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Introduction
There has been a revolution in nonlinear physics over the past 

20 years. Existence of solitons in the field of nonlinear optics was 
considered in 1973 [1].

Optical solitons are pulses which can be formed due to the balance 
between the group velocity dispersion and the self-phase modulation 
(SPM), traveling without distortion due to the dispersion or other 
effects. Solitons are classified in two forms [2,3].

Spatial Solitons is pulses which can propagate for long distances 
with an invariant transverse profile.

Temporal Solitons is Optical pulses that can propagate through a 
dispersive non-linear optical medium with an invariant shape.

These solitons, depending on the dispersion regime, can be found 
in two forms:

• Bright solitons for the anomalous dispersion regime.

• Dark solitons, for normal dispersion regime.

Optical dark solitons have been investigated in many theoretical
and experimental papers [4]. Recently the applications of dark solitons 
have been interested in many achievements [5-7]. For example 
pulse propagation in nonlinear optical media a their applications in 
waveguides are some of intersting fields in new papers [8,9]. Also 
soliton transmission in optical fibers has been considered in nonlinear 
physics, electronics, photonics and communication [10].

Wave propagation modes of physical media are naturally separated 
into two generic classes, conservative and dissipative. Recently, it 
was recognized that a more particular species of PT (parity-time)-
symmetric systems may be identified at the boundary between these 
generic types which remain invariant under the combination of parity 
and time-reversal symmetry operation [11-14].

The concept has its roots in quantum mechanics where a PT-
symmetric non-Hermitian Hamiltonian may have an entirely real 
spectrum of eigenvalues [11,15-17].

The demonstrations of the PT-symmetric effects in optics in two 
waveguide directional linear couplers composed of waveguides with 

gain and loss were recently proposed in [17-19] and for bright optical 
solitons, which exist when the Kerr nonlinearity is obeyed by the 
couplers, were reported in [19-21]. Such systems are described by non 
Hermitian Hamiltonians. In quantum mechanics, the PT-symmetric 
potential satisfies the condition V (x)=V*(−x)*, denoting complex 
conjugation[15,20]. In nonlinear optics, the PT-symmetric potential 
is introduced by a complex refractive-index distribution combined 
with gain and loss regions, that obey the condition [17,20]. Nonlinear 
effects in directional couplers studied started in 1982 [22]. Theoretical 
analyses have suggested that such couplers operating in the nonlinear 
regime can be used for the all signal controls [23,24]. Arrays of the PT-
symmetric couplers were proposed as a means of control of the spatial 
beam dynamics including the formation and switching of spatial 
solitons [17,25]. Investigating the properties of these solitary waves is 
interesting. Hatami et al. studied properties and behaviors of temporal 
dark solitons in different medias [26-29].

Solitons propagating in the PT-symmetric nonlinear couplers, 
composed of wave guides with gain and loss, were theoretically 
described in [30]. Stable bright spatial solitons with PT-symmetric 
potentials have recently been reported [17]. However, the stability 
of temporal dark solitons in PT-symmetric potentials in a nonlinear 
coupler with gain and loss is less studied. In this paper, at first we 
obtain an analytical solution for dynamical equations of PT-symmetric 
temporal dark solitons in nonlinear PT-symmetric couplers and 
discuss the stability condition. Then, the numerical results in the form 
of diagrams for PT-symmetric temporal dark solitons are illustrated.
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Abstract
In this paper, we present analytical soliton solutions in a nonlinear PT-symmetric coupler with gain in one fiber 

and loss in the other one in the normal dispersion regime. As usual, we derive a temporal dark soliton solution for 
the coupler in the normal dispersion regime. We study the stability of the soliton solution by imposing a perturbation 
in the system by using the eigenvalue method. The results show that there exist two forms of perturbed soliton 
solutions, bright and dark. The numerical calculations show that the perturbed solutions in the bright form are stable 
and the dark form are unstable. Previous works in bright solitons show that there exists only one perturbed bright 
soliton solution which is stable only in particular regions.
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in the other one has been studied theoretically and experimentally 
[17,19,28]. In general, the model that describes the propagation of light 
in an optical waveguide is based on Non-Linear Schrodinger Equation 
(NLS) equations coupled with the linear terms which represent the 
tunneling of light. To describe beams and pulses in such a system 
including the nonlinear PT-symmetric coupler and existence of dark 
solitons, we have the following dimensionless dynamical.

Equation:
2

z TTiu u + 2 u u = - +i uυ γ

 			                   (1)
2

z TTiu u + 2 u u = - - i uυ γ

Here, u and v are the normalized amplitude variables at the top 
and bottom fiber waveguides, z and τ indicate the length of fiber and 
normalized time, respectively. The plus and minus signs are standing 
for anomalous and normal dispersion, respectively. Two kinds of 
solitons have been discovered depending on the dispersion sign:

Bright solitons correspond to the positive sign and in general have 
the solution as U (z, τ)=Asech (z, τ) exp (iA2z) in an anomalous regime.

Similar to the case of bright solitons, dark solitons corresponding to 
negative sign of dispersion are generally in the form of u (z, τ)=Atanh 
(z, τ) exp (iA2z).

Figure 1a and 1b display the bright soliton and the dark soliton in 
general. The main difference between the dark and bright solitons is 
that the domains of dark solitons approach a constant as τ → ±∞ while 
for bright solitons they vanish to zero [2,3].

The PT-symmetric coupler with gain in one fiber and loss in the 

other one has recently been studied theoretically and experimentally 
[1,25-27]. To investigate the solution in a PT-symmetric nonlinear 
coupler, a simple object composed of a pair of nonlinear coupled 
optical fibers is considered. We illustrate a schematic of PT-symmetric 
coupler in Figure 2.

The coupler consists of four ports for input and output pulses. To 
satisfy the PT-symmetric condition, we assume the group velocities and 
the second-order dispersions in fibers are matched, and we normalize 
the coefficients to uττ and vττ to unity, and hence, the two waveguides 
have the same Kerr nonlinearity coefficients. Malomed et al. show that 
it is necessary for the existence of solitons [13,17].

In Eq.(1), the first term in the right hand side is related to coupling 
between the modes propagating in the two fiber waveguides and γ 
terms stand for the gain in one fiber and loss in the other. Without 
loss of generality, γ can be considered to be positive which means that 
the gain is supposed to be in the top fiber waveguide and loss in the 
bottom one. To confirm the PT-symmetric condition, the gain and loss 
coefficients must be equal [17].

The associated powers are:
2

up u dT= ∫  					                   (2)
2

Tp dυ υ= ∫
In this system, neither the individual powers associated with the 

two modes nor their sum are conserved if γ/=0.

For the total power:

( ) 2 ( )u u
d p p p p
dt υ υγ+ = −  			                   (3)

In order to analyze Eq (1), it is convenient to represent the variables 
in the following form:

= exp = expi( z - ) i( z)u(z,T) U(z,T), u(z,T) V(z,T)θΩ Ω 		                  (4)

Where θ is a constant angle satisfying:

sin =θ γ  					                    (5)

and Ω is a real parameter.

The substitution of Eq. (4) into Eq.1 leads to:
2

z TTiU -U - U + 2 U U = - cos V +i (U -V)Ω θ γ , 	                (6)
2

z TTiV -V - V + 2 V V = - cos U +i (U -V)Ω θ γ

By applying U=V ≡ φ Eq.6 reduce into:

iφz − φττ − a2φ + 2 | φ |2 φ=0 			                 (7)

Here cos2a θ= Ω −

By solving equation (7), it is obvious that we arrive at familiar dark 
soliton solution:

2( , ) tanh( )exp( )T z a aT ia zφ =  			                (8)

(a)

(b)

Figure 1: Scheme of (a) Bright soliton (b) Dark soliton in general form.
Figure 2: Scheme of nonlinear PT-symmetric coupler with gain in top 
waveguide and loss in bottom waveguide.
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Solition Stability
Perturbation

To investigate the stability of these solitons, we use the same 
perturbation method as used by Alexeeva et al. [17].

Let

( , ) ( ) ( , ), ( , ) ( ) ( , )U T z T U T z V T z T V T zφ δ φ δ= + = + 	                (9)

By using symmetric and antisymmetric combination

,
2 2

U V U Vp qδ δ δ δ+ −
= =  			                 (10)

We linearized Eqs.(8) in δU and δV. Consider a separable solution 
for the linearized equation in the form of:

[ ]1 2 1 2exp( ) ( )cos ( )sinp vt p ip t p ip tω ω′ ′ ′′ ′′= + + +  	               (11)

[ ]1 2 1 2exp( ) ( )cos ( )sinq vt q iq t q iq tω ω′ ′ ′′ ′′= + + +

Where

1 1 1 2 2 2p p ip p p ip′ ′′ ′ ′′= + = +  

1 1 1 2 2 2q q iq q q iq′ ′′ ′ ′′= + = +  

By introducing the operator
2

2
2

2
2

2

6 0

0 2

d
dTL =

d
dT

φ

φ

 
+ Ω − 

 
 

+ Ω − 
 

		               (12)

and the component vectors :

1 1

2 2

,
p q

p q
p q

   
= =   
   

   				                   (13)

We arrive at two eigenvalue problems

( )L - cos p + 2 Jq = Jpθ γ µ  

			                (14)

( )L - cos q + 2 Jp = Jqθ γ µ   			                (15)

We assume ν and ω are real, µ=ν − iω and also the skew-symmetric 
matrix, J is:

0 1
1 0

J
− 

=  
 

 					                   (16)

We can obtain two eigenvectors for the Eqs. (14) and (15)

,
0
p p

q
   
   
   

 



 					                  (17)

In the first eigenvector, both eigenvalues are zero for q. This 
component leads Eq.12 to be a linearized eigenvalue equation which 
can be integrated. Therefore, it is not a perturbed equation and it will 
be stable.

The second eigenvector has q/=0, and using this eigenvector for Eq 
(12), it becomes a non-homogeneous equation and with no nonzero 
eigenvalue. This vector is an eigenfunction for Eq (13) and hence, 
investigating the stability is reduced to solving Eq. (13). These results 
are the same as bright soliton solutions.

The eigenvalue problem (15) can be written as:

1 1 1

0 2 2

0
0

n

n

L q q
J

L q q
λ+

+

     
=     

    
  			                (18)

Here T=aτ, λ=µ/a2, η=2(cos θ/a2) and L0,1 are Sturm-Liouville operators

2 2 2
0 / 1 2 tanh ,L d dT T= + −  			                  (19)

2 2 2
1 / 1 6 tanh ,L d dT T= + − 			                (20)

According to equation L0y0=λy0, the eigenvalue of L0 is λ=−1, and 
it’s corresponding eigenfunction is y0=tanh X.

For eigenfunction equation L1y1=λy1, there exists two eigenvalues 
λ=−1 and λ=0, the corresponding eigenfunctions are respectively y1=(1 
− tanh2 T), and y1=sechT tanhT. The second one resembles the bright 
solitons’ perturbation eigenfunction.

As we can see in propagating a dark soliton in a PT-symmetric 
coupler, the perturbed equation has two kinds of solutions, namely the 
bright and dark solitary solutions.

The lowest eigenvalue of the operator L0 +η equals η. For the scalar 
function of q1(T), the eigenvalue problem in Eq.(16) can be written in 
the form of:

( ) ( ) 12
1 1 0 1L q L qη λ η −+ = − + 			                   (21)

As the operator on the left side is symmetric, so the right side is 
symmetric and positive. The lowest eigenvalue is defined by:

1 1 12
1

1 0 1

min
( )

q L q

q L q

η
λ

η −

< + >
− =

< + >
 			              (22)

The minimum is positive if the numerator is positive, and as 
mentioned before, the lowest eigenvalue of the operator L1 is equal to 
(-1) and the numerator, (−1 + η), is positive if η>−1.

Using 
2

cos2
a
θη = , the stability condition is calculated as 

2 2, 2 1c ca a a γ≤ = − .

Numerical results

According to the PT-equations, for evaluating a dark soliton inside 
a PT-symmetric nonlinear coupler, the numerical methods might be 
applied to investigate the stability of these perturbed equations by 
means of the eigenvalues introduced in solutions of Eqs.19 and 20 in 
the last section.

For the numerical simulation and verification of the propagation 
of the solitons, we attempted to construct such solitons by adding 
perturbed eigenfunctions and corresponding eigenvalues where the 
perturbation method to the initial pulses needs to be applied. The initial 
condition is taken such that the dark soliton pulse is launched into the 
coupler as follows:

( )1

2

0, tanh( )
(0, ) tanh( )

u a
u a

τ τ
τ τ

=

=
				                  (23)

Then the perturbed eigenfunctions is added to these pulses.

As it was mentioned in solution of Eq (14) and (15), three different 
eigenfunctions with their real eigenvalues yield. The evolution of dark 
soliton inside a coupler to obtain the expected gain in top waveguide and 
loss in bottom by calculating the eigenfunctions and their eigenvalues 
with the perturbed method is presented. Figure 3a and 3b show the 
evolution of dark soliton with y0=tanh(T) and perturbed eigenfunction 
where it propagates through the PT-symmetric nonlinear coupler for 
|u|2 versus τ and z, and |v|2 versus τ and z.

Also in Figure 3c, the evaluation of total powers, Pu + Pv, is 
calculated and illustrated according to Eq. (2).
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The domain and phase is changed in this situation and according to 
Figure 3a-3c and their equations, this soliton with the added perturbed 
eigenvalue and corresponding eigenfunction is unstable.

In Figure 4a and 4b the numerical results are presented in terms 
of the analytical solution for the perturbed eigenfunction y1=sech(T)
tanh(T) added to the initial pulse for |u|2 and |v|2. Moreover, according 
to Figure 4c, it can be concluded that although some fluctuation in this 
solution is observable, it is stable.

In Figure 5a and 5b the evolution of the dark soliton with the 
second perturbed eigenfunction, y1=(1 − tanhT 2), and corresponding 
eigenvalues which are calculated by perturbation method according to 
Eqs (13) and 16 for | u |2 and |v|2 are depicted.

The evaluation of the associated total power, Pu + Pv, of this result 
is also obtained and presented in Figure 5c.

Given these results, it can be safely assumed that propagating dark 
soliton in a PT-symmetric nonlinear coupler in this case is unstable.

Conclusion
In this work, we obtained the analytical and numerical solutions 

of propagating a pulse in a nonlinear coupler with nonlinearity in PT-
symmetric potentials with gain in one fiber waveguide and loss in the 
other one. Analytical investigations showed that the coupled equations 
which propagate in the fiber waveguide had a solution in the form of 
temporal dark soliton. The stability of these solutions was obtained by 
analytical and numerical analyses via perturbation method. Evaluating 
perturbed analytically showed that perturbations which guaranty the 
stability were in two forms of bright and dark solitons. However, the 
usual solutions of non-coupled equations were merely dark solitons 
and for a bright solution propagating in the nonlinear coupled fiber, 
only a bright soliton perturbation satisfied the stability. According to 
the numerical results and total observable power perturbed in the form 
of bright solutions, we conclude that although this soliton has some 
fluctuations, it is stable. In addition, in the perturbed dark form, the 
temporal dark soliton is proved to be unstable.
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Figure 3: The evolution of dark soliton with the perturbed eigenfunction y0=tanh(T) (a) The evolution of j u j2 versus _ and z , (b) The evolution of j v j2 versus _ and 
z, (c) The evaluation of total power.
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