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Star with Coefficient a in the set of Real Numbers

Abstract
This paper gives two definitions: Star with coefficient a real and Star System with coefficient α in five unknowns. Examples of Star-System and Star-set are given, a 
relationship between two star-Systems is noted, and some general theorems are proven.
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Introduction
The aim of the present paper is to introduce and study a system of five 

equations in five unknowns, that will be called Star-System with coefficient α 
in five unknowns. Let a, b, c, d, e, α be elements of a R, and let T1, T2, T3, T4, 
T5 be unknowns (also called variables or indeterminates). Consider a star with 
α coefficient  (-- 1)

In addition to having the sum α in each line. The scalars α are called the 
star coefficient if α is a solution of equation α = T1(α) + T2(α) + T3(α) + T4(α) 
+ T5(α) (Noted by α?), a vector (T1 , T2 , T3 , T4 , T5) is called a solution vector 
of this Star-System with coefficient α in five unknowns.

The present paper is organized as follows: In Section 2, we present some 
preliminary results and notations that will be useful in the sequel. In Section 3, 
we present some examples of Star-element. Section 4 is devoted to introduce 
and study a Star-function. In Section 5, we present one example of equivalent 
star-systems. Finally, in Section 6, we introduce the star-Differential operator 
and study some of their applications.

Some Basic Definitions and notations
In this section, we introduce some notations and star-system with 

coefficient α defined.

Star with coefficient α in the set of real numbers.
Definition 1. A star with α coefficient is composed of five numbers outside 

a, b, c, d, e and five numbers inside T1, T2, T3, T4, T5, These last five numbers 
are written in the form of 5-tuple (T1, T2, T3, T4, T5) (Figure 2).

In addition to having the sum α in each line.

A star-system with coefficient α:
Definition 2. Let a, b, c, d, e and α be real numbers, and let T1, T2, T3 , T4 , 

T5 be unknowns (also called variables or indeterminates). Then a system of the 
form is called a star-system with coefficient α in five unknowns. We have also 
noted [a,b,c,d,e;α] = α. The scalars a, b, c, d, e are called the coefficients 
of the unknowns, and α is called the constant ”Chaff” of the star-system in five 

unknowns. A vector (T1,T2,T3,T4,T5) in R5 is called a star-solution vector of 
this star-system if and only if [a,b,c,d,e;α] = α.

The solution of a Star-system is the set of values for T1, T2, T3, T4 and T5 
that satisfies five equations simultaneously.

A star-element: A star-element is a term of the five-tuple (T1, T2, T3, T4, 
T5) solution of a star-system [a,b,c,d,e;α] = α, where (T1, T2, T3, T4, T5)∈ 
R5.

Star-Coefficient or Constant ”Chaff”: The star-Coefficient or Constant 
”Chaff” is also noted by α? and is a solution of equation α


 = T1(α) + T0 2α) + 

Figure 1. 

Figure 2. 
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T3(α) + T4(α) + T5(α), wher (T1 , T2 , T3 , T4 , T5) is solution of a star-system 
[a,b,c,d,e;α] = α.

Star-Matrix: The star-system with coefficient α can be written in matrix 
form

M T Cα=∗ where M∗ = 

11000
01100
00110
00011
10001

 
 
 
 
 
 
 
 

, vector T = (T1,T2,T3,T4,T5)

and  Cα =

a c
b d
c e
a d
b e

α
α
α
α
α

− − 
 − − 
 − −
 

− − 
 − − 

M∗ or MStaris called the star-Matrix of the star-system with coefficient α

([a,b,c,d,e;α] = α).

M


a matrix is said to be of dimension 5 × 5. A value called the determinant 
of M, that we denote by |MStaris| or |M|, corresponds to square matrix MF. 
Consequently, the determinant of Mis |M| = 1.

Set-Star: The set-star is constructed from the solution set of linear star-
system with coefficient α ( [a,b,c,d,e;α] = α). The Set-star will be noted by S



Star-System equivalent: Equivalent Star-Systems are those systems 
having exactly same solution, i.e. Two star-systems are equivalent if solution 
of on starsystem is the solution of other, and vice-versa.

Parametrized Curves: A parametrized differentiable curve is simply a 
specific subset of R5 with which certain aspects of differntial calculus can be 
applied.

Definition 3. A parametrized differentiable curve is a differentiable map α 
: I →R5 of an open interval I = (a,b) of the real line R in to R5

Regular Curves: A parametrized differentiable curve α : I →R5, We call 
any point that satisfies α’(t) = 0 a singular point and we will ristrict our study to 
curves without singular points.

Definition 4. A parametrized differentiable curve is a differentiable α : I 
→ R5 is said to be regular if α’(t) ≠ 0 for all t ∈ I

Parametric Arclength: Generalized, a parametric arclength starts 
with a parametric curve in R5. This is given by some parametric equations 
T1(t),T2(t),T3(t),T4(t),T5(t) , where the parameter t ranges over some given 
interval. The following formula computes the length of the arc between two 
points a, b.

Lemma 1. Consider a parametric curveT1(t),T2(t),T3(t),T4(t),T5(t), where 
t ∈ (a,b). The length of the arc traced by the curve as t ranges overt (a,b) is

( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2 2' ' ' ' '
1 2 3 4 5

b

a
T t T t T t T t T t dt+ + + +∫

Thereafter I start with several examples with detailed solutions are 
presented.

Examples of Star-element

This section will deal with solving problems with star-systems of five linear 
equations and five variables.

Example 1. A linear star-system with coefficient α composed of five linear 
equations in five variables T1 , T2 , T3 , T4 and T5 has the general form 
[a,b,c,d,e;α] = α. In example 1: (a,b,c,d,e) = (1,2,3,4,5) When looking for 
the Solution of StarSystem with coefficient α[1,2,3,4,5;α] = α of Linear 
Equations, we can easily solve this using Star-Matrix M


.

the star-systems of Linear Equations

1 2

2 3

3 4

4 5

4 5

T  + T = -4
T  + T = -6
T  + T = -8
T  + T = -5
T  + T = -7

α
α
α
α
α









→ So the overall 
solution

is the set-star:S


={α∈R,( 4 , 6, 2, 3
2 2 2 2 2
α α α α α
− + − − − )},

in a particular case if 3
2

2
2

6
22

4
2

−+−+−++−=
αααααα  that is to 

say α=10

We obtain the following results:

• The Star-coefficient: α


 = 10

• The star-element is (1,5,−1,3,2) (Figure 3)

Note 1. It is important to mention that a solution is made up of five values, 
(T1 , T2 , T3 , T4 , T5). A solution is made up of the set of values jointly taken 
by the variables to satisfy the system’s equations.

Example 2. ”Image of a five prime numbers”

Solve the following Star-system with coefficient α and five unknowns:

[3,7,11,13,17;α] = α.( Figure 4)

The star-systems of linear equation: 

1 2

2 3

3 4

4 5

4 5

T  + T = -14
T  + T = -20
T  + T = -28
T  + T = -16
T  + T = -24

α
α
α
α
α









The solution of the Star

Figure 3. 

Figure 4. 
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System [3,7,11,13,17;α] = α is therefore

 1 2 3 4 515, 1, 21, 7, 9
2 2 2 2 2

T T T T Tα α α α α
= − = + = − = − = −

So the overall solution is the star-set: S


= 

, 15, 1, 21, 7, 9
2 2 2 2 2

R α α α α αα  ∈ − + − − − 
 

in a particular case if 4 6 2 3
2 2 2 2 2
α α α α αα = − + + − + − + −  Then

• The Star-coefficient: α


 = 34

• The star-element is (2,18,−4,10,8) (Figure 5)

More generally

Theorem 1. Let α ∈R, for all (a,b,c,d,e) ∈R5 the 
star-system [a,b,c,d,e;α] = α has a unique solution

, , , ,
2 2 2 2 2

c d e a d e a b e a b c b c dα α α α α − + − − − + + − − − + − − + − 
 

and the 

star-system we have unique star-cofficient: α


= 2/3(a+b+c+d+e)

For any star-system [a,b,c,d,e;α] = α, the star-element is 

, , , ,
2 2 2 2 2

c d e a d e a b e a b c b c dα α α α α − + − − − + + − − − + − − + − 
 

.

If  α= , , , ,
2 2 2 2 2

c d e a d e a b e a b c b c dα α α α α
− + − − − + + − − − + − − + −  

Then

• The Star-coefficient: α


 = ( )2
3

a b c d e+ + + +

• The star-element 

1

2

3

4

5

1 1 2 5 2
3 3 3 3 3

2 1 1 2 5
3 3 3 3 3

5 2 1 1 2 .
3 3 3 3 3

2 5 2 1 1
3 3 3 3 3

1 2 5 2 1
3 3 3 3 3

T a
T b
T c

dT
eT

− − 
 
 
− −    

    
    − −    =     
    − −    

   
 − −  
 

Examples of Star-function

In the following theorem, we give some useful result.

Theorem 2: Let α ∈ R, for all t ∈ R the Star-system [t,t,t,t,t;α] 
= α has a unique solution, the Star-set containing only the vector (

, , , ,
2 2 2 2 2

t t t t tα α α α α
− − − − − ) and the Star-system we have unique star-

coefficient : α= 10
3

t .

Proof theorem (Figure 6)

The star with coefficient α: 

Consider the following star-system of 5 equations in 5 unknowns:

1 2

2 3

3 4

4 5

4 5

T  + T = -2t
T  + T = -2t
T  + T = -2t
T  + T = -2t
T  + T = -2t

α
α
α
α
α









So  the overall solution is the Star-set: S


 =

( , , , , )
2 2 2 2 2

t t t t tα α α α α − − − − − 
 

in a particular case if , , , ,
2 2 2 2 2

t t t t tα α α α αα = − − − − −  Then

• The Star-coefficient: α


= 
10
3

t

• The star-function: 2 2 2 2 2, , , ,
3 3 3 3 3

t t t t t (Figure 7)

Theorem 3: Let α ∈ R, for all t ∈ R the Star-system [t, t+1, t+2, t+3, 
t+4,α] = α has a unique solution, the Star-set containing only the vector (

, , , ,
2 2 2 2 2

t t t t tα α α α α
− − − − − ) and the Star-system we have unique star-

coefficient : α= 
10
3

t .

Proof theorem (Figure 8)

Consider the following star-system of 5 equations in 5 unknowns:

Figure 5. 

Figure 6. 

Figure 7. 
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1 2

2 3

3 4

4 5

4 5

T  + T = -2t-2
T  + T = -2t-4
T  + T = -2t-6
T  + T = -2t-3
T  + T = -2t-5

α
α
α
α
α









So  the overall solution is the Star-set: S


 

( 3, 1, 5, 1, 4)
2 2 2 2 2

t t t t tα α α α α − − − + − − − − − − 
 

if 3, 1, 5, 1, 4
2 2 2 2 2

t t t t tα α α α α
− − − + − − − − − −

Then

• The Star-coefficient: α


= 10
3

t +8

• The star-function: 2 2 2 2 21, 5, 1, 3,
3 3 3 3 3

t t t t t+ + − + (Figure 9)

Theorem 4: Let α ∈ R, for all t ∈ R the Star-system [𝓍,2𝓍, 3𝓍, 4𝓍, 
5𝓍, α] = α has a unique solution, the Star-set containing only the vector (

4 , , 6 , 2 , 3
2 2 2 2 2

t t t tα α α α α
− − − − ) and the Star-system we have unique 

star-coefficient : α= 10t .

Proof theorem (Figure 10)

M


=

11000
01100
00110
00011
10001

 
 
 
 
 
 
 
 

, and M


.

1

2

3

4

5

T
T
T
T
T

 
 
 
 
 
 
 
 

= α. 

1
1
1
1
1

 
 
 
 
 
 
 
 

So  the overall solution is the Star-set: S


 : {( 4 , , 6 , 2 , 3
2 2 2 2 2

t t t tα α α α α
− − − − )}.

if 
4 , , 6 , 2 , 3

2 2 2 2 2
t t t tα α α α α

− − − −
Then

• The Star-coefficient: α


= 10t.

• The star-function: ( ,5 , ,3 ,2 )t t t t t− (Figure 11)

In the special case t=3

•The Constant ”Chaff”: α = 30

•The Star-set:S


 = {3,15,−3,9,6)}. (Figure 12)

Theorem 5: Let α ∈ R, for all t ∈ R the Star-
system [t,t2, t3, t4, t5,α] = α has a unique solution,  

( 3 4 5 4 5 2 5 2 3 2 3 4, , , ,
2 2 2 2 2

t t t t t t t t t t t t t t tα α α α α
− + − − + − − + − − + − − + − ) and the 

Star-system we have unique star-coefficient : α= 2 3 4 52 ( )
3

t t t t t+ + + + .

Proof theorem (Figure 13)

Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

Figure 12. 
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M


=

3 4 5

4 5

2 5

2 3

2 3 4

2

2

2

2

2

t t t

t t t

t t t

t t t

t t t

α

α

α

α

α

 − + − 
 
 − − + 
 
 + − − 
 
 − + − 
 
 − + − 
 

= α. 

1
1
1
1
1

 
 
 
 
 
 
 
 

Star-set: S


: {( 3 4 5 4 5 2 5 2 3 2 3 4, , , ,
2 2 2 2 2

t t t t t t t t t t t t t t tα α α α α
− + − − − + + − − − + − − + − )}.

if 3 4 5 4 5 2 5 2 3 2 3 4, , , ,
2 2 2 2 2

t t t t t t t t t t t t t t tα α α α α
− + − − − + + − − − + − − + −

Then

• The Star-coefficient: α


= 2 3 4 52 ( )
3

t t t t t+ + + + .

• The star-function: ƒ


 : R→R5 defined by:

ƒ


(t)=
2 3 4 5 2 3 4 5 2 3 4 5

2 3 4 5 2 3 4 5

1 1 2 4 2 2 1 1 2 4 4 2 1 1 2( , , ,
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 4 2 1 1 1 2 4 2 1, )
3 3 3 3 3 3 3 3 3 3

t t t t t t t t t t t t t t t

t t t t t t t t t t

+ − + − − + + − + − + + −

+ − + + − + − +

= 
3
1

11 24 2
211 24

4 211 2
24 211

1 24 21

− − 
 − − 
 − −
 
− − 
 − − 

= 

2

3

4

5

t

t

t

t

t

 
 
 
 
 
 
 
 
 

In the special case t=3

• The Star-coefficient: α = 242

• The Star-set:S


= {(−68,280,−128,100,58)}.(Figure  14)

Theorem 6: Let α ∈R, for all t ∈R the Star-system [e2t, 2e2t, 4e2t, 8e2t, 

16e2t,α]= α has a unique solution 2 2 2 2 2( 12 , 7 , 17 , 3 , 6 )
2 2 2 2 2

t t t t te e e e eα α α α α
− + − − −

and the Star-system we have unique star-coefficient:

α


= 262
3

te

Proof theorem (Figure 15)

Consider the following star-system of 5 equations in 5 unknowns:
2t

1 2
2t

2 3
2t

3 4
2t

4 5
2t

4 5

T  + T = -5e

T  + T = -10e

T  + T = -20e

T  + T = -9e

T  + T = -18e

α

α

α

α

α











2 2 2 2 2 2
12 ( 5 ) ( 10 ) ( 20 ) ( 9 ) ( 18 ) 23t t t t t tT e e e e e eα α α α α α= − − − − − − − − − = −

So the overall solution is the Star-set: S


=

2 2 2 2 212 , 7 , 17 , 3 , 6
2 2 2 2 2

t t t t te e e e eα α α α α   − + − − −  
  

If α =T1 + T2 + T3 + T4 + T5 then the star coefficient: α


= 262
3

te

Let’s find the length of t ∈
( )2108

0;
2

ln 
 
 
  

 of the star-function ƒ(t)= 

2 2 2 2 212 , 7 , 17 , 3 , 6 .
2 2 2 2 2

t t t t te e e e eα α α α α 
− + − − − 

 
 We compute ƒ'(t)= 

2 2 2 2 2( 24 ,14 , 34 , 6 , 12 )t t t t te e e e e− − − −  and 

2 2 2 2 2 2 2 2 2 2 2ƒ'(t) ( 24 ) (14 ) ( 34 ) ( 6 ) ( 12 ) 2108 ,t t t t t te e e e e e= − + + − + − + − =

So the length is L=
( 2108)

22
0

2108 1054 527
ln

te dt = −∫
In the special case x= 0

• The star coefficient: α


= 62
3

• The Star-set:S


=
5 52 20 22 13, , , ,

3 3 3 3 3
 − − 
  
  

Examples of Star-systems equivalent

Theorem 7. 

For all t ∈R if α1 = 4t + 12 and α2 = 4t + 12 then the two star-systems : 
1[2t,2t+2,2t+4,2t+6,2t+8;α1] = α1 and 2[2t+1,2t+3,2t+5,2t+7,2t+9;α2] = 
α2 are equivalent.

Proof theorem 

The star-system 1[2t,2t + 2,2t + 4,2t + 6,2t + 8;α2] = α1 can be written as:

Figure 13. 
Figure 14. 

Figure 15. 
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1 2 1

2 3 1

3 4 1

4 5 1

1 5 1

T  + T = -4t-4
T  + T = -4t-8
T  + T = -4t-12
T  + T = -4t-6
T  + T = -4t-10

α
α
α
α
α









⇒

1
1

1
2

1
3

1
4

1
5

T  = -2t-6
2

T = -2t 2
2

T = -2t-10
2

T = -2t-2
2

T = -2t-4
2

α

α

α

α

α




 +










The star-system 2[2t + 1,2t + 3,2t + 5,2t + 7, 2t + 9;α2] = α2 can be 
written as:

1 2 2

2 3 2

3 4 2

4 5 2

1 5 2

T  + T = -4t-6
T  + T = -4t-10
T  + T = -4t-14
T  + T = -4t-8
T  + T = -4t-12

α
α
α
α
α









⇒

2
1

2
2

2
3

2
4

2
5

T  = -2t-7
2

T = -2t 1
2

T = -2t-11
2

T = -2t-3
2

T = -2t-5
2

α

α

α

α

α




 +










For all t ∈ R, if the tow Constants of the two star-systems 1α = 4t + 
12 and 2α = 4t+14 then the Star-set of the two star-systems: S

1= S
2=

( ){ }0,8,-4,4,2 (Figure 16)

Examples of Star-operators

New Star-Differential operators: During our study of the construction of 
star-system, some new star-differential operators are required to be introduced.

Theorem 8. Let α ∈R, for all t ∈R and for all f be an n-times 
differentiable real function defined in interval I of R, the Star-system 

2 3 4
, , , , ;df d f d f d ff

dt dt dt dt
α

 
 
  

=α has a unique solution and the Star-system 

we have unique star coefficient: α


=
2 3 42 2 2 2 2, , ,

3 3 3 3 3
df d f d f d ff
dt dt dt dt

+

Notation: A variety of notations are used to denote the n-times derivative.

2 3 4
(2) (3) (4)', , ,df d f d f d ff f f f

dt dt dt dt
= = = =

Proof theorem (Figure 17)

Consider the following star-system of 5 equations in 5 unknowns:

(2)
1 2

(3)
2 3

(2) (4)
3 4

(3)
4 5

(4)
4 5

T  + T = -

T  + T = - '

T  + T = -

T  + T = -

T  + T = - '

f f

f f

f f

f f

f f

α

α

α

α

α

 −

 −
 −


−


−

⇒

(2) (3) (4)
1

(3) (4)
2

(4)
3

(2) (2)
4

(2) (3)
5

T  = -
2

T  = -
2

T  = - '
2

T  = - '
2

T  = - '
2

f f f

f f f

f f f

f f f

f f f

α

α

α

α

α

 + −

 − −

 + −



+ −

 + −

I f (2) (3) (4) (3) (4) (4) (2) (2) (2) (3)- - - ' - ' - '
2 2 2 2 2

f f f f f f f f f f f f f f fα α α α αα = + − + − − + + − + + − + + − t h e n 

the star coefficient: α


= (2) (3) (4)2 ( ' )
3

f f f f f+ + + +

In the special case α= )'(
3
2 )4()3()2( fffff ++++

The star-operator ƒ defined by:ƒ =
(2)

(3)

(4)

1 1 2 4 2
3 3 3 3 3

2 1 1 2 4
3 3 3 3 3 '

4 2 1 1 2 .
3 3 3 3 3

2 4 2 1 1
3 3 3 3 3

1 2 4 2 1
3 3 3 3 3

f
f

f

f

f

− − 
 
 

 − − 
  
  
 − − 
  
  
 − − 
    
  − − 

 
 

Applications

f(t)=sin(t): f is n-times differentiable at all t ∈R

For all t ∈R the star-system [sint,cost,−sint,−cost,sint;α] = α

• The star coefficient: α


= 2 sin( )
3

t

• The Star-functions: 

1

2

3

4

5

1T  sin
3
1T  sin
3

1T sin
3
1T  sin
3
2T sin
3

t cost

t cost

t cost

t cost

t

 = −

 = −

 = −



= −

 = −

Figure 16. 

Figure 17. 
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• The Star-Set: S


=
1 1 1 1 2sin , sin , sin , sin , sin )
3 3 3 3 3

t cost t cost t cost t cost t
   − − − −  
   

 
(Figure 18)

f(t)=cos(t): f is n-times differentiable at all t ∈R

For all t ∈R the star-system [cost,−sint,−cost,sint,cost;α] = α

• The star coefficient: α =
2 ( )
3

cos t

• The Star-functions: 

1

2

3

4

5

1T  sin
3
1T  sin
3

1T sin
3
1T  sin
3
2T
3

cost t

cost t

cost t

cost t

cost

 = +

 = −

 = +



= −

 = −

So the solution set is The Star-Set: 
1 1 1 1 2sin , sin , sin , sin , sin )
3 3 3 3 3

cost t cost t cost t cost t t
   + − + − −  
   

The star-function ƒ


(t) = 1 1 1 1 2sin , sin , sin , sin , sin )
3 3 3 3 3

cost t cost t cost t cost t t + − + − − 
 

defined in R to R5

It’s not possible to draw a 5D graphic, but in another world, a 5D world, it 
would be. 

which can be written

ƒ(t) =

1 1 1
0 0 0

1 1 2sin . 1 sin . 1 cos . 1
3 3 3

0 0 0
0 0 0

cost t cost t t

     
     
             + + − −           
     
     
     

The three vectors shown span the solution star-set. it is also not too hard 
to prove that they are linearly independent; therefore they form a basis for the 
solution starset (Figure 17).

In an abstract setting we can generally say that a projection is a mapping 
of a set, which means that a projection is equal to its composition with itself. 
(Figure 18)

in our case, we define by 

ƒ(t)= 1 1 2( sin ; sin ; )
3 3 3

cost t cost t cost+ − −  the Star function in R to R3. 

In our world this Star-function is represent by (Figure 19):

f(t)=sin(2t): f is n-times differentiable at all t ∈R For all 

t ∈R the star-system [sin2t,2cos2t,−4sin2t,−8cos2t,16sin2t;α] = α

• The star coefficient: α = 2 3 (14sin(2t)−6cos2t) (Figure 20)

Figure 20. 

Figure 21. 

Figure 18. 

• The Star-functions f: 

1

2

3

4

5

23T  2 10 2
3

58T  2 6 2
3
32T 2 4 2
3
22T  2
3
1T 2 10 2
3

sin t cos t

sin t cos t

sin t cos t

sin t

sin t cos t

− = −

 = +


− = −



=

 = − −

f(t)= et: f is n-times differentiable at all t ∈R  (Figure 21)

For all t ∈R the star-system [et, et, et, et, et;α] = α

• The star coefficient: α = 
10
3

te

• The Star-functions: et=

11 24 2 1
211 24 1

1 4 211 2 . 1
3

24 211 1
1 24 21 1

te

− −   
   − −   
   − −
   
− −   
   − −   

Figure 19. 
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