Stability of Convergence Theorems of the Noor Iteration Method for an Enumerable Class of Continuous Hemi Contractive Mapping in Banach Spaces

Akanksha Sharma*, Kalpana Saxena1 and Namrata Tripathi1
1Department of Mathematics, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India
2Department of Mathematics, Govt. Motilal Vidyagiri Mahavidyalaya, Bhopal, Madhya Pradesh, India

Abstract

The purpose of this to study the Noor iteration process for the sequence \(\{x_n\} \) converges to a common fix point for enumerable class of continuous hemi contractive mapping in Banach Spaces.

Keywords: Stability; Noor iterations; Hemicontractive mapping; Convergence theorem; Continuous pseudocontractive mapping

2000 Mathematics Subject Classification: 47J25, 47H10, 54H25

Introduction

Let \(E \) be a real Banach space and let \(J \) denote the normalized duality mapping from \(E \) to \(E^* \) defined by

\[
J(x) = \{ f \in E^* : \langle f, x \rangle = \|x\| \|f\| \text{ for all } x \in E \}
\]

Where \(E^* \) denotes the dual space of \(E \) and \(\langle \cdot, \cdot \rangle \) denotes the generalization duality pairing.

It is well known that if \(E^* \) is strictly convex then \(J \) is single-valued. In the sequel, we shall denote the single-valued duality mapping by \(j \). Let \(K \) be a nonempty closed convex subset of Banach space \(E \). Let \(T: K \rightarrow K \) be a self-mapping of \(K \).

Definition 3.1: (i) A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) in a Banach space is called pseudocontractive mapping, if for all \(x, y \in D(T) \), there exists \(j(x-y) \in J(x-y) \) such that

\[
\langle Tx - Ty, j(x-y) \rangle \leq \|x - y\|^2
\]

(ii) A mapping \(T \) with domain \(D(T) \) and range \(R(T) \) in \(E \) is called a hemi-contraction if \(F(T) \neq \emptyset \) and for all \(x \in D(T), x' \in F(T) \), such that,

\[
\langle Tx - T x', j(x - x') \rangle \leq \|x - x'\|^2
\]

(iii) A mapping \(T: K \rightarrow K \) is called L-Lipschitzian there exists \(L > 0 \) such that

\[
\|Tx - Ty\| \leq L \|x - y\| \quad \text{for all } x, y \in K
\]

Definition 3.2: If \(\{x_n\}_{n=0}^\infty \) and \(\{\beta_n\}_{n=0}^\infty \) are sequences of real numbers in \([0, 1] \) [2]. For arbitrary \(x \in E \), Let \(\{x_n\}_{n=0}^\infty \) be a Noor iteration defined by,

\[
x_{n+1} = (1 - \beta_n)x_n + \beta_n T x_n
\]

\[
g_n = (1 - \beta_n)x_n + \beta_n T r_n
\]

\[
r_n = (1 - \beta_n)x_n + \beta_n T r_n
\]

Lemma 3.4: Let \(\delta \) be a number satisfying \(0 \leq \delta < 1 \) and \(\{\epsilon_n\} \) a positive sequence satisfying \(\lim_{n \to \infty} \epsilon_n = 0 \) [4,5]. Then, for any positive sequence \(\{u_n\} \) satisfying \(u_{n+1} \leq \delta u_n + \epsilon_n \). It follows that \(\lim_{n \to \infty} u_n = 0 \).

Results

Theorem 4.1: Let \(\{T_n\}_{n=0}^\infty \) be defined as above and \(E \) be a Banach space, \(T: E \rightarrow E \) a self-map of \(E \) with a fixed point \(p \), satisfying the contractive condition

\[
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2
\]

For \(x \in E \).

Then, for any \(T \) be defined as above and let \(F(T) \neq \emptyset \) and \(\{\epsilon_n\}_{n=0}^\infty \) be a real uniformly convex Banach space.

\[
\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2
\]

For \(x \in E \).

Then, for any \(\{T_n\}_{n=0}^\infty \) converges strongly to a common fixed point of \(\{T_n\}_{n=0}^\infty \) if and only if \(\lim_{n \to \infty} (T_n, F(p)) = 0 \).

Proof: Let \(p \in F \) and \(n \geq 1 \) be a fixed point of \(T \) such that

\[
\|x_{n+1} - p\|^2 = \langle x_{n+1} - p, j(x_{n+1} - p) \rangle
\]

\[
\|x_n - p\|^2 \leq \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T q_n + ((1 - \alpha_n)x_n + \alpha_n T q_n - p)\| + \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T q_n + ((1 - \alpha_n)x_n + \alpha_n T q_n - p)\|
\]

\[
= \epsilon_n + \|x_{n+1} - p\|^2 + \|x_n - p\| + \|x_n + \alpha_n T q_n - p\|
\]

\[
= \epsilon_n + \|x_{n+1} - p\|^2 + \|x_n - p\| + \|x_n + \alpha_n T q_n - p\|
\]

*Corresponding author: Akanksha Sharma, Department of Mathematics, Technocrats Institute of Technology, Bhopal, Madhya Pradesh, India, Tel: 07552751679; E-mail: akanksha0027@gmail.com

Received June 25, 2015; Accepted July 27, 2015; Published July 30, 2015

Copyright: © 2015 Sharma A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
For the estimate of in (1) we get
\[
\beta_n\leq\beta_n - \beta_n + \beta_n - \beta_n - \beta_n
\]
Substituting (2) into (1) gives
\[
\|x_{n+1} - p\| \leq \epsilon + \alpha(1 - \epsilon) \beta_n \|x_n - p\| + \alpha \beta_n \|a\| \|T_n - p\|
\]
For \(\beta_n - \beta_n\) in (3) we have,
\[
\|\beta_n - \beta_n\| = \|1 - \gamma_n\| \|x_n + \gamma_n T_n - p\|
\]
Substituting (4) into (3) and using lemma 3.3
\[
\|x_{n+1} - p\| = \epsilon_n + (1 - \alpha) \|x_n - p\| + \alpha \beta_n \|a\| \|T_n - p\|
\]
Taking infimum over all \(p \in F\), we have,
\[
d(x_n, F) = \frac{\alpha_m}{p \in F} \|x_n - p\| \leq \frac{\alpha_m}{p \in F} \|x_{n+1} - p\| = d(x_{n+1}, F).
\]
Thus \(\lim_{n \to \infty} d(x_n, F)\) exist we finally prove (iii) suppose that \(x_n \to p \in F\) from (ii) and
\[
d(x_n, F) \leq \|x_n - p\| \to 0, \quad \text{We have} \quad \lim_{n \to \infty} d(x_n, F) = 0 \quad \text{for} \quad n, m \in \mathbb{N}
\]
and \(p \in F\); it follows
\[
(1.3) \text{From (1.3) that}
\]
\[
\|x_{n+1} - x_n\| \leq \|x_n - p\| + \|x_n - p\| \leq \|x_n - p\|
\]
Consequently,
\[
\|x_{n+1} - x_n\| \leq 2 \|x_n - F\| \to 0
\]
Therefore \(\{x_n\}\) is a Cauchy sequence. Suppose \(\lim_{n \to \infty} x_n = u\) for some \(u \in E\). Then
\[
d(u, F) = \lim_{n \to \infty} d(x_n, F) = 0
\]
Since \(F\) is closed set, \(u \in F\)

\[\text{So, Noor iteration process is } T\text{-stable.}\]

\[\text{Conclusion}\]

Thus, the stability of Noor iteration considerable for finding fixed point for enumerable class of continuous hemi contractive mapping in Banach spaces.

References