
Open Access

Bergemann et al., J Biomet Biostat 2012, S7 
DOI: 10.4172/2155-6180.S7-016

Open Access

        
Research Article

J Biomet Biostat                                                              ISSN:2155-6180 JBMBS, an open access journalMedical statistics: Clinical and Experimental Research

Keywords: Neurocognitive; Development; Malaria; Normalization;
Longitudinal data analysis; Cumulative; Global score

Introduction 
Cognitive impairment has been reported in children affected by 

a number of infectious and non-infectious diseases in sub-Saharan 
Africa [1-3]. For example, our studies have shown that ~25% of 
children surviving an episode of cerebral malaria will develop long-
term impairment in one or more neuropsychological domains 
[4,5]. These data suggest that almost 200,000 African children a year 
develop cognitive impairment after cerebral malaria. Other studies 
demonstrate that iron deficiency, which is very common in children 
in low-income countries, is frequently associated with cognitive 
impairment [6,7]. It is likely that millions of children are at risk for 
cognitive deficits from infectious and non-infectious diseases, but the 
long-term cognitive effects of disease on children have been studied in 
only a few contexts. Longitudinal studies to assess the effects of disease 
on childhood neurocognitive development, and the pathogenesis of 
cognitive impairment in children with specific diseases, are urgently 
needed, so that the magnitude of the problem can be defined and so 
that new interventions to decrease cognitive deficits can be planned.

The longitudinal assessment of the effects of disease on cognition 
in children also presents a number of challenges, particularly for 
children in low-income countries, where validated and standardized 

instruments have not been developed. A limited number of cognitive 
tests have been validated in such settings [8,9], meaning that assessing 
cognitive deficits may require more careful study design and statistical 
modeling, especially when this assessment happens over time. An 
assessment of the general effects of disease on cognition needs to 
account for the different ways in which disease can affect the brain and 
the psychometric properties of the different tests being used. This is 
further complicated when instruments to measure cognitive function 
variables report results on different scales, with different ranges and 
different distributions [10]. When assessing the effects of disease on 
cognition, a global score that incorporates the scores from each domain 
may be useful for quantification of the effects of disease on general 
neurocognition. Such an approach has been developed and practiced 
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Abstract
Introduction: Assessment of the effects of disease on neurocognitive outcomes in children over time presents 

several challenges. These challenges are particularly pronounced when conducting studies in low-income countries, 
where standardization and validation is required for tests developed originally in high-income countries. We present 
a statistical methodology to assess multiple neurocognitive outcomes over time. We address the standardization and 
adjustment for age in neurocognitive testing, present a statistical methodology for development of a global neurocognitive 
score, and assess changes in individual and global neurocognitive scores over time in a cohort of children with cerebral 
malaria. 

Methods: Ugandan children with cerebral malaria (CM, N = 44), uncomplicated malaria (UM, N = 54) and community 
controls (N = 89) were assessed by cognitive tests of working memory, executive attention and tactile learning at 0, 
3, 6 and 24 months after recruitment. Tests were previously developed and validated for the local area. Test scores 
were adjusted for age, and a global score was developed based on the controls that combined the assessments of 
impairment in each neurocognitive domain. Global normalized Z-scores were computed for each of the three study 
groups. Model-based tests compare the Z-scores between groups. 

Results: We found that continuous Z-scores gave more powerful conclusions than previous analyses of the 
dataset. For example, at all four time points, children with CM had significantly lower global Z-scores than controls 
and children with UM. Our methods also provide more detailed descriptions of longitudinal trends. For example, the 
Z-scores of children with CM improved from initial testing to 3 months, but remained at approximately the same level
below those of controls or children with UM from 3 to 24 months. Our methods for combining scores are more powerful
than tests of individual cognitive domains, as testing of the individual domains revealed differences at only some but
not all time points.

Journal of Biometrics & Biostatistics         Jo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180



Citation: Bergemann TL, Bangirana P, Boivin MJ, Connett JE, Giordani BJ, et al. (2012) Statistical Approaches to Assess the Effects of Disease on 
Neurocognitive Function Over Time. J Biomet Biostat S7:016. doi:10.4172/2155-6180.S7-016

Page 2 of 8

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalMedical statistics: Clinical and Experimental Research

in several other contexts such as neurofibromatosis and fetal alcohol 
spectrum disorders [11-13]. A common metric, such as a Z-score, may 
also be helpful to compare test results across different groups, studies, 
and test types. 

The utility of combining these tests is problematic when the 
relationships between variables are non-linear, and tests require 
adjustment according to local norms of test performance as well as 
adjustment for age. Additional potential problems arise when a small 
number of age-matched controls are available to provide a norm within 
each age category. Traditional approaches like ANCOVA analysis that 
incorporate confounding variables are inappropriate if the raw score 
performance distribution deviates from the normal and functional 
transformation of raw scores to a linear mapping is insufficient.

We have encountered each of these problems in our assessments 
of the relationship between cerebral malaria and long-term 
neurocognitive deficit in children [5,10]. In studies of development 
and cognition in low-income countries, a number of different 
strategies have been used to assess cognition over time [8,14-16], 
but many of the issues outlined above are not addressed or are only 
partially addressed in these studies. In the present paper, we propose a 
step-by-step analytic strategy to assess neurocognition that addresses 
each of the challenges we have outlined, using data first presented in 
Boivin et al., and John et al., [5,10]. The global neurocognitive score 
featured in the present study is derived from (1) a working memory 
score using the Kaufman Assessment Battery for Children [K-ABC], 
(2) executive attention using the visual form of the computerized 
Tests of Variables of Attention [TOVA], and (3) tactile-based learning 
using the Tactual Performance Test [TPT]. It is reasonable to combine 
these three domains into a global neurocognitive score because these 
domains have been implicated as especially vulnerable to persisting 
neurocognitive disability in the aftermath of cerebral malaria [10,17,18]. 
As such, the global neurocognitive score can be interpreted as an 
index of a neuropsychological deficit profile that might be expected 
specifically with school-age children surviving cerebral malaria. We 
address the standardization and adjustment for age in neurocognitive 
testing, present a statistical methodology for development of a global 
neurocognitive score, and describe assessment of changes in individual 
and global neurocognitive scores over time. The methods used are 
presented in detail, as they may provide a roadmap for other studies 
to conduct comparative assessments of neurocognitive function over 
time between groups of children.

Materials and Methods
Data description

The variables in our analysis were provided by children who had 
participated in earlier studies examining the cognitive and neurological 
outcomes of cerebral malaria, with testing at 0, 3, 6 and 24 months 
of follow-up [5,10]. Children 4 to 12 years of age were recruited as 
part of two studies assessing the complications of cerebral malaria. 
Longitudinal assessment of test performance was conducted only for 
children 5 to 12 years of age, because the ability of children 4 years of 
age to perform the different tests was highly variable. Children with 
cerebral malaria (coma, Plasmodium falciparum on blood smears, and 
no other cause of coma) or uncomplicated malaria (fever, P. falciparum 
infection on blood smear, and no World Health Organization criteria 
for severe malaria or evidence of other acute illness) were recruited for 
the study. A third group of community controls (CC) was recruited 
from the extended family or neighbourhood of children with cerebral 
malaria (CM) or uncomplicated malaria (UM). Controls and children 

with UM were recruited to be in the same age range as children with 
CM. The three study groups were comparable with respect to potential 
confounders (Additional file 1: Table S1, 10). Complete details of 
enrolment criteria and study groups have been previously published 
[5,10].

One hundred and eighty-seven children (44 children with CM, 
54 children with UM, and 89 CC) were enrolled in the study of 
neurocognition and were willing and able to undergo neurocognitive 
assessment (Table 1). Neurocognitive testing was performed at 
discharge for children with CM, 3 days after treatment for children with 
UM, and at the time of enrolment for CC children. Testing was also 
performed at 3 and 6-month and 24-month follow-up [5,10]. Follow-
up in each study group was excellent (Table 1). Missing data at follow-
up visits is assumed to be missing at random. There is no evidence that 
the absence of a data point is correlated with any other study outcomes. 
For example, the ages, group membership and previous neurocognitive 
test scores were similar in children without 24 month follow-up visits 
and the full sample (data not shown). Written informed consent was 
obtained from the parents or guardians of study participants. The 
institutional review boards for human studies at Makerere University 
School of Medicine, University of Minnesota, Indiana Wesleyan 
University and University Hospitals of Cleveland and Case Western 
Reserve University granted ethical approval for the study.

Cognitive assessments focused on (1) working memory using the 
Kaufman Assessment Battery for Children [K-ABC], (2) executive 
attention using the visual form of the computerized Tests of Variables 
of Attention [TOVA], and (3) tactile-based learning using the Tactual 
Performance Test [TPT]. Primary outcome measures used to define 
neurocognitive deficits were summary variables that assessed working 
memory (sequential processing of the K-ABC), executive attention 
(D prime test of the TOVA), and tactile-based learning (total time 
per block of the TPT). Complete details of the test batteries used are 
described in Boivin et al., [10]. These tests have been previously shown 
to be sensitive to the underlying neuropsychological constructs, robust 
across cultural contexts, and consistent in the manner in which they 
assess those underlying constructs across the age span for our school-
age samples [17].

Data transformation

Some neurocognitive tests show improving performance with age, 
on the average. In order to compare children with cerebral malaria 
to other groups, test scores were adjusted for age first and then 
combined into a global score. Since the age and grouping variables 
were uncorrelated, each variable was modelled separately. The ultimate 
goal of our analysis is to convert multiple age-adjusted neurocognitive 
scores to a normalized global Z-score for each time point and then fit 
an appropriate longitudinal model.

The first step in our analysis was to adjust test scores for age. Thus, 

Time of study Study group Total
CM UM CC

Baseline 44 54 89 187
3 months 42 (95%) 53 (98%) 87 (98%) 182
6 months 42 (95%) 52 (96%) 87 (98%) 181
2 years 38 (86%) 48 (89%) 84 (94%) 170

CM= children with cerebral malaria; UM = children with uncomplicated malaria; 
CC= community children 

Table 1: Children enrolled in a study of neurodevelopmental impairment in cerebral 
malaria. At follow-up visits, the number of children with data available and the per-
centage of the original sample are provided.
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we needed to determine if the relationship between age and each test 
score was linear or non-linear. A two-dimensional plot of age in years 
versus test score at a particular time point can assess this relationship. In 
addition to graphical assessment, a Box-Cox analysis can determine if a 
linear model is preferable to a polynomial transformation [19]. Figure 
1 indicates a linear relationship between age and the working memory 
score. Similar figures for other time points and neurocognitive scores 
are provided in Additional File 1 (Figures S1, S3, and S5). From these 
figures, we concluded that the association between age and working 
memory was linear, age and executive attention was linear, and age 
and tactile learning was non-linear. We used linear regression for the 
two variables with linear relationships, and locally weighted scatter 
plot smoother (loess) regression for the variable with a non-linear 
relationship, to adjust for age at each time point [19]. All available 
samples in the control group at a particular time point are used in the 
age adjustment. Any missing data from neurocognitive tests are not 
a concern in the regressions because sufficient representation exists 
across the continuum of ages and test scores. The resulting residuals 
from these models act as Z-score values that were then combined into 
a global neurocognitive score and used to compare performance in 
groups over time.

For the two variables (working memory and executive attention) 
for which age and test score were linearly related, a linear regression 
was fit between age in years and the test score and the resulting residuals 
were used. Comparative tests based on residuals usually lead to bias 
unless the variables in question are orthogonal (uncorrelated) [20]. The 
Spearman and Pearson correlation estimates of age and group were 
both 0.03 in our dataset, and these values, along with the scatter plots 
in Figures S1, S3, and S5, show that age and group were unrelated. An 
ANOVA model of age by group also showed no significant differences. 
Thus, we were able to use age-adjusted residuals for comparative tests. 
The regression was fit for the control group only and then applied to 
subjects in both malaria groups to obtain the residuals. Using model 
residuals as Z-scores allowed us to combine several neurocognitive 
test scores into a single variable that describes global neurocognitive 
function.

Studentized residuals from a regression are often preferred to 
ordinary residuals. The studentized residuals are centered and scaled 
and therefore follow a standard normal distribution when linear 
regression model assumptions are approximately met [19]. Therefore 
we have made use of the studentized residuals as Z-scores. With a 
Z-score, a value above 2 or below -2 falls outside of the range of 95% of 
the data. The normality of the Z-score was assessed with a histogram 
(Additional File 1: Figures S2 and S4). 

For the tactile learning score, which had a non-linear relationship 
with age, a loess regression between age and score was fit [19]. A linear 
regression would not adequately estimate the relationship between age 
and the tactile learning score, and there was not sufficient evidence 
to suggest an obvious function of the relationship between covariate 
and response. A loess regression was used to adjust for age because it 
allowed for irregular curvature in the association. The residuals from 
the loess curve were converted to Z-scores. This was achieved by fitting 
a loess curve to the control group only and then applying this fit to 
the malaria subjects also to obtain residuals and then Z-scores. The 
Z-scores followed an approximate standard normal that was, again, 
assessed with a histogram (Additional File 1: Figure S6).

Statistical testing and estimation of confidence intervals for 
longitudinal models of continuous variables generally require that the 
model residuals be normally distributed. The combination of Z-scores 
into a global score also requires that the individual test scores follow 
the same distribution and have the same scale. So the next step was 
to determine if residuals from the linear and loess regression models 
roughly follow a normal distribution. Figure 2 shows a histogram for 
loess residuals of the raw tactile learning score. These residuals are 
clearly non-normal with a strong positive skew. While the majority 
of values are close to zero, the range of the data extends up to 800. 
We observed the same non-normality after either linear adjustment or 
non-linear regression adjustment. For distributions of this shape, a log 
transform of the outcome will often result in residuals that more closely 
resemble a normal distribution, and indeed Figure 2 indicates that after 
the log transform, the distribution of the residuals is closer to normal.

After conversion of each of the three testing scores to standard 
normal distributions, the scores fell on the same scale. Thus, the 
three scores could be summed together and scaled by an estimate of 
the square root of the variance to compute a global neurocognitive 
score at each time point. This scaling was necessary to obtain another 
standard normal distribution. The variance estimate uses the pair wise 
correlations between each of the three tests, denoted ρij. 

Figure 1: The Working Memory (Sequential Processing) Score collected at 
baseline versus age. The line indicates the loess fit using a span of 1. The 
disease groups are CM = cerebral malaria, UM = uncomplicated malaria, and 
CC = community controls.

Figure 2: Histograms of the residuals derived from the age adjustment of the 
Tactile-based Learning Score, before and after log function transformation.
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A linear combination of three standard normal distributions also 
yields a normal distribution with an expectation of zero. The variance 
of this normal distribution is

( ) ( ) ( ) ( )
( ) ( ) ( )

( )

1 2 3 1 2 3

1 2 1 3 2 3

12 13 23

12 13 23
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ρ ρ ρ
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+ − −
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= + − −

Z Z Z Z Z Z

In order to obtain another standard normal, we simply divide 
the linear combination by the square root of the variance. Replacing 
the variance with its estimates will yield an approximate but not 
exact standard normal distribution. The pair wise correlations can be 
estimated in a straightforward manner using a Pearson correlation 
coefficient or similar. 

The scores were summed so that a higher score indicates higher 
neurocognitive function. The tactile learning score takes a negative 
value in the sum because a higher score reflects worse outcome. Each 
of the three neurocognitive tests contributed equally to the final score:

Cognitive Z =

( )
( )12 13 23

Working Memory Z + Executive Attention Z - Tactile Learning Z

ˆ ˆ ˆ3 2 ρ ρ ρ+ − −

Histograms indicated that these scores had approximate standard 
normal distributions at each time point (Additional File 1: Figure S7). 
Note that the above Z-score can be updated when additional samples 
are made available in a study. 

While the global Z-score above assumed that each test contributed 
equally to neurocognitive function, it is possible to estimate a linear 
combination using the data in order to give preference to one 
neurocognitive score over another. Using eigenvalue decomposition, 
principal components analysis (PCA) will estimate linear combinations 
of the data such that the first component of the set explains the largest 
proportion of variance. Thus, in addition to the estimation of a 
neurocognitive Z-score, we also examined a score estimated using the 
first component in a PCA. The variance explained and the component 
loadings for our dataset are given in the Results section. The principal 
component score is scaled so as to have an approximate standard 
normal distribution, requiring input test scores to again have a normal 
distribution. We refer to this estimate as the neurocognitive PCA-
score. Additional File 1: Figure S9 shows that the global neurocognitive 
Z-scores and PCA-scores were very similar.

Longitudinal models

A linear mixed effects (LME) model was then used to assess changes 
in scores over time between groups of interest. The global neurocognitive 
Z-score or the PCA-score, computed above, was the primary endpoint 
in the model. The model assumes measurements at the four time points 
were correlated within individual. The model also assumes that missing 
data is missing at random. In this study, the assumption is thought to be 
reasonable, especially given the low dropout rate over time. The LME is 
equivalent to a composite multilevel model for change, as described by 
Singer and Willett, where the structural component fits a group by time 
interaction and the stochastic component fits an individual intercept 
[21]. The LME model allowed time trends to vary by group using a time 
by group interaction term in addition to their main effects. An F-test 
for the group main effect compares the three groups of interest: cerebral 
malaria, uncomplicated malaria, and community controls. Model-
based t-tests were used to examine pairwise comparisons or contrasts. 

The resulting p-values were adjusted for multiple comparisons using 
the Benjamini-Hochberg correction [22]. The model was fit in R using 
the nlme package [23].

The approach outlined above, assessing a cumulative or global 
neurocognitive score over time, was compared to a set of three 
independent linear mixed effects models. In these three independent 
models, each one of the three neurocognitive tests was fit separately. 
The model’s fit used the same equations as those used for the global 
Z-scores but the model outcome was the raw test score and so there 
was an additional covariate for age. When the global Z-score was 
constructed, the age adjustment differs for each individual test and so 
the age adjustment and longitudinal models are performed separately. 
When the models are fit separately for each neurocognitive test, 
however, the age adjustment, longitudinal modelling, and group 
comparisons can be performed simultaneously [24].

The results of the linear mixed effects models were also compared 
with results reported previously that analyzed the same dataset with 
different methods [5,10]. In our earlier assessments, to account for 
age, each raw outcome was converted into an age-specific standardized 
Z-score based on the scores of community controls for each year of 
age. In each area of cognitive testing, a child was considered to have a 
cognitive deficit if the child’s Z-score was < -2 (for working memory 
and attention, where a lower score was a worse outcome) or > 2 (for 
tactile learning, where a higher score reflected a worse outcome). The 
primary outcome (neurocognitive deficit) was defined as the presence 
of a deficit in one or more of the areas of neurocognition tested 
(working memory, executive attention, tactile learning). Outcomes 
were recorded independently at each time point. A Fisher’s Exact or χ2 
test, depending on sample sizes, compared the frequency of cognitive 
deficits between groups.

Results 
Linear mixed effect model of global neurocognitive Z-score

The linear mixed effects model of global neurocognitive Z-scores 
estimates the change in cognitive function over time for each group 
of interest. The model estimates the average global neurocognitive 
Z-score at each time point within each group. The value of the Z-score 
for any study subject reflects the number of standard deviations away 
from the mean of the control group. The estimated average Z-score 
in the control group is zero at each time point because they are the 
reference group for comparison. An F-test of the group main effect 
showed that there was a significant difference between the three groups 
(p < 0.001). Figure 3 shows the data included in the model and the 
fitted trend lines for each group. Note that this figure does not show the 
raw development progression of the three groups but rather, how the 
CM group global Z-scores compares to the global Z-scores of the other 
groups (CC as the reference).

This figure demonstrates that on average the cerebral malaria 
group has lower cognitive scores at all time points, with the worst 
relative performance at baseline. The fitted model estimate in Figure 3 
indicates that the CM group had lower scores than the other two groups 
at baseline but made a sharp recovery by the month 3 assessment. 
Nonetheless, despite this recovery, a constant deficit persisted after 3 
months compared to the other two study groups.

The actual estimates from the linear mixed effects model of Z-scores 
are provided in Table 2. The slope estimates demonstrate the change 
in the global cognitive Z-score over time and between groups. These 
changes correspond to the amount of the standard deviation from the 
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mean of the standard normal distribution. The comparison between 
community controls and cerebral malaria at baseline, for example, gave 
a difference in the Z-score of 1.14, meaning that community controls 
had cognitive scores on average that are 1.14 standard deviations 
higher than the cerebral malaria patients. Other estimates in Table 2 
are interpreted similarly.

The t-tests in Table 2 assessed the significance of the pairwise 
comparisons listed. At each time point, the comparison between 
community controls and cerebral malaria is statistically significant, 
even after adjusting for multiple testing. There is no detected difference 
between children with uncomplicated malaria and community 
controls at any time point. We also tested for a difference between time 

points within the CM group. Within the cerebral malaria group, we 
found a significant difference in cognitive Z-scores between baseline 
and three months, but not thereafter. This shows some neurocognitive 
recovery after baseline in the CM group. From three months to two 
years, the slope estimates within the CM group are quite close to zero. 
Figure 3 reiterates this phenomenon, showing a persistent and constant 
deficit from 3 months out to 24 months between children with cerebral 
malaria compared to both community controls and children with 
uncomplicated malaria.

Given that slopes are nearly constant after three months for all 
study groups, the model results suggest a potential reduction in the 
number of parameters that need to be fit to describe the longitudinal 
behaviour. Thus, based on these results, a post-hoc analysis was also 
conducted with a model that estimates the slopes for each study group 
before and after a change-point set at 3 months. The models were fit 
for both the global neurocognitive Z-scores and for the PCA-scores. 
Results of the model fit are provided in Supplemental Tables S6 and 
S7. The results of the change-point model confirm those provided in 
Table 2, Table 3 and Figure 3. Namely, the CM group differs from the 
CC group at baseline, followed by a statistically significant increase 
in scores between baseline and three months and then no detectable 
change in scores thereafter. No difference between the UM and CC 
groups are detected and no change over time is detected for the UM 
or CC group. 

Figure 3 indicates that three patients in the CM group had 
neurocognitive Z-scores below -3 at baseline. We had no statistical 
or informational reason to discard these potential outliers from our 
dataset and therefore retain them in our analysis and results. Indeed, 
the poor performance of these children at baseline suggests that the 
initial neuropsychological assessment was sensitive to immediate post-
illness malaise and subsequent assessment of these children shows a 
marked recovery in neurocognitive performance. A supplemental 
analysis was also performed that excluded these three patients and 
the results are given in Additional File 1: Table S2. This table reports 
slightly different conclusions for specific comparisons than those in the 

Figure 3: Longitudinal estimates from the linear mixed effects model, black = 
CM, red = UM, and blue = CC.

Variable Difference in the 
Z-score

95% Confidence 
Interval

Unadjusted
p-value

CM – CC at each time point
CM – CC: baseline -1.14 (-1.51, -0.77) < 0.0001
CM – CC: 
3 months -0.40 (-0.77, -0.02) 0.04

CM – CC: 
6 months -0.55 (-0.92, -0.17) 0.005

CM – CC: 2 years -0.55 (-0.94, -0.17) 0.005

UM – CC at each time point
UM – CC: baseline 0.21 (-0.13, 0.56) 0.22
UM – CC: 
3 months 0.26 (-0.09, 0.60) 0.15

UM – CC: 
6 months 0.05 (-0.30, 0.40) 0.77

UM – CC: 2 years 0.02 (-0.33, 0.37) 0.91
CM trend over time
CM: 3 months – 
baseline 0.76 (0.54, 0.98) < 0.0001

CM: 6 months - 
3 months -0.15 (-0.38, 0.07) 0.17

CM: 2 years -
6 months -0.02 (-0.24, 0.21) 0.89

Table 2: Estimates of the difference in neurocognitive Z-scores over time in chil-
dren with cerebral malaria (CM), uncomplicated malaria (UM) and community chil-
dren (CC) from the linear mixed effects model.

Variable Difference in the 
Z-score

95% Confidence 
Interval

Unadjusted
p-value

CM – CC at each time point
CM – CC: baseline -0.71 (-1.08, -0.33) 0.0003
CM – CC: 
3 months -0.35 (-0.73, 0.02) 0.07

CM – CC: 
6 months -0.54 (-0.91, -0.16) 0.006

CM – CC: 2 years -0.58 (-0.97, -0.20) 0.003

UM – CC at each time point
UM – CC: baseline 0.24 (-0.10, 0.58) 0.17
UM – CC: 
3 months 0.30 (-0.04, 0.65) 0.09

UM – CC: 
6 months 0.10 (-0.25, 0.44) 0.58

UM – CC: 2 years 0.04 (-0.31, 0.39) 0.83
CM trend over time
CM: 3 months – 
baseline 0.24 (0.01, 0.47) 0.04

CM: 6 months - 
3 months -0.08 (-0.32, 0.15) 0.48

CM: 2 years -
6 months -0.05 (-0.29, 0.20) 0.71

Table 3: Estimates of the difference in PCA-scores of cognitive tests in children 
with cerebral malaria (CM), uncomplicated malaria (UM) and community children 
(CC) from the linear mixed effects model.
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full dataset, yet the overall message from the results of the modified 
analysis are the same.

Linear mixed effects model of principal components analysis 
(PCA) scores

The linear mixed effects model of PCA-scores is shown in Table 
3. This table shows that the results of the model based on PCA-scores 
were very similar to the results for the Z-scores shown in Table 2. The 
first component in the PCA at baseline explained 71% of the variance 
in the three baseline test results. At all four time points, this percentage 
ranged from 58% to 71%. The first component at baseline weighted 
each of the three test scores roughly equal in the linear combination: 
0.4 for working memory, 0.9 for executive attention, and -0.2 for tactile 
learning. At 3, 6, and 24 months, the weights of the first component 
were: 0.7 for working memory, 0.7 for executive attention, and -0.1 
for tactile learning. Thus in the PCA, the tactile-based learning score 
is somewhat down-weighted compared to the other two tests at 3, 6, 
and 24 months.

Comparison to previous dichotomous analysis and to linear 
mixed effects models of individual domain scores

In Boivin et al., we found a significant differences in the frequency 
of cognitive deficits at 6 months between cerebral malaria patients 
(21.4%) and community controls (5.7%) with a corresponding p-value 
of 0.01 from the χ2 test [10]. As shown in Table 2, p-values at this time 
point and all other time points for difference between children with 
CM and CC are smaller for the present method of analysis than for 
the prior dichotomized analysis, indicating that the new approach has 
more power to detect differences in cognitive outcome between groups.

The results of the LME model of global cognitive Z-scores were 
also compared to three independent LME models for working 
memory, executive attention, and tactile-based learning. The results 
of the individual models of cognitive tests are shown in Additional 
File 1: Tables S3, S4, and S5. While for the most part the results of 
the individual models coincide with the cumulative model shown in 
Table 2, there are some differences. Notably, in the cumulative model, 
all comparisons of community controls versus cerebral malaria are 
statistically significant at all time points. This does not hold up in the 
individual models. A global score such as the one devised may detect 
the overall or cumulative effects of disease on neurocognition better 
than the results for testing in a single area of neurocognition.

Discussion
This manuscript illustrates methods to summarize multiple 

cognitive measurements on children into a meaningful metric that can 
be used to test for association over time between clinical variables of 
interest and cognitive outcome. The methods adjust for age of the child 
and allow for the adjustment to differ with each cognitive measurement. 
The model of a global Z-score compares children with cerebral malaria 
who survive the illness after appropriate management and that are able 
to undergo neurocognitive assessment to uncomplicated malaria and 
community controls. The results suggest that the children with cerebral 
malaria recover some neurocognitive function within 3 months but 
then retain a persistent deficit thereafter compared to other groups. 
This opens up the intriguing speculation that more early and aggressive 
intervention in children with cerebral malaria within the first 3 months 
may help them regain better neurocognitive function that will persist 
over time. Though the model used is promising for this reason, it needs 
to be validated in other populations in future studies. 

In the statistical methods we propose, the summary of cognitive 
tests into a single continuous score enables the modelling of longitudinal 
studies of cognition in a succinct interpretable way. The continuous 
score has advantages over previously used dichotomous scores that 
divide participants into two groups, for example cognitive deficit and 
normal function. Though dichotomous scores have the advantage of 
clear interpretability and obvious use for clinical decision-making, the 
disadvantage of these scores is that they lose information about the size 
of the cognitive deficit and therefore power to detect subtle differences. 
We provide two continuous alternatives: a global score and a PCA-
based score. 

The global scores equally weight the tests and the result is a 
continuous measure. The advantage of this approach is that we use all 
of our information in a summary statistic. If a deficit exists in only one 
test score, but not another, we will see this reduction on the continuous 
scale. They do not cancel each other out, just as they do not cancel out 
in a dichotomous setting. The reductions are more obvious when they 
occur in multiple tests, but they are still discernible when they occur 
in only one test. The disadvantage of the global score is that each test 
is equally weighted in the combination and it may be the case that one 
test is more clinically relevant than another. The PCA-based score 
has all of the power advantages of the global scores because it too is a 
linear combination of continuous measurements. It carries the further 
advantage over the global scores of using the data to determine the 
best weights on the test scores. This advantage can, however, also be a 
limitation because a data-driven weight estimate will change with each 
dataset. Therefore, we lose the consistency of our application. 

We found that global and PCA-based scores were more powerful 
than dichotomous scores. We also ran analyses of each individual test 
score to ensure that there was not a wash-out effect over multiple tests. 
When we looked at PCA-based scores, we found that the data-driven 
weight estimates were roughly equal and the scores were very similar 
to the global Z-scores. So, the data suggest that our three test scores can 
be considered equally. This suggests that future analysis can use the 
global score only, because the weights will be consistent across future 
datasets in the same research context. If new batteries of tests are to be 
considered and different populations are to be studied, then another 
PCA-based analysis can be performed to determine weights on the tests 
in a new context.

In this research, we opted to adjust cognitive scores for age 
using either a linear or non-linear regression and develop models 
for the subsequent residuals. The mechanism by which age acted 
on score differed notably for each cognitive test. Our approach has 
the advantage of using all available samples in the control group to 
perform an age adjustment via a linear or non-linear function. This 
also allows the developmental pattern of a cognitive test to vary with 
increasing age. Since age had a linear relationship with two tests 
and a non-linear relationship with the third test, it was not possible 
to use statistical models like MANOVA or multivariate multi-level 
models of longitudinal data to analyze the three cognitive tests. When 
a neurocognitive score like tactile-based learning is non-linear and 
does not follow a polynomial function, an ANCOVA model would 
also be inappropriate. Accounting for this non-linearity with our 
approach will permit simultaneous modelling with other variables 
under study. ANCOVA is also not appropriate for studies that use 
raw score distributions with non-normality and different ranges or 
when standardized norms for the study group do not exist [25]. Our 
approach, by contrast, will facilitate the comparison of test results 



Citation: Bergemann TL, Bangirana P, Boivin MJ, Connett JE, Giordani BJ, et al. (2012) Statistical Approaches to Assess the Effects of Disease on 
Neurocognitive Function Over Time. J Biomet Biostat S7:016. doi:10.4172/2155-6180.S7-016

Page 7 of 8

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalMedical statistics: Clinical and Experimental Research

between groups, across studies, and across cognitive performance 
measures by mapping raw scores to a common age-adjusted metric. 

An important caveat to our approach exists, however, when there 
are interactions between the grouping variable and the age variable. 
Additional File 1: Figure S8 illustrates one hypothetical scenario where, 
because of this interaction, the studentized residuals from a linear 
regression model would be misleading. King also provides a useful 
review of when it is inappropriate to construct a regression on residuals 
[20]. A plot of age versus score within the grouping variables is helpful 
in this assessment as well as estimates of correlation or differences in 
the age distribution by group. If the pattern of age by score is consistent 
over groups, then the studentized residuals will not be biased. If the 
pattern is inconsistent, then a separate slopes ANCOVA model for 
each cognitive test, or a non-linear model with an interaction term, 
may be more appropriate. 

Earlier studies of cognitive and neurodevelopmental impairment 
in African children have used a number of methods to analyze data 
on cognition and development, including [8,10-16,26-30]. Each of 
these methods has its strengths, but each also has limitations that 
may have less power or more bias for assessment of cognitive data, 
particularly longitudinal cognitive data. In the case of [30], data is log-
transformed, but no record is provided about whether the transformed 
data meets assumptions of normality, or what was done if it did not 
meet these assumptions. In the current study, assumptions are tested 
and an alternative method of assessment provided, such as variable 
transformation or non-linear regression, if the assumptions are not 
met. Other previous studies controlled for covariates with linear 
regression analysis, but the cognitive tests were dichotomized into 
impairment groups [14,15].

The methods in this paper fit a linear mixed effects model for the 
assessment of longitudinal cognitive data. Other studies of longitudinal 
data may require variants of this model, depending on the variables 
involved. In other contexts, for example, it may be important to 
account for gender, SES, or other confounders. For clarity, we did not 
consider other confounders in this manuscript, but they could easily be 
added to the linear mixed effects model we have described. In general, 
more complicated longitudinal studies will require a greater degree of 
sophistication in a multilevel model of change.

The K-ABC Sequential Processing (memory) and TOVA (visual 
attention) measures significantly differed between exposure and control 
groups in a retrospective study of the effects of cerebral malaria (CM) 
in Senegalese children [18]. For this reason, we used these tests in our 
prospective study of cerebral malaria in Ugandan children [5,10,31]. 
The Tactual Performance Test (TPT) is part of the Halstead-Reitan 
Neuropsychological test battery for adults and for children. It measures 
tactile form recognition, spatial thinking, learning, and incidental 
memory [32]. Although TPT performance did not differ significantly 
between CM and controls in Senegal, overall TPT performance (time-
per-block) was significantly related to anthropometric measures of 
nutritional wellbeing in children from DR Congo. Improvement in 
performance between the preferred and non-preferred hand trials of 
the TPT is a measure of global brain inter-hemispheric development 
[33] and was significantly correlated with K-ABC Sequential Processing 
in Congolese children [34]. Since TPT performance is one of the 
most robust measures of overall neuropsychological performance in 
a factor analysis of the Halstead-Reitan tests [35], we included TPT 
overall time-per-block performance as our third global indicator for 
neurocognitive function (along with K-ABC Sequential Processing and 
TOVA D prime).

In our prospective study of CM, our initial assessment was just 
before the children with CM were released from hospital. Since 
they were still recovering from a serious illness, we did not do a 
neuropsychological assessment such as the Halstead-Reitan that could 
easily take 3 to 4 hours to administer. We chose the K-ABC, TOVA, 
and TPT because together they provided a reasonable profile of the 
core domains of neurocognitive performance, and included measures 
that in the past had proven sensitive to the effects of CM. Further, based 
on converging lines of evidence, these three ability domains reflect 
a foundational brain/behaviour omnibus [17]. The present paper 
evaluates novel statistical methods for evaluating the differences among 
exposure groups for several core neurocognitive domains: K-ABC 
Memory, TOVA attention, and TPT tactile learning. It is important to 
do separate comparisons for these three measures so as to determine if 
a particular neurocognitive domain is particularly affected by CM, as 
we saw was the case with attention. However, we also combined these 
three measures into a global neurocognitive performance score for 
between-group comparison and assessment over time. 

Scores from various neuropsychological tests are often combined 
in determining whether a patient has a global deficit or brain injury or 
neurodisability. The most widely used neuropsychological assessment 
battery is the Halstead-Reitan [36]. Performance measures from 
the Category Test (executive function), TPT (tactile learning and 
memory), Seashore Rhythm Test (nonverbal auditory discrimination), 
Speech Sounds Perception Test (verbal auditory discrimination), and 
Finger Oscillation Test (lateralized fine motor control) are combined 
to form the Halstead Impairment Index. This index represents the 
proportion of the 7 measures from these five tests for which the patient 
has performed below the normal cut-off for that test. An index score of 
1.00 means that the patient is below the range of normal performance 
for all 7 measures.

The value of the Halstead-Reitan impairment index decreases as 
the number of test scores (or normative data for establishing a cut-off) 
declines. The index is of little value when the number of scores available 
is less than 5 [36]. However, even when all 7 measures are available for 
determining the impairment index, a patient with a score of 1.0 may 
only be mildly impaired on most of the measures, having missed the 
cut-off for all seven scores by only a small margin. Compare this patient 
to one with an impairment index of only 0.14, but with a profound 
deficit due to brain injury, on tactile-based learning as measured by 
the TPT. The composite score for our three tests used in the present 
analysis circumvents these limitations by providing for a quantitative 
composite score of disparate neurocognitive measures on a normalized 
scale, for which cut-offs were based on normative data for that cultural 
context (derived from tests of otherwise healthy community children). 
The composite index score provided us with sufficient statistical power 
to detect important effects of cerebral malaria disease on overall 
neurocognitive function.

In summary, the proposed approach to data assessment and 
the linear mixed effects model outlined for longitudinal assessment 
of neurocognition provide a more robust and accurate measure of 
neurocognitive changes over time than those we have used previously 
[5,10-15]. The methods of comparing groups with local age-appropriate 
control data, or comparing between groups, are particularly useful in 
low-income countries. Although there are important caveats to use of 
this approach, particularly in regard to types of psychometric testing 
used and the method of combining these tests, we believe that correctly 
implemented, it has the potential to be a useful tool in the analysis of 
cognitive outcomes in children not only with cerebral malaria but with 
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other disorders affecting the central nervous system, such as seizures 
[11,37], neurofibromatosis [12], and fetal alcohol spectrum disorders 
[13], among others. In conclusion, the statistical approach we propose 
has the potential to contribute significantly to improved analysis and 
interpretation of longitudinal cognitive assessment in children. 
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