Research Article
Volume 9:1, 2020

DOI: 10.37421/jacm.2020.9.450

ISSN: 2168-9679 Open Access

Journal of
Applied & Computational Mathematics

Star with Coefficient a in the set of Real Numbers

Mohamed Moktar Chaffar*

Lycee Georges Brassens Villeneuve-le-Roi France and Temporary Professor at the University of Paris-Est Cr eteil (Paris 12) and at the Galilee

Viletaneuse lnstiute (Paris 13) France

Abstract

This paper gives two definitions: Star with coefficient a real and Star System with coefficient o in five unknowns. Examples of Star-System and Star-set are given, a
relationship between two star-Systems is noted, and some general theorems are proven.
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Introduction

The aim of the present paper is to introduce and study a system of five
equations in five unknowns, that will be called Star-System with coefficient a
in five unknowns. Let a, b, ¢, d, e, a be elements of a R, and let T1, T2, T3, T4,
T5 be unknowns (also called variables or indeterminates). Consider a star with
a coefficient (- 1)

In addition to having the sum a in each line. The scalars a are called the
star coefficient if a is a solution of equation a = T1(a) + T2(a) + T3(a) + T4(a)
+ T5(a) (Noted by a?), a vector (T1, T2, T3, T4, T5) is called a solution vector
of this Star-System with coefficient a in five unknowns.

The present paper is organized as follows: In Section 2, we present some
preliminary results and notations that will be useful in the sequel. In Section 3,
we present some examples of Star-element. Section 4 is devoted to introduce
and study a Star-function. In Section 5, we present one example of equivalent
star-systems. Finally, in Section 6, we introduce the star-Differential operator
and study some of their applications.

Some Basic Definitions and notations

In this section, we introduce some notations and star-system with
coefficient a defined.

Star with coefficient a in the set of real numbers.

Definition 1. A star with a coefficient is composed of five numbers outside
a, b, ¢, d, e and five numbers inside T1, T2, T3, T4, T5, These last five numbers
are written in the form of 5-tuple (T1, T2, T3, T4, T5) (Figure 2).

In addition to having the sum a in each line.

A star-system with coefficient a:

Definition 2. Let a, b, ¢, d, e and a be real numbers, and let T1, T2, T3, T4,
T5 be unknowns (also called variables or indeterminates). Then a system of the
form is called a star-system with coefficient a in five unknowns. We have also
noted [a,b,c,d,e;a] = a. The scalars a, b, ¢, d, e are called the coefficients
of the unknowns, and a is called the constant "Chaff” of the star-system in five
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unknowns. A vector (T1,72,T3,T4,T5) in R5 is called a star-solution vector of
this star-system if and only if % [a,b,c,d,e;a] = a.

The solution of a Star-system is the set of values for T1, T2, T3, T4 and T5
that satisfies five equations simultaneously.

A star-element: A star-element is a term of the five-tuple (T1, T2, T3, T4,
T5) solution of a star-system [a,b,c,d,e;a] = a, where (T1, T2, T3, T4, T5)e
R®.

Star-Coefficient or Constant "Chaff”: The star-Coefficient or Constant
"Chaff” is also noted by a? and is a solution of equation a, = T1(a) + T0 2a) +
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T3(a) + T4(a) + T5(ar), wher (T1, T2, T3, T4, T5) is solution of a star-system
¥ [a,b,c,d,e;a] = a.

Star-Matrix: The star-system with coefficient a can be written in matrix
form

11000
01100
M.T=C, Where M, =| 00110 |, vector T = (T1,T2,T3,T4,T5)
00011
10001
a—a-—c¢
a-b-d
and C,=|a—c—e
a—a—d
a-b-e

M* or MStaris
(¥ [a,b,c,d,e;a] = a).

M_ a matrix is said to be of dimension 5 x 5. A value called the determinant
of M+, that we denote by [M,, .| or M|, corresponds to square matrix MF.
Consequently, the determinant of Mcis |[M | = 1.

called the star-Matrix of the star-system with coefficient a

Set-Star: The set-star is constructed from the solution set of linear star-
system with coefficient o ( [a,b,c,d,e;a] = a). The Set-star will be noted by S

Star-System equivalent: Equivalent Star-Systems are those systems
having exactly same solution, i.e. Two star-systems are equivalent if solution
of on starsystem is the solution of other, and vice-versa.

Parametrized Curves: A parametrized differentiable curve is simply a
specific subset of R® with which certain aspects of differntial calculus can be
applied.

Definition 3. A parametrized differentiable curve is a differentiable map a
11 —RS of an open interval | = (a,b) of the real line R in to R®

Regular Curves: A parametrized differentiable curve a : | —R®, We call
any point that satisfies a'(t) = 0 a singular point and we will ristrict our study to
curves without singular points.

Definition 4. A parametrized differentiable curve is a differentiable a : |
— RS is said to be regular if a'() z 0 for allt € |

Parametric Arclength: Generalized, a parametric arclength starts
with a parametric curve in R®. This is given by some parametric equations
T1(1), T2(t), T3(t), T4(t), T5(t) , where the parameter t ranges over some given
interval. The following formula computes the length of the arc between two
points a, b.

Lemma 1. Consider a parametric curveT1(t), T2(t), T3(t), T4(t), T5(t), where
t € (a,b). The length of the arc traced by the curve as t ranges overt (a,b) is

b RV \ 2 IRV RV RV
T (¢ T, (t Ty (¢ Ty (¢ Ts(t)) dt
[ (0] +50) (o) «{70)
Thereafter | start with several examples with detailed solutions are
presented.

Examples of Star-element

This section will deal with solving problems with star-systems of five linear
equations and five variables.

Example 1. A linear star-system with coefficient a composed of five linear
equations in five variables T1, T2, T3, T4 and T5 has the general form
¥ [a,b,c,d,e;a] = a. In example 1: (a,b,c,d,e) = (1,2,3,4,5) When looking for
the Solution of StarSystem with coefficient a+[1,2,3,4,5;a] = a of Linear
Equations, we can easily solve this using Star-Matrix M, .

Page 2 of 8

Tl + Tzza-4
T2 + T3=0(-6

the star-systems of Linear Equations { Ty + T,=a-8 — So the overall
solution T, + Ts=a-5
Ty + Ts=a-7

is the set-star:S ={a€R( L4+ % L 2% 5 2 _3)),
2 2’2 T2 72

in a particular case if o = g—4+g+g—6+g—2+g—3 that is to
say a=10 2 2 2 2 2
We obtain the following results:
* The Star-coefficient: a, =10
« The star-element is (1,5,-1,3,2) (Figure 3)
by

“ N

3
10 10

Figure 3.

Note 1. It is important to mention that a solution is made up of five values,
(T1,T2,T3, T4, T5). A solution is made up of the set of values jointly taken
by the variables to satisfy the system’s equations.

Example 2. "Image of a five prime numbers”
Solve the following Star-system with coefficient a and five unknowns:
#[3,7,11,13,17;a] = a.( Figure 4)

=R

\\e?;/ Vel

Vi 8

o *a
1
Figure 4.
Tl + T2=a-14
T, + T,=a-20
The star-systems of linear equation: T3 + T4=a-28
The solution of the Star Ty + Ts=a-16
T, + Ts=a-24
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System #[3,7,11,13,17;a] = a is therefore

[04 o (04 (04 [04
T =215 =2+, == 21,1y == ~7,Ts =—-9
1 ) 2 ) 3 ) 4 ) 5

2
So the star-set: S.=

solution is  the .

7,3—9j
2

o o (24 o o
i i fo=——4+=t——6+——2+—-3
in a particular case if > ) 2 2 Then

overall

aeR|Z-15% 11,2 1%
2 T2 2 T2

* The Star-coefficient: a, = 34
« The star-element is (2,18,-4,10,8) (Figure 5)

More generally

Figure 5.

Theorem 1. Llet a €R, for all (abcde) €R® the
star-system  [abcdeal = a has a unique  solution

[gchrdfe,gfa7d+e,g+a7bfe,gfa+bfc,gfb+cfd)and the
2 2 2 2 2
star-system we have unique star-cofficient: a, = 2/3(a+b+c+d+e)

For any star-system [ab,c,dea] = a, the star-element is

g—c+d—e,ﬁ—a—d+e,£+a—b—e,ﬁ—a+b—c,£—b+c—a’ .
2 2 2 2

If a= g—c+d—e,g—a—d-ﬁ—e,g-%—a—b—e,g—a-%—b—c,g—b+c—al
2 2 2 2 2
Then

* The Star-coefficient: a, = E(a +b+c+d+e)
3

11-25-2
33333
) | 2112251(q
n| | 33333,
5-211-2
« The star-element | 73 |= 33333 1€
Ll 25211
I5) |733333]|\°
1-25-21
33333

Examples of Star-function

In the following theorem, we give some useful result.

Theorem 2: Let a € R, for all t € R the Star-system ¥ [tt.t,t.tq]
= a has a unique solution, the Star-set containing only the vector (

Z—tﬁ—tﬁ—tg—tz—t)and the Star-system we have unique star
5 by by b by Y. q

coefficient : a= ?t .

Page 3 of 8

Proof theorem (Figure 6)

=

4

4

Figure 6.

The star with coefficient a:

Consider the following star-system of 5 equations in 5 unknowns:

Tl +T2=(l-2t
Tz + T3:a-2t
T3 + T4=a-2t
Ty + Ts=a-2t
Ty + Ts=a-2t
So the overall soluton is the Starset S, =
a . a a ,a . «a
(Tt —t——t,——1,——1)
2 2 2 2 2
in a particular case f & = =~ 1,5 —1,% ~1,% ~1,% — ¢ Then
P 2 72 T2 72 72
. 10
* The Star-coefficient: a_ = ?t
* The star-function: Et,zt,zt,zt,zt (Figure 7)
333 33
a=(10/3)t
o
a
a a (
Figure 7.

Theorem 3: Let a € R, for all t € R the Star-system ¥ [t, t+1, t+2, t+3,
t+4,a] = a has a unique solution, the Star-set containing only the vector (
[24 [24 [24

——t——t,——
2 2 2

t,% - t,% —t ) and the Star-system we have unique star-
- 10
coefficient : a= ?t .

Proof theorem (Figure 8)

Consider the following star-system of 5 equations in 5 unknowns:
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Proot theorem

a a
a a
a a
a a
. Figure 10.
Figure 8.
ioni g H(E 4L X & X
T + Th=a-2t-2 So the overall solution is the Star-set: S, :{( 5 4, ) 6t, 5 21, 5 3t)h
T2 + T3:a—2t—4 [04 o o (04 a
T3 +T4:a-2t-6 ) 5—4[,3,3—6f,3—2t,——3f
if Then
T4 + TS =q-2t-3
T4 + Ts=a-2t-5 + The Star-coefficient: a = 10t.
So the  overall soluton is the  Starset S, * The star-function: (¢,5¢,—¢,3¢,2¢) (Figure 11)
a [24 a a a - .
——t-3,——t+l,——t-5—-t-1,—-t-4
{( 2 R 2 2 )} 2k

if %—t—3,3—t+1,£—t—5,%—t—1,g—t—4

Then
S 10
* The Star-coefficient: a , = ?; +8

- The star-function: 27+ 1,31‘ + S,Et - l,zt + 3,2t (Figure 9)
3 3 3 3 3

o=(10/3)t +8
Figure 11.
a
In the special case t=3
= The Constant "Chaff”: a = 30
*The Star-set:S , ={3,15,-3,9,6)}. (Figure 12)
Froof theorem
a a
a
Figure 9. o
Theorem 4; Let a € R, for all t € R the Star-system ¥ [x,2x, 3x, 4x,
5x, a] = a has a unique solution, the Star-set containing only the vector (
z—4t,£,g—6t,£—2t,£—3t) and the Star-system we have unique
2 272 2 T2 o Nq
star-coefficient : a= 10z . ] '
Figure 12.
Proof theorem (Figure 10)
11000 T 1 Theorem 5. let a € R, for al t € .R the S'tar-
system *[tt?, 5, t4, t5a] = a has a unique solution,
01100 h ! R e s s s s h
M,=| 00110 |,andM,.| 73 |=a. |1 (3 2 2 2 , 2 ) and the
00011 T, 1 Star-system we have unique star-coefficient : G:;(t +2+82 4+ +8).
10001 Ty 1

Proof theorem (Figure 13)

Page 4 of 8
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¢
U.\\
=a
Z
a W
Figure 13.
AP
2
1
A
2 1
M=l Z4r —2-F |=a. |1
1
L 2P
2 1
L
2

Star-set: S {(£-A+4-F % A4S Lhr A-A 2 2L 2 M)
* 2 2 2 2 2

5 2_.5

a a
ottt 22 2P

g a a a
if SR+t St 4 St 41—t +£ -t
2 2 2

Then

» The Star-coefficient: a,&:%(t +2 42+t 410

* The star-function: f, : R—R® defined by:

f 0=
Giilp 2p, 84 25 2, Lp 1p 24854, 2o, 13 14 25
3 3 3 3 3 3 3 3 3 3 3 3 3 3

2, da2p La ds L,
3 3 3 3 33 3 3

2 4 2 1
-=2 +7t3—7t4+715)
3 3

11-24-2
t2

| —2r1-24
= |4-211-2]= r
242211 | |4
1-24-21) | 3

In the special case t=3

« The Star-coefficient: a = 242

* The Star-set:S , = {(-68,280,-128,100,58)}.(Figure 14)

Theorem 6: Let a €R, for all t €R the Star-system ¥ [e?, 2e?, 4e?, 8e?,
16e? a]= a has a unique solution (%—12e2‘,%+ 7e2‘,%— 17e2’,%—332’,%-662’)
and the Star-system we have unique star-coefficient:

62 o

3
Proof theorem (Figure 15)

a,=

Consider the following star-system of 5 equations in 5 unknowns:
T, + Ty=a-5¢*
T, + Ty=a-10¢*
T; + T4:0:-20e2t
Ty + Ts=a-9e

T, + Ts=a-18¢%

Page 5 of 8

Figure 15.

2T, = (a - 5¢*) — (= 10e*") — (& = 20¢*') — (& = 9¢* ) — (@ —18¢*) = @ — 23¢*

So the Star-set: S. =

soluion is  the .

overall

2 102 L 72 X172 32 X g
2 2 2 2 2

If o =T1 + T2 + T3 + T4 + T5 then the star coefficient: o, = 63—2e2t

ln(\/m)

Let's find the length of t €| 0; of the star-function f(t)=

a 2t & 2t & 2t & 2t & 2t
——12e" ,—+ 7" ,——17¢“",—=3e”" ,——6e“" |. Wi m 't)=
[2 > > 5 5 ] e compute f'(t)

(—24e% 14¢% 346 6% 1262y and

|ro|= \/(72422t )2+ (1462 )2 + (<3462 )2 + (=662)? +(—122)% =A[2108¢%

_ In(x2103)
So the length is L= J' 2 2108¢% dr =1054 /527
0

In the special case x=0

* The star coefficient: a = 63—2

+ The Star-set:S = {(_—S,z,ﬁ,gagﬂ

Examples of Star-systems equivalent

Theorem 7.

Forallt eRif a, = 4t + 12 and a, = 4t + 12 then the two star-systems :
#[24,2642,2t44,2t46,2t+8;01] = al and +,[2t+1,2t+3,2t+5,2t+7,2t+9;a2] =
a, are equivalent.

Proof theorem

The star-system 7 _[2t,2t + 2,2t + 4,2t + 6,2t + 8;a,] = a, can be written as:
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T, + Tr=0y-4t-4
T2 + T3:a1 -4t-8

T, = 26
2

=2 2t 42
2

04
T3 + T4:(Zl-4t-12 = T3:71-2t-10

T4 + T5 =y -4t-6
T, + Ty=ay-4t-10

The star-system [2t + 1,2t + 3,2t + 5,2t + 7, 2t + 9;0,] = @, can be

written as:

T, + Ty=a,-4t-6
T2 + T3=052-4t-1()

2]
Ty=—-2t-2
4

Ts=2L 214
2

T, =22 17
2

T,=%2 2141
2

a
T, + Ty=a,-4t-14 = T3=72—2t—11

T4 + T5:a2 -4t-8
T] + T5=0t2-4t-12

For all t € R, if the tow Constants of the two star-systems o = 4t +
12 and @, = 4t+14 then the Star-set of the two star-systems: S = S =

a)
T,=%2 213
)

Ts=22 215
2

{(0,8,-4,4,2)} (Figure 16)

Figure 16.

Proof theorem

Examples of Star-operators

New Star-Differential operators: During our study of the construction of
star-system, some new star-differential operators are required to be introduced.

Theorem 8. Let a €R, for all t €R and for all f be an n-times
differentiable real function defined in interval | of R, the Star-system *

2 3 4
Y AT A ﬂ;a = ¢ has a unique solution and the Star-system
2, 24 2d%fF 2d%fF 24d%f

3dt’3 dt 3 dt 3 dt
Notation: A variety of notations are used to denote the n-times derivative.

f’dt’ dt

dt

T dt
we have unique star coefficient.a = = £
3

s

dt

2 3 4
Y _pndS o S04 @
T dt dt T dt

Proof theorem (Figure 17)

Consider the following star-system of 5 equations in 5 unknowns:

Page 6 of 8

x=0 %
a=62/3

=

4

Figure 17.

a
T, :?_f(z) +f(3) _f(4)
T+ T=a+f - f@ p
(3) T2 :_'f_f(?’) _f(4)
T, + =a'- f 2
LR A e AV A A

Ty + Ts=af — /O a
Ty = oD -

T, + Ts=a-'— ¥
(04
Ts =—2 -f'+f(2) —f(3)

[famly@a @@l fO DLy oD @ @2 L f @O then

the star coefficient: a *zé( R R AR ARG

2
In the special case a:E(f+f'+f(2) + O+ f9)

11-24-2
33333
2112400 f
333331
4-211-2
The star-operator %, defined by: * = 33333 | @
3
24211/
33333|(f®
12421
33333

Applications

f(t)=sin(t): f is n-times differentiable at all t ER

For all t €R the star-system [sint,cost,~sint,~cost,sint;a] = a
+ The star coefficient: a = %sin(t)
1.
T, =—sint—cost
3
1.
T, =—sint - cost
3
» The Star-functions: { Ty = %sint — cost

1.
Ty = Esmt —cost

2
T; = ——sint
573
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. * The Star-Set: S*= {[%sint—cmt,%sint—cost,ésint—cost,%sint—cost,%sint))}
(Figure 18)

Figure 19.

Figure 18.

f(t)=cos(t): f is n-times differentiable at allt eR

For all t €R the star-system v [cost,-sint,~cost,sint,cost;a] = a
- 2
« The star coefficient: a = Ecos(z)
1 .
T = gcost +sint
1 .
T, =—cost—sint
3
, 1 .
« The Star-functions: T3 = FcostFsing Figure 20.
T, = %cost —sint

2
Ts = ——cost
573

So the solution set is The Star-Set:
1 .1 .1 .1 . 2 .
—cost +sint,—cost —sint,—cost +sint,—cost —sint,——sint)
{[ 3 3 3 3 3 ]}
The star-function f )= [lcost +sint, lcast—sint lcost +sint. lcost —sint, —zsin t)]
) * T3 3 30 3 73
defined in Rto R®

It's not possible to draw a 5D graphic, but in another world, a 5D world, it Figure 21.
would be.

which can be written

1 1 1 T = _—zssin2t —10cos2t
1 0 1 0 2 0 5:; .
f(t) = (Ecost +sint]. 1 +[§cost —sint). 1 ~3 cost. 1 T, = ?sm2t +6c0s2t
0 0 0 3
0 0 0 « The Star-functions f: 1Tz = TsinZt —4cos2t

The three vectors shown span the solution star-set. it is also not too hard
to prove that they are linearly independent; therefore they form a basis for the
solution starset (Figure 17).

22
Ty = ?sin2t

1.
T5 = ——sin2t —10cos2t
In an abstract setting we can generally say that a projection is a mapping 3
of a set, which means that a projection is equal to its composition with itself. f(t)= et f is n-times differentiable at all t R (Figure 21)
(Figure 18)
For all t €R the star-system [e!, €', €, €', e';a] = a
in our case, we define by

« The star coefficient: a = ?et

f= (%cost +sin t;%cost —sint; —%cost) the Star function in R to R?,

11-24-2)\(1

In our world this Star-function is represent by (Figure 19): 211-24 ||1
f(t)=sin(2t): fis n-times differentiable at all t €R For all « The Star-functions: e'= %et 4-211-21|1

t €R the star-system [sin2t,2cos2t,-4sin2t,-8cos2t,16sin2t;a] = a —24-211 1
1-24-21 {1

« The star coefficient: a = 2 3 (14sin(2t)-6cos2t) (Figure 20)

Page 7 of 8
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