies of different scenarios. The performance of methods is 
evaluated by comparing the adjusted mean and the true mean of the target 
population. For simplicity, we assume that the structural data is from equal 
sample size randomized clinical trials and the unstructured data is from equal 
sample size observational cohort studies. All these data are generated from 
the same population. As for the target population, we assume that each 
trial or study contains two groups of patients, the treatment group and the 
control group. Each group's responses follow the normal distribution N(2,25) 
and N(0,25). In order to achieve 80% power to detect a clinically meaningful 
difference of 2, 100 subjects in each group are needed based on sample size 

calculation. Furthermore, to achieve 50%, 60%, 70%, 80%, 90% power in the 
trial, we need sample size of 49, 63, 79, 100, 133 per group respectively. We 
generated 1000 studies to simulate the target population for each sample 
size. To evaluate the performance of the proposed methods, we define 

relative bias as )ˆ( /rwdµ µ µ− , where ˆrwdµ  is the estimated treatment effect 
based on real-world data and μ is the true treatment effect, which is 2 in this 

simulation. We also define the relative adjusted bias as (  )ˆ /rwdµ µ ε µ− − , 
where ε is the estimated bias based on the proposed method. Four scenarios 
are considered to assess the robustness of the adjustment method. The first 
scenario compares performance between EP (estimated power) method, 
CB (confidence bound) method, and Bayesian method in structural data 
under the previous setting when only structural data presented. The second 
scenario compares the performance of the three methods when negative data 
are absent in structural data. The third scenario tests the robustness when 
structural data and unstructured data presents inconsistent positive proportion. 
Finally, we test the robustness when inconsistent positive proportion presents 
and imbalance structural data proportion occurs. 

In the first scenario, we assessed the relative bias and adjusted bias based 
on three adjustment methods by different power and r, the proportion of positive 
studies, which is summarized by (Table 2) and (Figure 2). As expected, when 
the gap between the proportion of positive studies and power, the theoretical 
proportion of positive studies, increases, the selection bias increases. As the 
most conservative adjusted method, EP method can slightly adjust selection 
bias compared with the other two methods. When the bias larger than 15%, 
the bias can reduce 20% by the EP method. On the other hand, when the bias 
less than 5%, the adjustment is limited, causing the adjusted bias is nearly 
the same as original bias. As for CB approach, the adjustment is significantly 
larger than the adjustment made by EP approach. When the selection bias is 
larger than 10%, a significant adjustment in right direction can be made by the 
EP approach. However, when the bias is smaller than 10%, the CB approach 

Table 2. Scenario 1: Performance of proposed approaches at different power.

Power r Bias EP approach CB approach Bayesian Approach

0.508

0.7 0.1584 0.1449 0.0313 0.1378
0.75 0.1986 0.1808 0.0577 0.1716
0.8 0.2409 0.2155 0.0677 0.2029

0.85 0.2727 0.2387 0.0786 0.224
0.9 0.3117 0.2662 0.0809 0.2478

0.95 0.3507 0.2796 0.0275 0.2531

0.6122

0.7 0.0427 0.0332 -0.0804 0.0252
0.75 0.0815 0.0677 -0.0568 0.0576
0.8 0.1167 0.0972 -0.0394 0.0849

0.85 0.1527 0.1263 -0.0242 0.1115
0.9 0.1854 0.1445 -0.0501 0.1241

0.95 0.2285 0.1763 -0.0424 0.152

0.7102

0.7 0.0115 0.014 -0.069 0.0063
0.75 0.043 0.0424 -0.0442 0.0337
0.8 0.0669 0.0622 -0.0288 0.0526

0.85 0.1041 0.0953 -0.0078 0.0838
0.9 0.1318 0.1168 -0.0002 0.1033

0.95 0.1687 0.1476 0.0218 0.1326

0.8074

0.7 -0.0741 -0.0691 -0.1395 -0.0762
0.75 -0.0394 -0.0366 -0.1102 -0.0445
0.8 -0.0075 -0.0073 -0.0866 -0.0163

0.85 0.0217 0.0183 -0.0638 0.0087
0.9 0.052 0.0442 -0.0514 0.0327

0.95 0.0835 0.0701 -0.0363 0.057

0.9035

0.7 -0.1138 -0.1029 -0.1628 -0.1099
0.75 -0.0827 -0.0738 -0.1339 -0.0811
0.8 -0.0502 -0.0434 -0.1049 -0.0511

0.85 -0.0188 -0.0147 -0.0781 -0.0227
0.9 0.0125 0.0136 -0.0539 0.0051

0.95 0.043 0.0401 -0.0319 0.031
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can lead the bias toward the wrong direction and even show an absolute bias 
larger than the original bias. Finally, the Bayesian approach give us a more 
effective adjustment result. The overall adjustment pattern is similar to the EP 
approach but more effective. To be more specific, when the bias larger than 
15%, the bias could reduce 40% by the EP method. When the bias is less than 
5%, the Bayesian approach significantly leads to more adjustment compared 
with EP approach. In addition, compared with the CB approach, the Bayesian 
approach always makes adjustment toward the right direction.

Second scenario, we consider the situation that only positive studies exist 

in the structural data. In other words, the 1r , proportion of positive study is fixed 
to 1 in this scenario. As we can see in Table 3 and (Figure 3), bias decrease 
when power increase, and the result of the EP approach and Bayesian 
approach is similar to the pattern in scenario 1. More specifically, when bias 
is more negligible, the EP and Bayesian approaches lead less adjustment. In 
addition, the EP approach provides a more conservative adjustment compared 
with the Bayesian approach. As for CB approach, similar as scenario 1, when 
bias is larger than 10%, the bias can be significantly reduced. However, the CB 

Figure 2. Box plot of performance of proposed approaches at different power.

Table 3. Performance of proposed approaches at different power when negative studies absent.

Power Bias EP approach CB approach Bayesian Approach
0.508 0.4170 0.3675 0.1910 0.3472

0.6122 0.2915 0.2525 0.0986 0.2343
0.7102 0.2100 0.1790 0.0293 0.1606
0.8074 0.1402 0.1178 -0.0246 0.0999
0.9035 0.0455 0.0310 -0.0934 0.0152

Figure 3. Box plot of performance of proposed approaches at different power when negative studies absent.
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approach could lead adjustment toward the wrong direction when bias smaller 
than 10%.

In the third scenario, the power set to 0.6, ρ set to 0.5, and the rest of 
setting is the same as previous scenario, and we consider the situation that the 
structural data and unstructured data provide inconsistent positive proportion. 
To be more specific, we consider that the structural data provide high proportion 
of positive result and the unstructured data provided low proportion of positive 
result. In this context, according to Table 4, when the two proportion are away 
from each other and the mean of two proportion away from the setting power, 
0.6, the bias decreases. Similar situation observed in scenario 1 and 2. The 
EP approach and Bayesian approach provide effective bias adjustments 
toward the right direction, and the Bayesian approach provide slightly more 
adjustment compared with EP approach for most of the case. As for CB 
approach, most of the adjustment towards wrong direction, which in line with 
the observation about CB approach under 10% bias from scenario 1 and 2. 
However, we do notice that the adjustment based on Bayesian method also 
toward to wrong direction slightly when bias is less than 5%. In conclusion, 
the EP approach and Bayesian approach provide effective adjustment under 
the inconsistent positive study proportion situation, but CB approach lead the 
adjustment toward wrong direction in this scenario.

In the final scenario, we consider both imbalance of structural data and 

inconsistent positive proportion occurs. The 1r  set to 0.4, and 2r  set to 0.8, 
the power set to 0.6, and the rest of setting is the same as scenario 1. As 
we can see in Table 5, when the ρ, the structural data proportion, increase 
(i.e., Balance of structural and unstructured data), the bias reduced. Under the 
imbalanced structural data proportion, both EP approach and Bayesian Approach 
shows capability to reduce bias. But for CB approach, it adjusts the bias toward the 
wrong direction and even increase the bias when the bias less than 5%. 

In summary, three proposed methods can adjust the bias in real world 
data. EP approach provides the most conservative and stable adjustment. The 
Bayesian method provides more adjustment toward the right direction with 
robustness in most the extreme cases. In addition, the CB approach leads to 
the most aggressive adjustment of these three methods. However, it shows 
less stability and robustness when the power is larger than the proportion of 
positive studies in structural data or the bias of real-world data is less than 10%. 

Discussion

Several limitations were found in the simulation study. First, when the 
proportion of positive studies is close to the designed power, the adjustment 
led by the EP approach and Bayesian approach is limited. In some cases, the 
Bayesian method even enlarges the bias. This is because the reproducibility 
probability-based approaches can make over-adjustments when bias is not 
obvious. Another reason is that the estimation of ˆ ˆP Nµ µ−  is over-estimated 
when bias is negligible. The second limitation is that CB approach provides 
adjustment towards the wrong direction when bias is less than 10%. One 
explanation is that the lower confidence bound provided by CB approach is too 
conservative in estimating the real positive proportion, r, when bias is less than 

10%. In addition, the over-estimation of ˆ ˆP Nµ µ−  can also lead adjustment 
failure of CB approach. 

Previously, compared the substantial evidence and real-world evidence 
and pointed out that the bias in the substantial evidence is minimized but 
selection bias exists in the real-world evidence, and proposed a reproducibility 
probability based bias adjustment approach. Compared to the method in our 
paper, we added the Bayesian method to adjust bias, which has been proved 
as an effective and robust adjustment method and applied the method in a 
new architecture of real-world data, which divided the data into structural 
and unstructured data. In reality, meta-analysis has been used to estimate 
non-inferiority margin or treatment effect based on historical data, which is 
similar to use real-world data to estimate the treatment effect. The parameter, 

2 2 2ˆ ˆ ˆ, , ,, B B P N P Nandµ σ µ µ σ σ  can also be estimated by meta-analysis even the 

individual data is unavailable [10]. Therefore, the combination of meta-analysis 

Table 4. Performance of proposed approaches when inconsistent r presents.

r1 r2 Bias EP 
Approach

CB 
Approach

Bayesian 
Approach

0.75

0.1 -0.1406 -0.1267 -0.227 -0.1254
0.2 -0.1043 -0.0942 -0.1995 -0.095
0.3 -0.0685 -0.0621 -0.1728 -0.0651
0.4 -0.0298 -0.0266 -0.1426 -0.0318
0.5 0.0059 0.005 -0.1173 -0.0021

0.8

0.1 -0.1236 -0.1119 -0.2139 -0.1116
0.2 -0.0868 -0.0787 -0.1863 -0.0806
0.3 -0.0496 -0.0449 -0.1584 -0.049
0.4 -0.0136 -0.0128 -0.1319 -0.0188
0.5 0.0255 0.0228 -0.1035 0.0146

0.85

0.1 -0.1049 -0.0949 -0.2001 -0.0958
0.2 -0.0665 -0.0598 -0.1702 -0.0629
0.3 -0.0303 -0.0273 -0.1432 -0.0324
0.4 0.0074 0.0067 -0.1154 -0.0005
0.5 0.0435 0.0387 -0.0907 0.0295

0.9

0.1 -0.0868 -0.0788 -0.1853 -0.0807
0.2 -0.0496 -0.045 -0.1577 -0.049
0.3 -0.0121 -0.011 -0.1303 -0.0171
0.4 0.0239 0.021 -0.1048 0.0129
0.5 0.0609 0.0537 -0.0803 0.0435

Table 5. Imbalance proportion of structural data with inconsistent positive study 
proportion.

Bias EP Approach CB Approach Bayesian 
Approach

0.1 0.1057 0.0925 -0.0423 0.0808
0.2 0.0756 0.0659 -0.0657 0.0555
0.3 0.0467 0.0406 -0.0875 0.0315
0.4 0.0182 0.0155 -0.1097 0.0079

and our method can also adjust the bias in real world data. However, either our 
proposed method or meta-analysis method has the assumption that there is no 
treatment-by-study interaction and treatment-by-center interaction. Therefore, 
further investigation of these two interactions can be included in future work. 

Regarding the bias in RWD or historical data, various methods have 
been proposed to identify and quantify the bias. An adjusted rank correlation 
test has been proposed to identify the bias in a meta-analysis based on 
historical data [11]. The test shows fairly high power for meta-analysis when 
studies number are large, which also suitable for RWD bias detection. Egger 
proposed a test of asymmetry funnel plot that can predict the discordance 
of outcomes in meta-analysis and evaluated the prevalence of bias in meta-
analyses [12]. Furthermore, several methods are proposed to control the bias 
to acquire inferiority margin or treatment effect from historical data. Chow and 
Shao proposed a method for selecting non-inferiority margin with statistical 
assurance. However, these methods only detected the bias but did not adjust 
the bias in historical data. As for bias adjustment method in RWD proposed a 
structure that generates robust RWE from RWD via adjusting confounding bias 
based on causal inference [13]. In addition, several suggestions study designs 
were proposed to adjust the selection bias in RWD. In our method, not only do 
we define and quantify the selection bias in RWD, but also we give adjustment 
methods quantitively [14,15].

Conclusion

Real-World data often consist of positive or negative studies and the 
data may be structured or unstructured. In this case, the validity of RWD is 
a concern for providing evaluation of safety and efficacy of the test treatment 
under investigation. The validity of RWD or Real-World Evidence is important, 
especially when it is intended to support a regulatory submission. In this 
paper, we discussed the selection bias adjustment of real-world data based 
on reproducibility probability approaches. We defined the selection bias in 



J Biom Biostat, Volume 14:01, 2023Zhao Y, et al.

Page 7 of 7

real-world data under the structural and unstructured data setting. Based on 
the form of bias, three reproducibility probability-based approaches have been 
introduced to estimate the real proportion of positive studies in the structural 
and unstructured data. The reproducibility probability-based approach provides 
effective bias adjustment when the proportion of positive studies is different 
as designed power. EP approach and Bayesian approach provide robust and 
effective bias adjustment in most of cases, and the CB approach provide huge 
and effective adjustment only when bias is larger than 10%. 
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