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Introduction
Consider the data in Table 1 taken directly from Breslow and 

Day [1] . These are from the Los Angeles study of endometrial cancer 
and obtained from the 59 matched pairs using four dose levels of 
conjugated oestrogen, (1) none, (2) 0.1-0.299 mg, (3) 0.3-0.625 mg, and 
(4) 0.626+mg (/day). For these data, we are interested in (a) what times
the probability that the average dose of oestrogen for case in a matched
pair is in category i and that for control in the pair is in category j (<i) is
higher than the probability that the average dose for case in the pair is
in category j and that for control is in category i (>j), and (b) what times
the probability that the average dose for case in a pair is in category i
or above and that for control in the pair is in category j (<i) or below
is higher than the probability that the average dose for case in the pair
is in category j or below and that for control is in category i (>j) or
above. Especially, we are interested in what times the probability that
the average dose for case in a pair is not zero (i.e., in categories 2, 3, and
4) and that for control in the pair is zero (i.e., in category 1) is higher
than the probability that the average dose for case in the pair is zero and
that for control is not zero. Namely we are interested in seeing what
structure of asymmetry for probabilities there is between the average
dose for case in a pair and that for control in the pair.

Agresti considered an asymmetry model, called the linear diagonals-
parameter symmetry (LDPS) model [2]. Miyamoto et al. considered an 
asymmetry model, called the cumulative linear diagonals-parameter 
symmetry (CLDPS) model [3] , and applied this model to the data in 
Table 1.

The present paper (1) reviews some asymmetry models, (2) 
proposes new asymmetry models which are generalizations of the 
LDPS model and CLDPS model, and (3) analyzes the data in Table 1 
using these new models.

Material and Methods
Reviews of models

Consider an r × r square contingency table with the same row and 

column classifications, as Table 1. Let pij denote the probability that 
an observation will fall in the i th row and  jth column of the table (i = 
1,...,r; j = 1,...,r). As a model which indicates the structure of asymmetry 
for {pij}, the LDPS model is given as 

=    ( > ).δ −ij i j

ji

p
i j

p
For the endometrial cancer data in Table 1, this model indicates that 

the probability that the average dose of oestrogen for case in a matched 
pair is in category i and that for control in the pair is in category j (<i) 
is δi-j times higher than the probability that the average dose for case 
in the pair is in category j and that for control is in category i (> j). 
If δ > 1, then the average dose of oestrogen for case in a pair tends to 
be more than that for control in the pair. A special case of the LDPS 
model obtained by putting δ = 1 is the symmetry (S) model [4,5]. Also 
the LDPS model with {δi-j} replaced by {γδi-j} is the two ratio-parameter 
symmetry (2RPS) model [6]. A special case of the 2RPS model obtained 
by putting δ = 1 is the conditional symmetry (CS) model [7].

Let for i > j, 
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For the endometrial cancer data, (1) Gij for i > j indicates that the 
cumulative probability that the average dose for case in a pair is in 
category i or above and that for control in the pair is in category j or 
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Abstract
Background: For the data from the Los Angeles study in Breslow and Day of endometrial cancer and obtained from 

the 59 matched pairs using four dose levels of conjugated oestrogen, this study proposes new statistical models and 
gives an easy interpretation, as an approach to assess the data more properly. 

Methods: Proposing new statistical models for analyzing the endometrial cancer data, we apply them to the data, 
compare and assess the models considered here. 

Results: We have found a more preferable model which fits the data better than some existing models. Under the 
preferable model, we have seen that the average dose of oestrogen for case in a matched pair tends to be more than 
that for control in the pair. 

Conclusions: We have proposed two kinds of statistical models and made a conclusion that average dose for case 
tends to be more than that for control. 
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below, and (2) Gji for i > j indicates that the cumulative probability that 
the average dose for case in a pair is in category j or below and that for 
control in the pair is in category i or above.

As a model which indicates the structure of asymmetry for {Gij}, i ≠ 
j, the CLDPS model is defined by 

=    ( > ).−∆ij i j

ji

G
i j

G
The CLDPS model is different from the LDPS model. For the 

endometrial cancer data in Table 1, the CLDPS model indicates that 
the probability that the average dose for case in a pair is in category  i 
or above and that for control in the pair is in category j (< i)  or below 
is Δi-j times higher than the probability that the average dose for case 
in the pair is in category j or below and that for control is in category 
i or above. If Δ > 1, then the average dose for case in a pair tends to be 
more than that for control in the pair. Also the CLDPS model with {Δi-

j} replaced by {ΓΔi-j} is the cumulative two ratios-parameter symmetry 
(C2RPS) model [8].

New models

We shall propose two kinds of new models. First, consider a 
generalization of the LDPS model as follows: for a fixed K(K=0,1,2,..;-
1,-2,…),

( )=    ( > ).δ + −ij K i j
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We shall denote this model by LDPS(K). Then the LDPS(0) 

model is equivalent to the LDPS model. Also the LDPS (-r)  model 
is equivalent to another LDPS model, proposed by Tomizawa [9]. For 
the endometrial cancer data, the LDPS(K) model indicates that the 
probability that the average dose of oestrogen for case in a pair is in 
category i and that for control in the pair is in category j(<i) is δK+(i-j)  
times higher than the probability that the average dose for case in the 
pair is in category j and that for control is in category i(>j). If δ >1 with 
K ≥ 1, then the average dose for case in a pair tends to be more than that 
for control in the pair, and the tendency is stronger under the LDPS(K) 
model than under the LDPS model, because ( ) > > 1δ δ+ − −K i j i j  with δ 
>1, K ≥ 1, and i>j.

Secondly, consider a generalization of the CLDPS model as follows: 
for a fixed K (K = 0,1,2,..;-1,-2,…),

( )=    ( > ).+ −∆ij K i j
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We shall denote this model by CLDPS(K). Then the CLDPS(0) 

model is equivalent to the CLDPS model. For the endometrial cancer 
data, the CLDPS(K) model indicates that the probability that the 
average dose of oestrogen for case in a pair is in category i or above and 
that for control in the pair is in category j(<i) or below is ( )+ −∆K i j  times 
higher than the probability that the average dose for case in the pair 
is in category j or below and that for control is in category i or above. 
If Δ>1 with K ≥ 1, then the average dose for case in a pair tends to be 
more than that for control in the pair, and the tendency is stronger 
under the CLDPS(K) model than under the CLDPS model, because 

( ) > > 1+ − −∆ ∆K i j i j  with Δ>1, K ≥ 1, and i>j.

The CLDPS(K) model is different from the LDPS(K) model. The 
CLDPS(K) model indicates how the cumulative probabilities {Gij} for 
i>j are asymmetric to {Gij}, and the LDPS model indicates how the cell 
probabilities {Pij} for i>j  are asymmetric to {Pij}. For the endometrial 
cancer data, we are also interested in seeing what times the probability 
that the average dose of oestrogen for case in a pair is not zero (i.e., in 
categories 2, 3, and 4) and that for control in the pair is zero (i.e., in 
category 1) is higher than the probability that the average dose for case 
in the pair is zero and that for control is not zero. We can see under the 
CLDPS(K) model that the probability that the average dose for case in a 
pair is not zero and that for control in the pair is zero is 1

21 12(= / )+∆K G G  
times higher than the probability that the average dose for case in the 
pair is zero and that for control is not zero, although we cannot see such 
a structure under the LDPS(K) model.

Test of goodness-of-fit of model

Let nij denote the observed frequency in the (i,j)th cell of the 
r×r table ( = 1, , ; = 1, ,i r j r  ), with =∑∑ ijn n , and let mij denote 
the corresponding expected frequency. Assume that {nij} have a 
multinomial distribution. The maximum likelihood estimates of 
expected frequencies {mij} under each model could be obtained, for 
example, using the Newton-Raphson method to the log-likelihood 
equations. Each model can be tested for goodness-of-fit by e.g., the 
likelihood ratio chi-squared statistic G2 with the corresponding degrees 
of freedom, defined by 

2

=1 =1
= 2 log ,
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where ˆ ijm  is the maximum likelihood estimate of mij under the model. 
The numbers of degrees of freedom for the LDPS(K) and CLDPS(K) 
models are both ( 1)( 2) / 2+ −r r , which is one less than that for the S 
model and one more than that for the 2RPS (C2RPS) model.

  Average dose  Average dose for control (mg/day) 
 for case  0  0.1-0.299  0.3-0.625  0.626+  Total
(mg/day)  (1) (2) (3) (4) 
 0    (1)  6 2 3 1 12

(6.00) (3.33) (2.04) (1.23)
0.1-0.299 (2) 9 4 2 1 16

(8.27) (4.00) (1.48) (0.73)
0.3-0.625 (3) 9 2 3 1 15

(9.66) (2.17) (3.00) (1.32)
0.626+ (4) 12 1 2 1 16

(11.80) (1.07) (1.90) (1.00)
 Total 36 9 10 4 59

Table 1: Average doses of conjugated oestrogen used by cases and matched control: Los Angeles endometrial cancer study [1] (The parenthesized values are maximum 
likelihood estimates of expected frequencies under the CLDPS(3) model).
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Analysis of Data
We shall analyze the endometrial cancer data in Table 1 using the 

models in above section. Table 2 gives the values of likelihood ratio test 
statistic G2 for each model. Note that the LDPS(0) model is equivalent 
to the LDPS model, and the CLDPS(0) model is equivalent to the 
CLDPS model.

The S model fits these data poorly. Therefore it is estimated that 
the probability that the average dose of oestrogen for case in a matched 
pair is in category i and that for control in the pair is in category  j(<i) 
is not equal to the probability that the average dose for case in the pair 
is in category  j and that for control is in category i(> j).

Among the LDPS(K) models for various K, the LDPS(0) model (i.e., 
the LDPS model) provides the best-fitting with 5 degrees of freedom, 
which fits better than the CS model with same 5 degrees of freedom 
(Table 2).

Also, the LDPS(0) model is a special case of the 2RPS model, 
obtained by putting γ =1. Since the 2RPS model fits these data well, we 
shall test the hypothesis of γ =1 (i.e., the hypothesis that the LDPS(0) 
model holds) under the assumption that the 2RPS model holds. It 
can be tested according to the difference between the likelihood ratio 
statistic G2 for the LDPS(0) model and that for the 2RPS model. The 
difference is 0.06 with 1 degree of freedom. Therefore we can accept 
the hypothesis of γ =1 in the 2RPS model, at the 0.05 level (p = 0.806). 
Thus the LDPS(0) model would be preferable to the 2RPS model for 
these data.

Next, among the CLDPS(K) models for various K, the CLDPS(3) 
model provides the best-fitting with 5 degrees of freedom (Table 2). 
The CLDPS(3) model fits these data better than the CLDPS(0) model 
with both 5 degrees of freedom.

Also, the CLDPS(3) model is a special case of the C2RPS model, 

obtained by putting Γ = Δ3. Since the C2RPS model fits these data 
well, we shall test the hypothesis of Γ = Δ3 (i.e., the hypothesis that the 
CLDPS(3) model holds) under the assumption that the C2RPS model 
holds. The difference between the likelihood ratio statistic G2 for the 
CLDPS(3) model and G2 for the C2RPS model is 0.02 with 1 degree 
of freedom. Therefore we can accept the hypothesis of Γ = Δ3 in the 
C2RPS model, at the 0.05 level (p = 0.888). Thus the CLDPS(3) model 
is preferable to the C2RPS model for these data. Therefore for the 
endometrial cancer data in Table 1, the CLDPS(3) model is the best-
fitting model among the models given in Table 2.

Under the CLDPS(3) model applied to these data, the maximum 
likelihood estimate of Δ is ˆ = 1.457∆ . Thus the maximum likelihood 
estimates of 3 ( ){ }+ −∆ i j , = 1,2,3−i j , are 4ˆ = 4.502∆ , 5ˆ = 6.558∆ , and 

6ˆ = 9.552∆ . Hence, under the CLDPS(3) model, the probability that the 
average dose of oestrogen for case in a matched pair is in category i 
or above and that for control in the pair is in category j(<i) or below 
is estimated to be 3 ( )ˆ + −∆ i j  times higher than the probability that the 
average dose for case in the pair is in category j or below and that for 
control is in category i or above.

Especially, under the CLDPS(3) model, the probability that the 
average dose for case in a pair is not zero (i.e., in categories 2, 3, and 4) 
and that for control in the pair is zero (i.e., in category 1) is estimated to 
be 4.502 ( 4ˆ= ∆ ) times higher than the probability that the average dose 
for case in the pair is zero and that for control is not zero. Also under 
the CLDPS(3) model, the probability that the average dose for case in 
a pair is 0.626+ (mg/day) (i.e., in category 4) and that for control in the 
pair is zero (i.e., in category 1) is estimated to be 9.552 ( 6ˆ= ∆ ) times 
higher than the probability that the average dose for case in the pair is 
zero and that for control is 0.626+ (mg/day).

Since 3 ( )ˆ > 1+ −∆ i j  for i>j, under the CLDPS(3) model it is estimated 
that the average dose for case in a pair tends to be more than that for 
control in the pair.

Discussion
For the endometrial cancer data in Table 1, we shall discuss why 

the CLDPS(3) model fits better than the CLDPS(0) model (i.e., the 
CLDPS model). Note that the CLDPS(K) model is a special case of the 
C2RPS model, obtained by putting Γ = ΔK. For the endometrial cancer 
data, the maximum likelihood estimates of parameters Γ and Δ under 
the C2RPS model are ˆ = 3.194Γ  and ˆ = 1.410∆ . Thus it seems that Γ̂  is 
close to 3ˆ = 2.803∆ . This would show that the CLDPS(3) model fits the 
endometrial cancer data well.

Conclusions
We have proposed two kinds of asymmetry models, namely, 

the LDPS(K) model and the CLDPS(K) model. The LDPS(K) model 
is useful for seeing the structure of asymmetry of cell probabilities 
{Pij}, and the CLDPS(K) model is useful for seeing the structure of 
asymmetry of cumulative probabilities {Gij} .

For the endometrial cancer data in Table 1, we have seen using 
the CLDPS(3) model that the average dose of oestrogen for case in 
a matched pair tends to be more than that for control in the pair; 
especially, there is the structure of strong asymmetry such that the 
probability that the average dose for case in a pair is 0.626+ (mg/day) 
and that for control in the pair is zero is 9.552 times higher than the 
probability that the average dose for case in the pair is zero and that for 
control is 0.626+ (mg/day).

Models Degrees of freedom G2 p -value  
S 6 19.27** 0.004

CS 5 4.56 0.472
2RPS 4 2.91 0.572

C2RPS 4 1.52 0.823
LDPS(-4) 5 9.16 0.103
LDPS(-3) 5 13.40* 0.020
LDPS(-2) 5 18.98** 0.002
LDPS(-1) 5 5.81 0.325
LDPS(0) 5 2.97 0.704
LDPS(1) 5 3.00 0.701
LDPS(2) 5 3.21 0.668
LDPS(3) 5 3.40 0.639
LDPS(4) 5 3.55 0.616

CLDPS(-4) 5 13.14* 0.022
CLDPS(-3) 5 15.23** 0.009
CLDPS(-2) 5 17.74** 0.003
CLDPS(-1) 5 19.27** 0.002
CLDPS(0) 5 9.85 0.080
CLDPS(1) 5 3.42 0.636
CLDPS(2) 5 1.89 0.865
CLDPS(3) 5 1.54 0.909
CLDPS(4) 5 1.55 0.907

Table 2: Values of likelihood ratio chi-squared statistic G2 for models applied to the 
data in Table 1. (The symbols * and ** mean significant at the 0.05 and 0.01 levels, 
respectively). 
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