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Introduction
Asymptotic stabilization of nonlinear control systems has been a 

subject of researches for several years [1]. The main motivating factor is 
to better the inadequate existing theories of control system analysis in 
order to solve some problems concerning robotics, advanced aircraft, 
smart structures [2]. The stabilization problem of bilinear systems 
is one of the most important methods to study and understand the 
stabilization of nonlinear systems. In general, these bilinear systems 
have the following structure:

( )
.

, , n
n

x Ax uBx
A B M x and u
= +

 ∈ ∈ ∈



  
			                    (1)

In addition to the rich mathematical structure that motivates the 
problem, we can consider this as a stabilization problem for systems 
with a first order singularity at an equilibrium point [3,4]. Vector fields 
Ax and Bx are the first order approximations of the state and the input 
vector fields. We will illustrate this aspect by considering a numerical 
example. More precisely, we investigate the stabilization of a class 
of a bilinear system in eqn. (1) in three dimension. We suppose that 
the surface containing invariant straight lines is a sub manifolds with 
special algebraic equation [5,6].

In this subject, there has been lot of works about homogeneous 
systems and for a 'philosophical' introduction to this research field [7-9].

Many searches are edited in the mentioned subject, we can cite 
Baciotti and Boieri [1] who gives a complete classification of such 
systems in the plane, Jerbi and Kharrat [5] who give a complete 
classification of polynomial homogeneous systems in the plane. Jerbi et 
al. [4] consider a class of bilinear systems in dimension three which can 
be an extension of another one in R2. They prove that there exists some 
homogeneous feedback of degree zero stabilizing the considered class 
if and only if these feedbacks are constants. Luesink and Nijmeijer [9] 
who give a sufficient condition for constant feedback stabilization (by 
continuous feedback control) of a class of bilinear systems.

The authors give an algebraic classification of the stabilization of 
the homogeneous two dimensional systems [5].

( ) ( )x P x uQ x= + 				                 (2)

where  and  are homogeneous polynomials having no common 
linear linear factor. They give many tools to compute explicitly the 
stabilizing feedback. In [7], the authors study the stabilization of the 
system 2, in the case P and Q have common linear factor. The same 
results are generalized in three dimensions [8].

In the present work, we consider the problem of explicitly 
constructing of a feedback laws u(x) which is homogeneous of 
degree zero and asymptotically stabilizes the system in eqn. (1). The 
fundamental idea is that if a vector field X of the closed loop system by 
a homogeneous feedback (defined on 3)

( ) ( )x A x u x Bx= + 				                      (3)

is homogeneous, then it induces a dynamical system on a lower 
dimensional space: the unit sphere 2. The main tool of this paper will 
be the theorem of Coleman [2] which gives necessary and sufficient 
conditions for global asymptotic stability (G.A.S.) of a homogeneous 
system in 3-space.

Preliminaries
In the next, let us consider the system

( )x X x= 					                   (4)

where x∊3 and X is a homogeneous vector field (not necessarily 
polynomial) of odd degree.

In the following, .  and ,  will denote respectively for the usual 
two-norm and the standard inner product on n,

(for x∊n 2 2
1

1
... , ,

n

n i i
i

x x x x y x y
=

 
= + + = 

 
∑ .

Let x∊3\{0},
xx and y
r

γ = = . Differentiating x=ry and denoting 

rm-1(t)dt=dτ,we obtain a system on the unit sphere 2 by writing the 
equation satisfied by y .

( ) ( ),y X y X y y y= −
				                   (5)

Coleman showed the following theorem.

Theorem 1 (Coleman)

The origin is an asymptotically stable equilibrium point for the 
system in eqn.(4) if and only if the following conditions are satisfied.
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1. 〈X(y),y〉<0 for all the equilibrium points of in eqn.(5).

2. ( )( ) ( )
0

, 0
T

X y s y s dt <∫  for any periodic  solution y(s) of the 

system in eqn.(5); (T denotes the period of y(s)).

Definition 1

Let  a subset of 3, we say that  is an invariant set by the 
trajectories of system (4) if:

For all y0∊ one has ct(y0)∊ for all t∊ (ct(y0) is the solution of 
equation ( ) ( )0 0 0  )x X x and c y y= =

.

Remark 1

If  is a sub manifold of 3 one has:  is an invariant set by the 
trajectories of system (4) if:

For all y0∊ one has X(y)∊Ty ( Ty is the tangent space of  at 
the point y ).

Main Results
We consider the bilinear system

( ) 3
3, ,

x Ax uBx
A B x and u
= +

 ∈ ∈ ∈



  
			                  (6)

In any basis of 3, matrices A and B take the following  forms

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a b b b
A a a a and B b b b

a a a b b b

   
   = =   
   
   

The closed loop system in eqn.(6) by a homogeneous feedback of 
degree zero v(x) is

( ) ( )x Ax v x Bx X x= + =

The vector  field X can be written as

( )
( )
( )
( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

3 3 3

X x A x v x B x

X x X x A x v x B x

X x A x v x B x

   + 
   

= = +   
      +   

with Ai(x)=ai1x1+ai2x2+ai3x3 and Bi(x)=bi1x1+bi2x2+bi3x3, for i=1; 2; 3. 
Since X is homogeneous of degree one, we can associate a vector field Y 
defined in the unit sphere S2 by

Y(y)=X(y)−〈X(y),y〉y

If y0 is an equilibrium point of Y, then Y(y0)=0, so 
X(y0)=〈X(y0)=(y0),y0〉 The following lemma gives a localization of the 
equilibrium points of the system

(y)y Y= 					                    (7)

Lemma 1

The equilibrium points of Y are contained in the surface

( ){ }3 : det , , 0x Ax Bx x= ∈ =

Proof: It is clear that if y is an equilibrium point of Y , then Y (y)=0. So

X(y) = 〈X(y), y〉y

Taking into account the form of X, we get

Ay + v(y)By = hX(y); yiy

Finally the vectors {Ay,By,y} are linearly dependant and det 
(Ay,By,y)=0.

In the next, we introduce the following homogeneous functions:

( )
( )

( )

( )
( )
( )

( )
( )
( )

( ) ( ) ( )

( )
( ) ( )
( ) ( )

1 1

2 2

1 1

2 2

1 1

2 2

1 1

2 2

: det ,

: det ,

det ,

: det

B x x
x

B x x

A x x
x

A x x

X x x
x x v x x

X x x

and

A x B x
x

A x B x

 
=   

 
 

=   
 
 

φ = = +  
 

 
=   

 





 



These functions , ,ɸ and  have an important role in determining 
the invariant lines of system in eqn.(6), thus the equilibrium points of 
system in eqn. (7) and the construction of feedback v.

so, we shoos (x)≠0 for all  x∊3\{0}, if   (x)=0 we look at 

( )
( ) ( )
( ) ( )

1 1

3 3

: det
A x B x

x
A x B x

 
=   

 
 .

If ( ) 0x =  we have A1(x)=λBl(x)A2(x)=λB2(x) and A3(x)=λB1(x) 
the system in eqn.(6) becomes ( )x u Bxλ ⋅= + this  system  can be stable  
with  a constant  feedback.

Lemma 2

Let x∊3\{0} a point  such that  (x)≠0 and (x1,x2)≠(0,0).

xy
x

=  is an  equilibrium point  of Y if  and only if  

y∊∩S2 and φ(x)=0.

Proof: If y is an equilibrium point of Y, then by Lemma 1 
X(y)=νy, ν∈, (<y> is an invariant straight line by the system

( ) ( )(x) A )x X x v x Bx= = +
. From Lemma 5.1 the point y is in the set 

∩S2 and we have

( )
( )
( )

1 1

2 2

det 0
X x x

x
X x x

 
Φ = =  

 

Inversely if  x verifies 

y∊∩S2 and  φ(x)=0

Then there exists (α1,α2)≠(0,0) such that 
( )
( )

1 1
1 2

22

0
0

X x x
xX x

α α
     

+ =          
. 

From the assumption such that (x1,x2)≠ (0,0), we can deduce that α1≠0. 

The point x satisfies the condition ( )
( ) ( )
( ) ( )

1 1

2 2

: det 0
A x B x

x
A x B x

 
= ≠  

 
 , then 

the family
( )
( )

( )
( )

1 1

2 2

{ , }
A x B x

A x B x

   
      
   

 is  a basis  of 2, If  α2=0 we obtain

( )
( )

( )
( )

( )
( )
( )

1 1 1
1 1 1

2 2 2

0
0

X x A x B x
v x

X x A x B x
α α α
       

= + =                   

Which is absurd, then α2≠0
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Using the fact x∊, we can deduce that there exists 
(β1,β2,β3)≠(0,0,0) such that β1Ax+β2Bx+β3x=0. It is clear that

( )
( )

( )
( )

1 1 1
1 2 3

22 2

0
0

A x B x x
xA x B x

β β β
       

+ + =                

Using the argument that 
( )
( )

( )
( )

1 1

2 2

{ , }
A x B x

A x B x

   
      
   

is a basis of 2 and 

(x1,x2)≠(0,0), we  can  deduce  that β3≠0, we have

( )
( )

( )
( )
( )

1 1 1
1 1 2

22 2

0
0

A x B x x
v x

xA x B x
α α α
       

+ + =                

We deduce that

( )

( )

1 1 2 1

3 2 3 2

2

1

0

and v x

and

Ax v x Bx

β α β α
β α β α

α
α

= =

+ + =

Finally one has ( ) 2

1

Y y yα
α

= −  and y is an equilibrium point of Y.

Proposition 1: Suppose that the equilibrium points of Y satisfy 
F(y)≠0. The vector field Y satisfies to the first condition of Coleman 
theorem if and only if

( ) ( )
( )

0 0
y

y and
y

Φ = >



Proof: Let  x∊3\{0} and 
xy
x

= . Notice that if y is an equilibrium 

point of Y then X(x)=νx.(ν=〈X(x),x〉) and

( )
( )

( )
( )
( )

1 1 1

22 2

A x B x x
v x v

xA x B x

     
+ =             

Therefore

( ) ( )
( ) ( ) ( )

1 1 1

22 2

1A x B x x
v

v x xA x B x

     
=           

and the fact F(y)≠0, one has

( )
( ) ( )
( ) ( )

1
1 1 1

22 2

1 A x B x x
v

v x xA x B x

−
    

=             

Thus 
( )
( )

1
x

v
x

−
= ⋅




 Finally

( ) ( )
( )

,
x

v X x x
x

−
=< >=




The vector field Y satisfies the first condition of Coleman theorem if 
y is an equilibrium point of Y then ν=〈X(x),x〉 < 0. All this is equivalent 
to the writing from Lemma 5.2 that if Φ(x)=0 then < X(x),x >< 0 which 
is equivalent to the following

( )
( )

0
x
x

>



Theorem 2

If the vector field X has an invariant linear plane  and all the 

straight lines of X are contained in , then the system in eqn.(7) don’t 
have any periodic orbit.

Proof: It is clear that all equilibrium points of the vector field Y lie 
in the circle =∩2. Since the plane  is invariant by the flows of the 
vector field X, then the circle  is invariant by the flows of the vector 
field Y . Any periodic orbit of the vector field Y can be located in one of 
the two regions delimited by circle C. Using the theorem of Poincar´e-
Bendixson, that in the interior of any periodic orbit on S2 there exists 
an equilibrium point. However, we have seen that the only equilibrium 
points are located on the circle , then there are no periodic orbits.

Construction of the Function Feedback v
We define the following homogeneous polynomial function of 

degree 3

( )
( ) ( )
( ) ( )
( ) ( )

1 1 1

1 2 3 2 2 2

3 3 3

, , det

A x B x x

x x x A x B x x

A x B x x

 
 

=  
  
 



Since  is a homogeneous polynomial of degree 3,we suppose that:

 (x1,x2,x3)=(x3-a1x1-b1x2)R(x1,x2,x3)

Or 

 (x1,x2,x3)=(x3-a1x1-b1x2)(x3-a2x1-b2x2(x3-a3x1-b3x2)

such that R is a definite homogeneous function of degree 2.

The construction of the feedback v depends on the geometric 
structure of the set M defined by ={x∈3:  (x1,x2,x3)=0}, that 
contains the invariant straight lines by the system in eqn.(6).

We suppose that i:x3=aix1+bix2; a1∈, b1∈ for i=1,2,3 is an 
invariant linear plane of the vector fields A and B. The restriction of 
A+vB on the plane i is following system

( ) ( )
( ) ( )

1 1 1 2 1 1 1 2 1 1 2 1 2

2 2 1 2 1 1 1 2 2 1 2 1 2

, , , ,

, , , ,
i i

i i

x A x x a x b x vB x x a x b x

x A x x a x b x vB x x a x b x

 = + + +


= + + +





	                (8)

We define the homogeneous function of degree 2 in two dimension
( ) ( )
( ) ( )
( ) ( )

1 2 1 2 3 1 2

1 2 1 2 3 1 1 2

1 2 1 2 3 1 2

, , ,

, . ,

, , , .

i i i

i i

i i i

x x x x x a x b x

x x x x x a x b x

x x x x x a x b x

= = +

= = +

= = +

 

 

 

The authors prove the following theorem [7].

Theorem 3

If there exists a function Φ satisfying to the following conditions [7]

1. The function Φ is C∞ on 2\{(0,0)}, and homogeneous of degree 2.

2. The functions ( )( )1 1 1 2 2 1 2 2c x c x c x c x− −  divides i(x)+v(x)i(x)

3. If the point ξ=(ξ1,ξ2) satisfies Φ (ξ1,ξ2)=0, then ( )
( )

1 2

1 2

,
0

,
i

i

ξ ξ
ξ ξ

>



.

Then the feedback

( ) ( ) ( )
( )

1 2 1 2
1 2

1 2

, ,
,

,
i i

i
i

x x x x
v x x

x x
φ −

=




is C∞on 3\{(0,0,0)} homogeneous of degree 0 and stabilizes the system 
in eqn. (8).

Theorem 4

The system in eqn. (6) is globally asymptotically stable at the origin 
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by a homogeneous function of degree 0 if and only if the restriction of 
A+vB on each invariant plane is globally asymptotically stable at the 
origin.

Proof: We suppose that the system in eqn. (6) is GAS at the origin 
by the homogeneous function u(x1,x2,x3) of degree 0. According to the 
hypothesis that the plane i :=x3=aix1+bix2 is invariant by the vector 
fields A and B, the the restriction of A+uB on this plane is also GAS by 
the feedback u(x1,x2,aix1+bix2). Inversely, suppose that the restriction of 
A+uB on each invariant plane is globally asymptotically stable at the 
origin. In the plane i:= x3=aix1+bix2, the system in eqn.(6) is reduced 
to the system in eqn. (8). To construct the homogeneous feedback ui of 
the system (8), we construct a function Φ satisfying the conditions of 
theorem, such that the feedback

( ) ( ) ( )
( )

1 2 1 2
1 2

1 2

, ,
,

,
i i

i
i

x x x x
u x x

x x
φ −

=




is C∞on 2\{(0,0,0)} homogeneous of degree 0 and stabilizes the system 
in eqn.(8) in the plane i:=x3=aix1+bix2.

The theorem of Coleman say that the origin is asymptotically stable 
if and only if v stabilize system in eqn. (6) in all invariant straight line  
for any periodic solution. So, if <v> is an invariant straight line by the 
flow of the system in eqn. (8), then Av+u(v)Bv=νv and

( )
( ) ( )
( ) ( )
( ) ( )

1 1 1

1 2 3 2 2 2

3 3 3

, v , det 0

A v B v v

v v A v B v v

A v B v v

 
 

= = 
  
 



If 

(x1,x2,x3)=(x3−a1x1−b1x2)R(x1,x2,x3)		                 (9)

the feedback u take this form:

( ) ( ) ( )
( ) ( )

( ) ( )

( )

1 2 1 2
1 2 3 1 2 32

3 1 1 1 2 1 2

, ,
, , , , 0,0,0

,

0,0,0 0

i i

i

x x x x
u x x x if x x x

x a x b x x x

u

φ −
= ≠

− − +
 =



   (10)

If 

(x1,x2,x3)=(x3−a1x1−b1x2)(x3−a2x1−b2x2)(x3−a3x1−b3x2)=p1(x)p2(x)
p3(x) with p1(x)=x3−a1x1−b1x2, p2(x)=x3−a2x1−b2x2 and p3(x)=x3−a3x1−
b3x2.

The feedback u take this form:

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
( )

2 3 1 2 1 2 2 3 1 2 1 2
1 2 3 2 2

1 2 3 1 2 2 1 3 1 2

2 3 1 2 1 2
2

3 1 2 1 2

1 2 3

, , , ,
, ,

, ,

, ,

,

, , 0,0,0

0,0,0 0

i i i i

i i

i i

i

p x p x x x x x p x p x x x x x
u x x x

p x p x p x x x p x p x p x x x

p x p x x x x x

p x p x p x x x

if x x x

u

φ φ

φ

 − −
= + +

+ +


−


+
 ≠
 =

 

 




  (11)

Under the hypothesis that i:=x3=aix1+bix2 for i=1,2,3 is an 
invariant linear plane of the vector fields A and B then v3=aiv1+biv2 
and φ(v1,v2)=0 Since the zeros of the function φ have been constructed 
to satisfy the second condition of theorem, then the restriction of the 
closed loop system on the invariant straight line <v> is GAS, so, the 
first condition of The theorem of Coleman is satisfied. For the second 
conduction of the theorem of Coleman it’s clear from theorem that the 
system in eqn.(6) don’t have any periodic orbits. Then, The system in 

eqn.(6) is globally asymptotically stable at the origin by a homogeneous 
function of degree 0.

Example
We consider the bilinear system

x Ax uBx= + 					                   (12)

where x=(x1,x2,x3)∈3, u∈ and

1 2 1 2 1 1
2 1 2 1 2 2
2 1 2 1 2 2

A and B
−   

   = − − = − −   
   − − − −   

The considered class satisfy to condition [9]

( ) ( )( )2 2 2
1 2 1 1 2 2 1 3 2 3 3det , , 3 4 5 2 4Ax Bx x x x x x x x x x x x x= − + − + + +

and the sub manifold  is defined by

M = {x∈ such that x3=x2}

it is easy to see that for x ∈ , on has

( )
( ) ( )
( ) ( )

2 2
1 2 1 1 2 2

1 2 2 1 2

1 2 1 1 2

, 2 2

, 3 2

, 3 2

x x x x x x

x x x x x

x x x x x

= + +

= −

= +







The condition in eqn.(3) of theorem is equivalent to the existence 

of such m satisfies Φ(m)=0 and ( )
( )

0
m
m

>



We can chose m=(1,1) and Φ(x1,x2)=(x1−x2)
2 then we can write

( )
( )

2 2
1 1 2 2

2 2 2
1 2 1 1 2 2

5 3
2 2

x x x xu x
x x x x x x

− +
=

− + + +

is homogeneous of degree 0. Since ( )
1 1 1

91 1,1,1 1 1
5

1 1 1
A u B
     
     + = −     
     
     

 then the 

feedback u(x) stabilizes the system in eqn.(12) in the unique invariant 
straight line.
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