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Introduction 
In the study of complex diseases, a major challenge is disease 

heterogeneity, where the dysregulations of different pathways often 
lead to similar disease phenotypes. As a result, a given pathway can 
be differentially expressed (with respect to controls) for some patients, 
but not others. Therefore, in addition to identifying disease relevant 
pathways for the entire patient group, successful (personalized) 
treatment regimes will also depend upon knowing if a particular 
pathway is dysregulated for an individual patient. To this end, we 
compare pathway gene expression profile for a particular individual in 
the patient group to the “norm” (or standard) established by a group 
of control patients. The questions we are hoping to address are: for 
a particular patient, is his gene expression level for a given pathway 
normal (as compared to control subjects)? Will therapy targeted at a 
particular pathway likely be beneficial for the patient? 

Over the past few years, many pathway analysis tools [1-6] have 
been developed. Typically, to identify differentially expressed pathways 
for a disease, the pathway expression profile for the patient group is 
compared to that for the control group. However, once a disease 
relevant pathway at the group level is identified, few if any of these 
methods can be used to assess the statistical significance of patient-
specific pathway activities. Typically, the mean or principal component 
score are used to summarize pathway activity in each patient, with 
no significance assessment [7,8]. Hypothesis testing of pathway 
gene expression for individual patient is challenging, because when 
comparing a patient pathway gene expression to that of a group of 
control patients, different sources of variations - the between-sample 
variations as well as the within-sample variations (among different 
genes), need to be accounted. 

In this paper, we study statistical analysis of patient-specific 
pathway activities under the mixed models framework [9]. Mixed 
effects models, which include fixed effects that model the mean 
structure in data and random effects that account for various sources 
of variations, is a flexible statistical modelling framework. Previously, 
mixed effects models have been successfully applied to the analysis of 
gene expression data, both at the single gene level [10,11] and at the 
pathway level [2,3,5,6]. 

In particular, Wang et al. [5] proposed a mixed effects random 
coefficient model for the analysis of time course experiments. Here we 
adapt this model to case-control studies, which is the most common 
design for human microarray studies. Our model includes both fixed 
effects that model mean gene expression profiles for the patient and 
control groups, and random effects that model how each subject’s 
profile varies about the group mean, thus belongs to the general class of 
mixed effects models. To account for the complex correlation patterns 
between genes, we additionally including random effects based on 
eigenvectors and Eigen-values of the gene-gene covariance matrix. To 
assess the properties of the proposed test for patient-specific pathway 
activities, we conducted a simulation study using gene expression 
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Abstract
In the study of complex diseases, a major challenge is disease heterogeneity, where the dysregulation of different 

pathways often lead to similar disease phenotypes. As a result, a given pathway could be differentially expressed 
with respect to controls for some patients, but not for others. Therefore, to develop successful personalized treatment 
regime, in addition to identifying disease relevant pathways for the entire patient group, it’s also important to test if a 
particular pathway is dysregulated for an individual patient. To this end, we compare pathway gene expression profile 
for a particular individual in the patient group to the “norm” (or standard) established by a group of control patients. 
We studied statistical analysis of patient-specific pathway activities under the mixed models framework. Using gene 
expression dataset with realistic correlation patterns, we showed the proposed hypothesis testing procedure had false 
positive rate (type I error) as expected. In addition, we illustrated the proposed methodology using a Type 2 Diabetes 
dataset. Our results showed a previously diabetes associated pathway was only differentially expressed (relative to 
the control group) in less than 30% of the diabetes patients, which provided an explanation for the moderate group 
level statistical significance seen in a previous study. This result also suggested targeting this particular pathway would 
likely be beneficial for only 30% of the patients. In addition to the case-control study we have illustrated, this model 
can be easily extended to handle more complex designs with additional covariates and multiple sources of variations. 
Moreover, the proposed model operates within a well-established statistical framework and can be implemented in 
common statistical packages.
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data with realistic correlation patterns. In addition, we illustrate the 
proposed method for a real diabetes microarray dataset. Finally, we 
provide some discussions and concluding comments. 

Methods
Microarray pre-processing 

Before fitting mixed models, there are several pre-processing steps. 
First, for each gene, to homogenize variances of all genes included in the 
mixed model, we standardize each (log transformed, normalized) gene 
expression value by subtracting its control group mean and dividing by 
its control group standard deviation. The standardized gene expression 
values then represent the number of standard deviations away from the 
‘‘normal’’ gene expression values [5,6]. 

Mixed models for gene set analysis

Next, we link gene identifiers in the expression dataset with pre-
defined gene sets such as those defined by Gene Ontology [12], so that 
genes are grouped by gene sets. For each gene set, we next construct the 
following mixed model for a case-control study: 

Yijk = Groupj+Patientk+r1i+.......+rpi+εijk  (Model 1)

where Yijk = standardized gene expression value for gene i from patient k 
in group j (j = 1 for patient group, j = 0 for control group) from the pre-
processing step; Group0, Group1 are fixed effects that model the mean 
pathway gene expressions for the two groups; Patient1,.....,Patientn are 
random effects that model patient variations, they model how pathway 
gene expression for a patient deviates from the group means. Since 
variations in patient samples may be different from (e.g. often more 
variable) than those in control samples, we assume separate variance 
components for the two groups:

2
1 0 0,..., (0, )nPatient Patient independent N σ

and 

2
0 1 1,..., (0, );n nPatient Patient independent N σ+ 

2
1,..., (0, )p rr r independent N σ

are random effects included to account for the heterogeneous 
correlation patterns between genes, see details below; p is the rank of 
the gene-gene covariance matrix; εijk ~ N(0,σ2) represent variations due 
to measurement error. 

Note that while parameters for the fixed effects (e.g. Group0, 
Group1) are fixed unknown parameters to be estimated from data, 
random effects (e.g. Patient1, Patient2,....Patientn)are random variables 

and the parameter associated with them ( )2 2
0 1e.g.σ σ  are called the 

variance components. Parameters from the mixed models are estimated 
using restricted maximum likelihood (REML) along with appropriate 
standard errors [9,13]. 

Modelling the heterogeneous correlation patterns between 
genes

In Model 1, the Patient random effects are constructed as indicator 
variables for each sample, that is, Patientk=I{Patient k}, they account for 
the homogeneous covariance among all gene expression values from the 
same patient. On the other hand, the random effects r1,.....,rp model the 
heterogeneous correlation patterns between genes. Figure 1 illustrates 

the design matrix corresponding to {rl;l=1,........,3}for a hypothetical 
gene set with 3 genes using SAS procedure PRINCOMP. Briefly, let Σ̂
be the sample gene-gene covariance matrix with dimension p×p (p = 
number of genes in the gene set), we specify the column in the design 
matrix corresponding to random effect r1 to be ˆ ˆl lλ α  where ˆl =α  
estimated l-th eigenvector of Σ̂  and l̂λ = estimated l-th eigenvalue of 
Σ, l=1,..,p. The eigenvectors and eigenvalues of a matrix Σ are defined 
as vectors α1 and scalars λ1 

such that Σα1 = λ1 α1 l=1,...,p. This design 
matrix for the random effects r1,....,rp is motivated by the theorem on 
Spectral Decomposition [14], a short proof is given in the next section.

Application of the spectral decomposition theorem

A general representation of the linear mixed model is 

 Y = Xβ+Zu+ e

 u ~ N(0, G)

 e ~ N(0, R)

 Cov[u, e] = 0

where X,Z are design matrices for the fixed and random effects, Xβ and 
Zu are the fixed effects and random effects components, and e is the 
error term. The marginal model for Y is then Y~ N(Xβ,ZGZt +R.

For Model 1 described above, the fixed effects consisted of β 
= [Group0 Group1]

t and X is the corresponding design matrix. The 
random effects u has three parts: 

2
1 0 0,..., (0, ),nPatient Patient independent N σ                                     (1)

2
0 1 1,..., (0, )n nPatient Patient independent N σ+  ,                                (2)

and 

2
1,..., (0, ).p rr r independent N σ  We assume R=σ2 I                         (3) 

Let Z1, Z2, Z3 be the sub-matrices of the design matrix Z 
corresponding to the three sets of random effects, so that Z = [Z1, Z2, 
Z3]. The design matrix Z3 corresponding to the random effects r1,....,rp 
was motivated by the theorem on Spectral Decomposition [14] which 
states that under regularity conditions, for any symmetric matrix (with 
rank p), we have 

1 1 1 2 2 2 ...t t t
p p pλα α λ α α λ α α= + + +Σ , 

where αl and λl (l = 1, …, p) are l-th eigenvector and Eigen-value of Σ. 

We next show the random effects r1,....,rp model heterogeneous 
covariances between genes. Assume

2
1,..., ~  independent (0, )p rr r N σ ,

as described above (and illustrated in Figure 1), we then have 

1 1 2 2
ˆ ˆ ˆˆ ˆ ˆ... p pZ λ α λ α λ α =   3  

2

2

3

2

0 ... 0
0 ... 0

0 0 ...

r

r

r

σ
σ

σ

 
 
 =  
 
  

   

G

where G3 
is diagonal matrix corresponding to Z3. Let r = [r1,r2......rp]

t, 
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The PRINCOMP Procedure 
Observations   12  
Variables       3                               

                    Covariance Matrix  

                    ENSMUSG00000026182  ENSMUSG00000028411  ENSMUSG00000049717 
ENSMUSG00000026182        0.0061719479        0.0034041364        -.0016351085 
ENSMUSG00000028411        0.0034041364        0.0809434336        0.0293087945 
ENSMUSG00000049717        -.0016351085        0.0293087945        0.0475408824 

            Eigenvalues of the Covariance Matrix 

        Eigenvalue    Difference    Proportion    Cumulative 
   1    0.09802458    0.06712217        0.7280        0.7280 
   2    0.03090241    0.02517314        0.2295        0.9575 
   3    0.00572927                      0.0425        1.0000 
                        Eigenvectors 
                           Prin1         Prin2         Prin3 
ENSMUSG00000026182      0.023129      -.124996      0.991888 
ENSMUSG00000028411      0.864915      -.495082      -.082558 
ENSMUSG00000049717      0.501385      0.859808      0.096660 

Figure 1: An illustration of computation for random effects { ; 1,..., }lr l p=  in Model 1, using a hypothetical gene set with 3 genes (variables) and 12 samples (observa-
tions). Covariance Matrix = estimated gene-gene covariance matrix Σ̂ . Under “Eigenvalues of the Covariance Matrix”, 1̂λ = 0.09802458 is the estimated first eigenvalue 
of Σ̂ . Under “Eigenvectors”, Prin 1 = 1α̂  is the estimated first eigenvector of Σ̂ . r1 

is computed as a scaled product of the first eigenvalue and eigenvector, or 1ˆ0.098α
, note that they vary according to genes, so the random effects have sub-index i in Model 1. 

the contribution of random effects r1,....,rp to the covariance matrix of 
Y in the marginal model would then be 

2 2
3 3 3 3 1 1

ˆ ˆˆ ˆ ˆ ˆ...t t t
r r p p pσ λ σ λ= + +var ( )Z r = Z G Z α α α α1

Next, we show the approximation of gene-gene covariance matrix 
Σ using 3 3 3

tZ G Z based on the estimated eigenvectors and Eigen-values 
is asymptotically unbiased. To see this, note that 

( )
( )

( ) ( ) ( ){ }
( ){ }

ˆ ˆ ˆ 1,...,

ˆ ˆˆ ˆ ˆ( ) and  are independent (Jolliffe 2002, p48)

ˆ ˆ ˆ=

1 /     (Jolliffe 2002, p48)

  as 

t
l l l

t
l l l l l

l l l l

t
l l l

t
l l l

E l p

E E

E E Var

O n

n

λ

λ λ

λ

λ

λ

=

=

+

= +

→ →∞

α α

α α α

α α α

α α

α α

Now letting 2 1rσ = , we then have

3 3 3 1 1( ) ...  as t t t
p pE nλ λ→ + + = →∞Z G Z 1 pαα αα Σ

In practice, to increase the goodness-of-fit of Model 1, we include
2
rσ as an unknown parameter and use restricted maximum likelihood 

to obtain its estimate. In addition, since Σ is not known, we replace Σ 
with its unbiased estimate Σ̂ . 

Significance testing of patient-specific pathway activities

Once estimates for fixed effects {Groupj; j=0,1} and random 
effects {Patientk; k=1,..,K}in Model 1 are obtained, to assess pathway 
significance for a particular patient (Patient k) from the patient group, 
we test the null hypothesis

H0:Group1+Patientk - Group0 = 0

Here, Group1+Patientk represents average pathway expression 
(over all genes in the pathway) for Patientk and Group0 represents 
average pathway expression for control patients. 

To perform hypothesis testing for Group1+Patientk - Group0, an 
approximate t-statistics can be computed using PROC MIXED in SAS 
software (Version 9.1, SAS Institute, Inc., Cary, North Carolina) based on 
a formula described in details in SAS 9.1.3 help documentation (p2740-
2741) and [15,16]. More specifically, for the general linear mixed model 
describe above in the section “Application of the Spectral Decomposition 

Theorem”, to test the null hypothesis 0 : 0H L  
= 

 

β
u

 where L is a 

single row of parameter contrast, we can construct an approximate 

t-statistic 
ˆ ˆ/
ˆ

t L LCL
 

′=   
 

β
u

where 
' 1 ' 1

' 1 ' 1 1

X R X X R Z
C

Z R X Z R Z G

−
− −

− − −

 
=  

+  

 



  

is 

the variance-covariance of ( )ˆ ˆâ - â,u - u  and - denotes a generalized 

inverse. This approximation is based on asymptotic argument and Ĉ
tends to underestimate the true sampling variability of ˆ ˆ( )â,ã because 
no account is made for the uncertainty in estimating G and R. To 
account for the downward bias, we included DDFM=KR option in 
the MODEL statement, which prompted PROC MIXED to compute 
a specific inflation factor along with Satterthwaite-based degrees of 
freedom based on Kenward and Roger [17]. In the statistics literature, 
the estimates for the random patient effects are called Empirical Best 
Linear Unbiased Predictors (EBLUPs), and they have been shown 
to have several desirable properties [18] that make them especially 
attractive for estimating pathway activities for individual patients: 
(1) they are “best” in the sense that they are linear functions of the 
gene expression data Y that minimizes mean squared error between 
the predictor (estimates for random effects) and the true values of the 
random effects; (2) they are “unbiased” that their expectation is equal to 
the expectation of the random effects; (3) they are shrinkage estimates 
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that borrow information across all subjects in the study, by accounting 
for the underlying variability between and within patients; (4) in the 
Bayesian literature, they can be formulated as the mean of posterior 
distribution of the random effects given observed data Y, and are called 
the “empirical bayes” estimates. We illustrate significance testing of 
pathway expression for individual patients in the Results section.

Summary of the proposed procedure

In summary, the steps for the mixed model analysis are as follows:

Pre-processing: to homogenize variances of all genes, standardize 
each (log transformed, normalized) gene expression value by 
subtracting its control group mean and dividing by its control group 
standard deviation. Next, group genes by gene sets and for each gene 
set:

For a gene set with p genes, specify design matrix (i.e. values) for 
the random effects r1,....,rp. 

a. For each gene, to remove the mean effects, we fit the linear model 
Yijk = Groupj+Patientk+∈ijk where Yijk denotes standardized expression 
value for gene i, patient k in group j obtained from step 1). From this 
model, the studentized residuals ([13] p415), which are residuals 
divided by an estimate of its standard deviation are then computed.

b. Let Σ̂  be the sample gene-gene covariance matrix (an unbiased 
estimate of Σ ), calculated based on the studentized residuals from 
the gene-wise linear models in step 2) a. Specify the column in design 
matrix corresponding to random effect r1 to be ˆ ˆl lλ α where ˆl =α
estimated l-th eigenvector of Σ̂  and l̂λ =  estimated l-th eigenvalue of
Σ̂  (see Figure 1 for an example).

Fit mixed model Yijk= Groupj + Patientk +r1i 
+... + rpi +εijk described 

in the section “Mixed Models for Gene Set Analysis”, obtain estimates 
for model parameters. To test for significance of the patient specific 
pathway activities, we test H0: Group1 + Patientk - Group0 = 0. Here, 
Group1 + Patientk represents average pathway expression (over all 
genes in the pathway) for Patientk and Group0 represents average 
pathway expression for control patients. 

Supplementary file 1 shows example SAS program for implementing 
the proposed mixed model analysis. 

Results 
A simulation study

To ensure false positive rate based on the mixed effects model is 
as expected, we simulated null gene sets, for which disease status for 
each sample was generated randomly from a Bernoulli distribution 
and estimated the type I error rate of patient specific tests described in 
section “Significance testing of patient-specific pathway activities”. To 
obtain realistic correlation patterns between genes for this simulation 
study, we used gene expression data from a real microarray experiment 
along with simulated disease outcomes (i.e. case-control statuses for 
each patient). More specifically, we used the dataset from Mootha et 
al. [19] where gene expression of skeletal muscle biopsy samples from 
18 diabetes patients (DMT group) were compared to those from 17 
control patients with normal glucose tolerance (NGT group). 

Some pre-processing steps are in order: first, we grouped genes 
based on the biological process categories in Gene Ontology, by using 
the C5BP collection of gene sets from the MSigDB database [4] (http://
www.broadinstitute.org/gsea/msigdb/) with sizes (the number of genes 

in the gene set) ranging from 5 to 200, this resulted in a total of 744 
gene sets. Next, for each gene set, fixing the gene expression data, we 
generated a set of 35 case control status for the samples, randomly 
from the Bernoulli distribution with parameter (success probability) 
0.5. Therefore, by design of experiment, for each gene set, the gene 
expression data were not related to disease outcome and the null 
hypothesis H0: gene expression profile for a patient sample is the same as 
the gene expression profiles in control samples is true. This process was 
then repeated 10 times. For each repetition, for the 18 diabetes patients 
across all 744 gene sets, we obtained a total of 13392 patient-specific 
P-values (744 gene sets 18 patients). We then estimated type I error rate 
by the proportion of these patient-specific pathway P-values less than 
0.05 among the total of 13392 P-values. 

For comparison, we also included another simple and tempting 
approach using Wilcoxon signed-rank test. Briefly, to estimate pathway 
significance for a patient sample, we compared the gene expression 
profile for the patient sample with the average gene expression profile 
for control samples using the Wilcoxon signed-rank test for paired 
data. The signed-rank test is used here since for each gene, we have 
a pair of values, one from the patient sample, and another from the 
average of the control samples. Note that since the gene expression 
levels in control samples were averaged, this method doesn’t account 
for between-patient variations in the control samples. In addition, the 
within-sample correlations (between different genes) were also ignored 
since the signed-rank test assumes independent units (i.e. genes).

Table 1 shows the estimated type I error rate for the proposed mixed 
model and Wilcoxon signed-rank test for each of the 10 repetitions. To 
estimate type I error rate, we pooled results for the 18 patient samples, 
so that for each repetition, each error estimate was calculated based on 
a total of 13392 tests (744 gene sets ×18 patient samples). Since under 
H0, we expect the P-values to follow a uniform distribution, a method 
with type I error rate roughly equal to or less than the significance 
cutoff 0.05 is desirable. The results showed that while the type I error 
rate for mixed Model 1 was preserved (overall type I error = 0.044), it 
was excessive for the simpler method using Wilcoxon signed-rank test 
(overall type I error = 0.137).

Application to a diabetes dataset 

We next applied the mixed model analysis to the diabetes dataset 

Repetition Mixed Model Wilcoxon Signed-Rank Test

1 0.041 0.139

2 0.043 0.138

3 0.049 0.137

4 0.044 0.136

5 0.045 0.135

6 0.040 0.135

7 0.041 0.134

8 0.044 0.143

9 0.043 0.134

10 0.054 0.138

Overall 0.044 0.137

For each repetition, the simulation dataset consisted of 744 gene sets and 
P-values for patient specific pathway activities were calculated for each of the 18 
patient samples. Therefore the type I error rates were calculated based on a total 
of 13392 tests (744 gene sets ×18 patient samples) for each repetition.
Table 1: Type I error rate for Mixed Model 1 and the Wilcoxon Signed-Rank test 
(  α = 0.05).
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[19] with real disease outcomes. In particular, we studied the Oxidative 
Phosphorylation Pathway from the KEGG database [20]. This pathway 
was initially studied by Mootha et al. [19] and was shown to be 
associated with type 2 diabetes (T2D) based on multiple computational 
and experimental evidences. When the entire patient group was 
compared to controls, the P-value based on mixed model (by testing 
Ho: Group1- Group0) was 0.0231, indicating significant association 
between Oxidative Phosphorylation Pathway gene expression with 
T2D. Next, we computed statistical significance of the pathway 
activity for each diabetes patient compared to the controls. To correct 
for multiple comparisons, we performed Bonferroni corrections to 
P-values of the patient specific tests. The results showed there were 5 
out of the 18 patients with differentially expressed pathway expression 
compared to controls (adjusted P-value < 0.05, Table 2). In Mootha 
et al. [19], the authors noted a typical gene in this pathway was only 
moderately decreased by about 20% in diabetes patients. As table 2 
shows, one possible explanation for the moderate group level estimate 
could be that this pathway was only differentially expressed for some 
patients (with respect to controls), but not all patients. 

Discussion 
In this paper, we were mainly concerned with hypothesis testing 

for individual patients, which differed from the prediction analysis 
framework: a prediction model trains a classifier based on a group of 
patients and a group of controls and assumes everyone in the patient 
group have dysregulated pathway activities; on the other hand, in the 
mixed models, we assume as a result of disease heterogeneity, a given 
pathway can be differentially expressed (with respect to controls) for 
some patients, but not others. 

In the proposed mixed model, the mean for control group served 
the purpose of establishing a “norm” or standard for gene expression 

level of a particular pathway. It is worth noting that although pathway 
gene expression for each patient was compared to the mean pathway 
gene expression of the controls, our approach did account for between-
subjects variability in the control group, by modeling the mean as well 
as its standard error in the test statistic. 

In the course of this study, we also considered resampling-
based procedures for estimating patient specific P-values. However, 
this was difficult for two reasons: first, when re-sampling genes, the 
underlying assumption is that the group of genes in each re-sample 
is exchangeable (e.g. have the same correlation patterns) with genes 
in other re-samples, which may not be reasonable considering the 
complexities in gene expression datasets. Second, when permuting 
samples for pathway expressions, as discussed in details previously [5], 
the hypothesis being tested is a global hypothesis that gene expression 
level for a patient is the same as the control group gene expression 
for all the genes in the gene set. On the other hand, here we aimed at 
testing a central hypothesis that the average gene expression activity 
for pathway genes in a patient is the same as that in controls. In our 
experience, testing global hypothesis may be difficult for some gene 
expression datasets with strong signals by generating excessive number 
of significant results. 

In addition to matching patients with the most appropriate 
treatments, the estimated patient-specific pathway activities P-values 
can be applied to a number of other settings. For example, in analysis 
that integrates different types of omics datasets such as the expression 
QTL study, the patient specific P-values can be used to summarize 
information for each patient and help reduce dimensionality. 
Furthermore, these patient specific summaries on pathway activities 
can be applied to model disease progression [21] over time or compare 
diseases at a systems level [22]. 

In summary, we have proposed a new strategy for significance 
testing of patient-specific pathway activities using a mixed model. 
This model compares pathway gene expression for a patient to that 
of a group of controls, while modelling between-patient and within-
patient (among different genes) variations at the same time. Using gene 
expression dataset with realistic correlation patterns, we have shown 
the proposed model had false positive rate (type I error) as expected. 
In addition, our results on a type 2 diabetes dataset showed that a 
previously diabetes associated pathway was only differentially expressed 
(relative to the control group) in less than 30% of the diabetes patients, 
which provided an explanation for the moderate group level statistical 
significance. These results also suggested targeting this particular 
pathway would likely be beneficial for only 30% of the patients. In 
addition to the case-control study we have illustrated, the mixed model 
can be easily extended to handle more complex designs with additional 
covariates and multiple sources of variations. Moreover, the proposed 
model operates within a well-established statistical framework and can 
be implemented in common statistical packages.
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