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Introduction
The prey-predator models were first modelled by Lotka-Volterra 

[1-5]. They used simple response function proportional to the number 
of predators. In prey-predator models, species normally follow different 
growth functions and among these [6-8], Logistic growth function is 
important one, which was first used by Verhulst [2] for human growth. 
Later Feller [9] assumed that almost every population that increases 
asymptotically will fit to the Logistic growth law to some degree. There 
also exist some other growth functions suggested by Gompertz [10], 
May [11]. For prey-predator system, response functions in between 
prey and predator play an important role for the long term existence 
of the ecosystem. There are several types of response functions such 
as ratio dependent, Holling types response functions [12], Michaelis-
Menten type, Beddington-DeAngelis [13,14] response function, etc. 

The stability of ecological systems and the persistence of species 
within them are fundamental concerns in ecology. Mathematical 
models of ecological systems, reflecting these concerns, have been sued 
to investigate the stability of a variety of systems. For example, see [15-
24]. The dynamic relationship between predator and their prey has 
long been and will continue to be one of the dominant themes in both 
ecology and mathematical ecology due to its universal existence and 
importance [17]. Many excellent works have been done for the Lotka–
Volterra type predator–prey system but considerable uncertainties and 
errors in interpretation aroused out this procedure. In ref. [18], Holling 
proposed that there exist three functional response of the predator 
which usually called Holling type I, Holling type II and Holling type III 
[25]. He proposed the form

( ) mxx
a x

Φ =
+

, [0,1)m∈  is constant.

as a Holling type II response function, it usually describes the uptake of 
substrate by the microorganisms in microbial dynamics kinetics [26,27]. 
If the predator is the invertebrate, it always the case. Freedmaan et al. 
emphasizes the application of holling type response function in prey-
predator interplay but also Chen and Kaung specifically mentioned 

the need of intercomparative analysis of holling response function for 
the better understanding of prey-predator interplay. Existing work 
does not cover comparative analysis of holling response function with 
vibrational matrix. For that in this paper, we have consider four prey-
predator models with Holling type-I and II predation function and 
selective harvesting of prey or predator. Keeping in view the practical 
implication of this study in understanding biological interplay. 
We elucidated the theoretical basis, equilibrium and local stability 
followed by verification and computation simulation for derived 
holling functions. This paper presents computation approach for real 
application of these mathematical models in biological analysis.

Theoretical Basis for Prey-Predator Interplay and 
Equilibrium Estimation
Standard theoretical model for prey-predator 

Theoretical model I: Consider prey-predator system with following 
prey-predator model with logistic growth of prey and predation 
function is proportional to prey density 

  dy y xy
dt

δ=−Υ +                  (2.1)

  dy y xy
dt

δ=−Υ + (2.2)

Theoretical model II: Consider the following pre-predator system 
with Holling-II type predation function
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Abstract
The use of mathematical models in prey predator interplay is common to solve the interdisciplinary natural 

problems. This paper reports analytical advancement of measuring selective harvesting activity of prey proportional 
to their population size and studied the stability of the model using Holling type functional response. In this paper, we 
analysed four prey-predatory model and considered prey and predator as a X and Y axis respectively followed by 
applied variational matrix and Holling I and II type response function for equilibrium and local stability measurement. 
Simulation experiments were carried out. Further, numerical analysis was done with help of MATLAB packages at 
MS window 7. Analysis of result showed prey and predator population converges asymptotically to their equilibrium 
values when t (time) tends to infinity and corresponding spiral phase portraits obtained. Interestingly analysis of 
result showed the behaviour of prey and predator with respect to time and phase portrait of the system near the 
equilibrium point. Above analysis indicated that application of vibrational matrix and holing type response function 
give better understand ability of prey predator interplay of biological forces.
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= x 1dx x xy
dt k a x

β α − −  + 
 				                 (2.3)

    dy xyy
dt a x

δ
= −ϒ +

+
			                             (2.4)

Theoretical model III: Consider the following pre-predator system 
with Holling-II type predation function and constant harvesting of prey

1
dx x xyx 1 h
dt k a x

β = α − − −  + 
 			               (2.5)

dy xy=- y
dt a x

δ
+

+
				                 (2.6)

Theoretical model IV: Consider the following pre-predator system 
with Holling-II type predation function and constant harvesting of 
predator

= x 1dx x xy
dt k a x

β α − −  + 
 				                 (2.7)

2
dy xy h
dt a x

δ
= ϒ + −

+
			    	              (2.8)

Where, α is the intrinsic growth rate of prey, ϒ is the death rate of 
predator, β is the predation rate of prey, a is the half saturation constant, 
h1 is the constant rate of harvesting rate of prey, h2 is the constant rate 
of harvesting rate of predator and δ is the conversion of predator and 
also α, ϒ, β, a, h1, h2 and δ are all positive.

Existence and determination of equilibrium between prey-
predator 

As prey predator stability is based on existence of equilibrium so 
we determine the existence of equilibrium for above four models.

For theoretical model I: To find the equilibrium points of the 
system eqns. (2.1) and (2.2) we’ve,

1 0x x xy
k

α β − − = 
 

				                (3.1)

0y xyδ−Υ + = 					                 (3.2)

Solving eqns. (3.1) and (3.2) we get the equilibrium points are (0, 
0), (k, 0), (x*,y*).

Where x*=
δ
Υ

 and y*= *1 x
K

α
β
 − 
 

.

For theoretical model II: Equation (2.3) and (2.4) of a particular 
system was used to determine the equilibrium point. We have 

*x 1 0x xy
k a x

β α − − =  + 
				                 (3.3)

0xyy
a x
δ

−ϒ + =
+

				                (3.4)

Solving eqns. (3.3) and (3.4) we get the equilibrium points are (0, 
0), (k, 0), (x*, y*).

Where x*= * ax
δ
ϒ

=
− ϒ

 and y*= ( )* *  * 1 xy a x
k

α
β

 = + − 
 

 and x* is 

positive whenδ > ϒ  				                  (3.5)

For theoretical model III: Equation (2.5) and (2.6) of a particular 
system was used to determine the equilibrium point. We have 

1x 1 0x xy h
k a x

β α − − − =  + 
			                (3.6)

0xyy
a x
δ

−ϒ + =
+

				                 (3.7)

Solving eqns. (3.6) and (3.7) we obtain the equilibrium points are 
(x´, 0), (x*, y*).

Where, x´= 2 2
1

1 4
2

x k k khα α = + − 

and x*= * ax
δ
ϒ

=
− ϒ

 and y* = ( )1*  a  x** * 1)
*

(
hxy a x

k x
α
β β

+ = + − − 
 

x*, y* are positive as δ > ϒ and ( )**
1*

*

 a  
( )

x
 1

hxa x
k x

α
β β

+ 
+ − > 

 
     (3.8)

For theoretical model IV: Equation (2.7) and (2.8) of a particular 
system was used to determine the equilibrium point. We have 

x 1 0x xy
k a x

β α − − =  + 
				                 (3.9)

2 0xyy h
a x
δ

−ϒ + − =
+

			    	            (3.10)

From eqn. (3.9) we get, either 0=x or 1 0x y
k a x

β α − − =  + 
 (3.11)

From eqn. (3.11) we get, ( )*   1 xy a x
k

α
β

 = + − 
 

.

Then from eqn. (3.10) we get

2 2 0a hx x a
k k

δ βδ
α

− ϒ ϒ   − + + − ϒ − ϒ + =   
   

There are two changes of sign. When we replace x by –x, there are 
no changes of sign.

So, by Descarte’s rule of sign there are exactly two positive roots. 
Say, one root be x*.

Therefore, the equilibrium point is (x*, y*).

Experimental Setting and Verification for Local Stability 
Local stability of these four models is discussed with variational 

matrix.

For theoretical model I: The variational matrix of the system eqns. 
(2.1) and (2.2) is

(x, y)

f f
x y

V
g g
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

Where, f(x, y)  1 x x xy
K

α β = − − 
 

g(x, y)  .y xyδ=−Υ +

Therefore, 

21
V(x, y)  

x y x
K

y x

α β β

δ δ

  − − −  =   
 −Υ + 

Now discuss the stability near the (0, 0)

At the point (0, 0),

0
0

0
α λ

λ
−

=
−Υ −
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The characteristic equation of the corresponding variational matrix is

0
0

0
α λ

λ
−

=
−Υ −

Therefore, 0λ α= > 	  

0λ γ= − <  

Eigen values are real distinct and opposite sign so the equilibrium 
pint is a saddle point and therefore the system is unstable.

At the point (k, 0),

(k,0)
0

K
V

K
α β

δ
− − 
 −ϒ + 

The characteristic equation corresponding variational matrix is

0
0

K
K

α λ β
δ λ

− − −
=

−ϒ + −

Therefore, 0λ α= − <

( ) 0Kλ γ δ= − − < when  K
δ
ϒ

<  and )  0(  Kδλ ϒ − >= −  when 

 K
δ
ϒ

<

Therefore, the roots are real distinct and negative therefore the 
equilibrium point is a node. So the system is asymptotically stable if 

 K
δ
ϒ

< .

Now at the point (x*, y*),

* *
* *1 * *

(X ,Y )
* *

x xy x
V K K

y x

α β β

δ δ

  − − − −  
  

 −ϒ + 
* *

* 0

x x
k

y

β

δ

 − − =   
 

*
* *[Since  1    (  0     ) ]0x y and x

K
α β δ− − = − ϒ =

The characteristic equation corresponding varitional matrix is

* *
0

*

x x
k

y

λ β

δ λ

− − −
=

−

Or, 2 *( ) * * 0xf x y
k

λ λ λ βδ= + + =

Now 2 *( ) * *xf x y
k

λ λ λ βδ−− = +

There are two changes of sign. So, by Descarte’s rule of sign there 
are two negative roots.

Therefore, the system have stable node.

For theoretical model II: The variational matrix of the system (2.3) 
and (2.4) is

(x, y)

f f
x y

V
g g
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

Where f(x, y)  1 x xyx
K a x

βα  = − −  + 

(x, y) xyg y
a x
δ

= −Υ +
+

Therefore, ( )

( )

2

2

21

V(x, y)

x a y x
K a xa x

a y x
a xa x

β βα

δ δ

  − − −   +  + =  
 −ϒ +
 ++ 

At the point (0, 0),

0
V(0,0)

0
α 

=  −ϒ 

So, the characteristic equation is 

0
0

0
α λ

λ
−

=
−ϒ −

Therefore,    0λ α= > and     0λ = − ϒ<

Hence, the system is unstable.

At the point (k, 0),

(K,0)
0

K
a KV

K
a K

βα

δ

 − − + =
 −ϒ + + 

The characteristic equation is

0
0

K
a K

K
a K

βα λ

δ λ

−
− −

+ =
−ϒ + −

+

Therefore,     0λ α=− <  and ) 0 ( K
a K
δλ = − ϒ − <
+  when 

aK
δ
ϒ

<
− ϒ

.

Therefore, the roots are real distinct and negative therefore the 
equilibrium point is a node. So the system is asymptotically stable if 

aK
δ
ϒ

<
− ϒ

 .

Now, at the point (x*, y*),

( )2
* *

2 * * *1
**(X ,Y )

* *
* *

x ay x
K a xa xV

a y x
a x a x

β βα

δ δ

  − − −   +  + =
 
 −ϒ +

+ + 

( )2

* * * *
**

* 0
*

x x y x
K a xa x

a y
a x

α β β

δ

 − + − ++ =
 
 

+ 

The characteristic equation is,

( )2

* * * *
** 0

*
*

x x y x
k a xa x

a y
a x

α β βλ

δ λ

− + − −
++

=

−
+

Or, 
( ) ( )

2
2 2

* * ** 0
k * *

y a x yx
a x a x
β β δλ λ

 α
+ − + = 

+ +  
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If we replace λ by –λ, then there are two changes of sign when

( )2

*
   K *

y
a x
βα

>
+

 . 

So, by Descarte’s rule of sign there are two negative roots when

( )2

*
K *

y
a x
βα

>
+

 .

Hence, therefore, the roots are real distinct and negative or complex 
with negative real part therefore the equilibrium point is a node. So the 

system is asymptotically stable when 
( )2

*
K *

y
a x
βα

>
+

. (A)

For theoretical model III: The vibrational matrix of the system 
eqns. (2.5) and (2.6) is

( ),   

f f
x y

V x y
g g
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

Where ( ) 1 ,   1 x xyf x y x h
K a x

βα  = − − −  + 
,

( )g ,     xyx y y
a x
δ

=−Υ +
+

Therefore, ( ) ( )

( )

2

2

21

,   

x a y x
K a xa x

V x y
a y x

a xa x

β βα

δ δ

  − − −   +  + =  
 −ϒ +
 ++ 

At the point (x´, 0),

( )

' '

'
'

'

'

21
 ,  0  

0

x x
K a xV x

x
a x

βα

δ

  
− −   +  =  

 −ϒ + + 
' '

1
' '

0 0

h x x
x K a x

α β 
− − = +  

 
The characteristic equation of the corresponding variational matrix 

is 
' '

1
' ' 0

0 0

h x x
x K a x

α βλ

λ

− − −
=+

−

Or, 
'

1
' 0x h

K x
αλ λ

  
− − =  
  

Therefore, either λ = 0 or λ = 
'

1
'

x h
k x
α

−

So, the system is not stable.

Now, at the point (x*, y*),

( ) ( )

( )

2

2

2 * * *1
**

*,  *  
* *

**

x a y x
K a xa x

V x y
a y x

a xa x

β βα

δ δ

  − − −   +  + =  
 −ϒ +
 ++ 

The characteristic equation of the corresponding variational matrix is

( )

( )

1
2

2

* * * *
* **

* 0
*

h x x y x
x k a xa x

a y
a x

α β β

δ

 − + − ++ =  
 
 + 

Or, 
( ) ( )

2 1
2 3

* * * * * 0
** *

x x y h a x y
K xa x a x

α β βδλ λ
 

+ − − + = 
+ +  

If we replace λ by –λ, then there are two changes of sign when

( )
1

2

x* * *
K **

x y h
xa x

βα
> +

+
 . 

So, by Descarte’s rule of sign there are two negative roots when

( )
1

2

x* * *
K **

x y h
xa x

βα
> +

+
. 

Hence, therefore, the roots are real distinct and negative or complex 
with negative real part therefore the equilibrium point is a node. 

So the system is asymptotically stable if 

( )
1

2

x* * *
K **

x y h
xa x

βα
> +

+

For Theoretical model III: The variational matrix of the system 
(2.7) and (2.8) is

( ),

f f
x y

V x y
g g
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

 

Where ( ),  1 x xyf x y x
K a x

βα  = − −  + 

( ) 2,   xyg x y y h
a x
δ

=−Υ + −
+

Therefore, ( ) ( )

( )

2

2

21

,  

x a y x
K a xa x

X x y
a y x

a xa x

β βα

δ δ

  − − −   +  + = 
 −ϒ +
 ++ 

Now, at the point (x*, y*),

( ) ( )

( )

2
* *

2

2 * * *1
**

,   
* *

**

x a y x
K a xa x

V x y
a y x

a xa x

β βα

δ δ

  − − −   +  + =  
 −ϒ +
 ++ 

( )

( )

* * * *

2 **

*
2

2 **

x x y x
K a xa x

a y h
ya x

α β β

δ

 
− + − ++ 

=  
 
  + 

The characteristic equation of the corresponding variational matrix is

( )

( )

2

2
2

* * * *
**

0
*

**

x x y x
K a xa x

a y h
ya x

α β βλ

δ λ

− + − −
++

=
−

+
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Or, 
( ) ( ) ( )

* * * * * * *
2 2 2 2

2 2 3* ** * *
0x x y h x h h x a x y

K y Kya x a x a x

α β α β βδλ λ
 
 + − − − + + =
 + + + 

If we replace λ by –λ, then there are two changes of sign when

( )
* * *

2
2 **

x
K

x y h
ya x

βα
> +

+
 . 

So, by Descarte’s rule of sign there are two negative roots when

( )
* * *

2
2 **

x
K

x y h
ya x

βα
> +

+
. 

Hence, therefore, the roots are real distinct and negative or complex 
with negative real part therefore the equilibrium point is a node. So the 
system is asymptotically stable when 

( )
* * *

2
2 **

x
K

x y h
ya x

βα
> +

+
. 

Results and Discussion 
It was observed that the bifurcation of the theoretical model-

II with respect to the parameter a half saturation constant. The 
roots of characteristic equation are real distinct negative or complex 

with negative real part if 
( )

*

2*K
y

a x

βα
>

+
 (From A). So the system is 

asymptotically stable ( )
*

2*
 
K

y

a x

βα
>

+
 i.e.

*
*    – K ya xβ

α
> . 

For theoretical model-III the system is asymptotically stable if 
* *

*
*

1
*

x ya x
hx

k x

β
α

> −
−

For theoretical model-IV the system is asymptotically stable if 
* *

*
*

2
*

x ya x
hx

k y

β
α

> −
−

.

Numerical example: In this section numerical simulation is present 
to illustrate the behaviour of prey and predator with respect to time and 
phase portrait of the system near the equilibrium point which results 
obtained in previous sections. Now choose the values of parameters for 
different model.

For Model-I: α= 1.8;K=20; β=0.03; δ=0.05; γ=0.3; (Figure 1A).

For Model-2: α=1.8; K=10; β=0.6; δ=0.9;γ=0.1; a=9; for these values 
*

* K y   xβ
−

α
=8.81 and the condition of stability with respect to the 

parameter a is satisfied as 9>8.81 (Figure 1B).

For Model-IV α=1.8; K=10; β=0.6; δ=0.9; γ =0.1; a= 8; for these 

values 
*

*    K y xβ
α

− =8.86 and the condition of stability with respect to 

the parameter a is not satisfied as 8 < 8.81( 8 is not greater than 8.86) 
(Figure 2A and 2B).

For Model-IV:

α=1.8;K=10; β=0.5; δ=0.6; γ =0.1; α = 10 h1=10; (Figures 3 and 4).

Numerical simulation of Model-4 is similar to Model-3 (Table 1).

Discussion, Conclusion and Future Extension:
Four mathematical prey-predatory population

In this paper, four mathematical prey-predator population models 
are considered and analysed. In these models we consider the Logistic 
law of growth of prey. We consider Holling-I type predator response 
function in model-1 and in models-2,3 and 4 Holling – II type predator 
response function. Also consider selective harvesting of prey and 
predator. In model 3, consider constant prey harvesting only and 
constant predator harvesting in modes l-4. The conditions of existence 
of several equilibrium points have been examined. Local stability of 
the equilibrium points are discussed by variational matrix and also 
derive the conditions of asymptotical stability of equilibrium points. 
Discuss the bifurcation of the model-2 with respect to the parameter a 
(half saturation constant) and also derive the condition of existence of 
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Figure 1: A) Prey and predator population asymptotically converge to the equilibrium state value; B) Phase portrait of the system showing that  (x*, y*) 
is locally asymptotically stable.
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Figure 2: A) Prey and predator population asymptotically converge to the equilibrium state value; B) Phase portrait of the system showing that (x*, y*) 
is locally asymptotically stable.

Model at (0,0) At (x,0) at (x,y) Phase portrait
Model-1 Unstable Asymptotically stable Stable Figure 1A and 1B
Model-2 Unstable Asymptotically stable

Asymptotically stable if 
*

*    K ya xβ
α

−>
Figures 2A and 2B

Model-3 - Unstable

Asymptotically stable if 
* *

*
*

1
*

x ya x
hx

k x

β
α

> −
−

Figures 3 and 4

Model-4 - -

Asymptotically stable if
* *x ya x

k y

> −
Same as model-3

Table 1: Nature of equilibria of four models.
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Figure 4: Phase portrait of the system showing a periodic orbit near (x*, y*).
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bifurcation. Numerical simulation is done by MATLAB software. The 
behaviour of prey and predator population with respect to time and 
phase portrait of the system near the equilibrium point is presented. 
It is observed that with the given values of parameters the prey and 
predator population converges asymptotically to their equilibrium 
values when t (time) tends to infinity and corresponding spiral phase 
portraits are obtained which are presented. Bifurcation of the model-2 
is discussed for two values of a (half saturation constant) (i.e., a=9 and 
a=8). For a=9, the condition of stability is satisfied i.e. 9>8.81 and for 
a=8, the condition of stability is not satisfied i.e., 8<8.81 and oscillatory 
behaviour of the prey and predator population and periodic phase 
portrait are presented. 

These models can be further extended by other type of response 
functions such as Beddington-De Angelis sigmoid response function 
etc., Selective harvesting by combined harvesting and also constant rate 
of harvesting by variable rate of harvesting. The prey-predator model 
can be extended by three species food chain model i.e. prey, predator 
and super predator. 
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