
Src Family Kinase Inhibitors and their Role in the Treatment of Traumatic
Brain Injuries
Thomas R Groves1,2,3 and Antiño R Allen 1,2,3*

1Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, USA
2Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, USA
3Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
*Corresponding author: Antiño R Allen, Division of Radiation Health, Department of Pharmaceutical Sciences and Neurobiology and Developmental Sciences,
University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, Tel: +5016867553; Fax: +5015266599; E-mail: AAllen@uams.edu

Rec date: Jun 13, 2016; Acc date: Jul 26, 2016; Pub date: Jul 28, 2016

Copyright: © 2016 Groves TR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Traumatic brain injury (TBI) leads to a broad spectrum of neurological deficits, including cognitive impairments
that are irreversible and significantly influence quality of life even after recovery from physical disabilities. Clinically,
there is no standardized procedure for treating secondary TBI, as each case is symptomatic. Src family kinase
(SFK) inhibitors, a relatively new treatment regarding TBI, have so far been neuroprotective against secondary
damage in non-human models. Immediately after TBI, there is increased expression of NR2A and NR2B. SFKs
regulate NR2 subunits of NMDARs through tyrosine phosphorylation. Synthetic inhibitors of SFKs may help reduce
the cognitive dysfunction seen after TBI by binding to SFKs and inhibiting the tyrosine phosphorylation of NMDARs,
thereby preventing excitotoxicity within neurons that leads to cell death.
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Traumatic Brain Injury: Definition, Prognosis and
Current Treatment Options

Traumatic brain injury (TBI) is a major medical concern in
America, with greater than 50,000 deaths and 70,000-90,000 people
suffering from disabilities annually. In the civilian population, TBI is
caused most often by falls, and automobile or motorcycle accidents. It
is the greatest cause of disability and death for people under 45 years
old and is often seen in military personnel following head injuries in
combat [1]. The incidence of TBI is growing in the military due to the
extensive use of improvised explosive devices (IEDs) [2]. In fact, it is
estimated that 15.2%-22.8% of returning military personnel from Iraq
and Afghanistan were affected by mild traumatic brain injury (mTBI)
[3]. These service members are among the 2.5-6.5 million individuals
who undergo the agonizing socioeconomic costs associated with the
long-term cognitive, physical and psychosocial deficits following TBI,
totaling about 60 billion dollars annually [4,5]. Approximately 2% of
the USA population lives with long-term disabilities due to a prior TBI
[6]. TBI is also associated with long-term neurodegenerative diseases
(e.g. Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral
Sclerosis).

TBI in humans is often associated with cognitive dysfunction, the
degree of which often depends on the injury severity. In the case of
moderate to severe head injury in humans, the prognosis for recovery
usually correlates with the level of post-traumatic trauma. Secondary
brain damage is a common occurrence following the initial impact and
is caused by edema, oxidative stress, ischemia, hemorrhage,
thrombrosis and/or cerebral vascular dysfunction [7]. These injures
may be associated with marked anterograde amnesia (an inability to

form and retain new memories) and retrograde amnesia (an inability
to recall past memories) [4]. TBI leads to a broad spectrum of
neurological deficits, including cognitive impairments that are
irreversible and significantly influence quality of life even after
recovery from physical disabilities [8]. An increasing amount of studies
have looked at therapies for TBI, yet there is currently no accepted and
effective treatment [5]. However, the expected method of treating
patients would be by either protecting the brain from the negative
effects of the primary or secondary damage, or delaying the secondary
damage [7].

Clinically, there is no standardized procedure for treating secondary
TBI, as each case is symptomatic. However, the primary treatment
option is to reduce intracranial pressure (ICP) and minimize damage
due to alterations in cerebral blood flow (CBF) and oxygen
metabolism. The administration of osmodiuretics, such as Mannitol
and hypertonic saline solution (HSS), reduce ICP by causing
vasoconstriction. There are concerns with using Mannitol though, as it
can cross the blood-brain barrier (BBB), accumulate in the brain, and
cause a rebound effect, thereby increasing ICP [9]. HSSs are
theoretically less likely to cross the BBB, making them an interesting
alternative treatment for reducing ICP.

Multiple meta-analyses have shown that HSSs did not statistically
significantly differ from Mannitol in reducing ICP following TBI.
However, these meta-analyses are limited, as there are several
differences noted between studies (dosage used, when neurological and
mortality outcomes were assessed, HSS formulas, unblinded trials,
etc.). Furthermore, a randomized controlled trial with sufficient power
is needed to make definite conclusions about the use and effectiveness
of each drug [10,11]. Another method of ICP reduction is
decompressive craniectomy, where a portion of the skull is removed to
expand the area around the swelling brain [12]. In one randomized
controlled trial with 155 adults suffering from severe TBI,
decompressive craniectomy was associated with decreased ICP
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(p<0.001) and time spent in the intensive care unit (P<0.001).
Unfortunately, this did not translate to improved scores on the
Extended Glasgow Outcome Scale (odds ratio for an unfavorable
outcome, 2.21; 95% CI, 1.14-4.26; P=0.02), a scale used to classify the
mental state of TBI survivors [13].

To improve CBF, hypothermia, barbiturate coma, and hyperbaric
oxygen therapy (HBOT) are used to decrease cerebral blood volume
through vasoconstriction, decrease oxygen metabolism, and increase
oxygen saturation to the brain [12,14]. While hypothermia has been
shown to reduce intracranial hypertension, whether or not it has
benefitted patients is unclear. In fact, in a study by Andrews et al.
looking at 387 patients, hypothermia treatment did not result in better
outcomes compared to standard care [15]. Not only that, but
hypothermia might increase the risk of patients having cardiovascular
complications or developing pneumonia [16].

Barbiturate coma therapy reduces cerebral blood flow, cerebral
metabolism and ICP and may reduce mortality in a specific group of
patients [17]. However, they have several concerning side-effects, such
as hypotension, immunosuppression with a higher chance of infection,
refractory hypokalemia, and potentially decreased white blood cell
count [9,18,19]. HBOT is defined as providing 100% oxygen-enriched
air to patients with a pressure greater than one atmosphere absolute.
The efficiency of HBOT continues to be discussed, as standardized
clinical studies examining the protective effects and exact benefit for
TBI patients has yet to be conducted [20,21].

Regarding excitotoxicity, there is no pharmacological method
currently accepted. Most clinical trials have looked at the effectiveness
of NMDA antagonists. However, many trials were discontinued due to
complications. Of the trials that were completed, essentially all of them
were inconclusive or had an inadequate number of patients to
determine the benefit or risk of their respective treatments [22].
Therefore, there is still a need for a secondary TBI option. Src family
kinase (SFK) inhibitors, a relatively new treatment regarding TBI, have
so far been neuroprotective against secondary damage in non-human
models. One aspect of secondary damage that SFK inhibitors
effectiveness have been particularly researched with is brain edema.

SFKs Mechanism of Action
The BBB is a tightly regulated interface that maintains brain volume

and cerebral homeostasis to promote normal neuronal function.
However, TBI disrupts normal functions through translational and
rotational forces at the moment of impact (primary TBI), and brain
edema (secondary TBI) [23]. Brain edema is defined as an increase in
tissue volume due to excess accumulation of brain fluid content
[14,24]. There are two major types of brain edema: 1. Cytotoxic, where
extracellular water shifts into intracellular compartments of cells, and
2. Vasogenic, where the BBB is structurally and functionally impaired,
allowing excess fluid (e.g. blood) to accumulate in the extracellular
space in the parenchyma, causing an increase in ICP. It is currently
thought that vasogenic edema most likely occurs during primary TBI,
while cytotoxic edema occurs during secondary TBI [25]. Thrombin, a
serine peptidase, is an essential clotting factor that contributes to brain
edema and BBB damage following TBI. Multiple studies have shown
that increased thrombin in the brain, either through a direct injection
or TBI itself, mediates brain edema that can lead to neuronal death.
Thrombin acts on protease activated receptors (PAR), which in-turn
then activate protein kinases, such as src kinases [26-28].

Protein kinases are enzymes that transfer the terminal phosphoyl
group of ATP onto a specific protein substrate, which is typically a
tyrosine, threonine, or serine residue [29]. They mediate most signal
transduction in eukaryotic cells and control many other cellular
processes (cell cycle progression, metabolism, apoptosis, transcription,
cytoskeletal rearrangement and cell movement, and differentiation) via
this substrate modification. There are over 500 known protein kinases,
with SFKs being of particular interest to researchers because of their
role in various diseases [30,31]. SFKs consist of 11 non-receptor
tyrosine kinases that include Src, Fyn, Yes, Blk, Yrk, Frk, Fgr, Hck, Lck,
Srm, and Lyn [31,32].

SFKs have pleiotropic functions on mammalian cells, as they can
affect cell morphology, metabolism, migration, invasion, proliferation,
differentiation, and survival [32,33]. Within the central nervous system
(CNS), SFKs are abundant in neurons [34]. Src has been shown to play
a role in proliferation and differentiation during CNS development and
is highly expressed in fully differentiated neurons. While it was
originally thought that SFKs only had regulatory function in the CNS
early in development, genetic ablation of SFKs in adult mice have
caused several abnormalities, thus suggesting that SFKs may still have
certain functions in post-mitotic neurons [35]. Another important
function of SFKs in the developed CNS is to regulate the activity of ion
channels, such as NMDARs [35-37].

NMDARs, subtypes of excitatory amino acid receptors, are
implicated in multiple processes in the human brain. They play a role
in mood and anxiety, attention and cognition, synaptic plasticity, CNS
development, and even rhythm generation, which is necessary for
functions like breathing and locomotion [38]. NMDARs are tetrameric
ligand-gated cation channels that gate Na+, Ca2+, and K+. They are
composed of two NR1 and two NR2 (NR2A-NR2D) or two NR3
(NR2A and NR2B) subunits. The most common NMDAR channel
conformation is a diheteromer of NR1/NR2A or NR1/NR2B, or as a
triheteromer of N1/N2A/N2B (39). NMDARs are expressed in the
prefrontal cortex, the hippocampus and in central association areas.’

When NMDARs are active, following postsynaptic membrane
depolarization, they can induce long-term potentiation (LTP), which is
a mechanism that contributes to the synaptic basis of memory
formation [39-41]. The NMDA receptor antagonist AP5 has been
shown impair Morris water maze (MWM) performance and block the
induction of LTP in CA1 [42]. Furthermore, transgenic studies showed
that knockout mice lacking the NR1 subunit of the NMDA receptor in
CA1 were severely impaired in MWM performance [43]. Deregulation
of NMDARs, as seen through excitotoxicity, can reduce LTP. NMDARs
mediate excitotoxicity, which is the physiological mechanism that
causes an increase of glutamate activity, opens calcium channels and
then allows an excessive amount of calcium to enter. Large calcium
concentrations due to intracellular store release and increased influx
negates the regulatory functions within the cell, causing it to fail and
potentially die [44].

SFKs regulate NR2 subunits of NMDARs through tyrosine
phosphorylation, which has been found by physiological and
pharmacological studies to be imperative for inducing LTP within the
hippocampus [34,44-46]. For example, applying SFK-activating
peptide (pYEEI) to cultured hippocampal slices causes an increase in
NMDAR current, while Fyn-deficient mice undergoing the MWM
task, a behavioral task that is considered to be hippocampal dependent,
were impaired. Spatial learning is also associated with increased
expression and activity of Src with NMDARs within the hippocampus
[37].
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However, over-activation of SFKs may lead to altered NMDAR
expression that is detrimental to memory formation. It has been shown
that immediately after TBI, there is increased expression of NR2A,
NR2B, NR1, and GluR1 (an AMPA receptor subunit). The changes in
NR2A and NR2B subunit expression are thought to be due to greater
NR2B tyrosine phosphorylation and activation of extracellular signal-
regulated kinases (ERKs) [44]. Therefore, synthetic inhibitors of SFKs
may help reduce the cognitive dysfunction seen after TBI by binding to
SFKs and inhibiting the tyrosine phosphorylation of NMDARs,
thereby preventing excitotoxicity within neurons that leads to cell
death. The pyrazolo-pyrimidinyl-amine compounds PP1 and PP2, SFK
inhibitors, have been used extensively to study the cellular signaling
mechanisms of SFKs [47]. Recently though, PP1 and PP2 have also
been used in TBI models to determine their potential clinical utility.

SFK Inhibitor Treatment: Promising Results and
Future Directions

SRC Family Kinase Inhibitors have been an overall effective method
of treating TBI in non-human studies. For example, one study found
that treatment with the SFK inhibitor PP2 immediately following LFP-
induced TBI in rats decreased CA2/3 neuron loss and attenuated
cognitive deficits at 16 days. Not only that, but PP2 also prevented the
post-TBI upregulation of (ROCK1), a serine-threonine protein kinase
implicated in tissue barrier dysfunction and hippocampal neuronal
death following TBI [28,48]. Another study that treated TBI with PP2
found that it inhibited NR2B-phosphorylation and restored the
subunits to their normal levels. Although PP2 was given immediately
before TBI induction, it significantly improved neurological recovery
from 7-10 days following TBI, suggesting that if given at the time that
TBI occurs, it could potentially reduce certain aspects of secondary
TBI [44].

In another study, pre-TBI treatment with the SFK inhibitor PP1
resulted in decreased breakdown of the blood brain barrier (BBB) due
to inhibiting phosphorylation of ERK1/2. PP1 was also associated with
decreased edema, increased levels of the tight junction protein zonula
occludens-1 (ZO-1), and decreased levels of vascular endothelial
growth factor (VEGF) [49,50]. These studies indicate that the timing of
SFK inhibitor treatment in TBI is critical; SFK inhibitor therapy
immediately after TBI can potentially ameliorate cognitive
dysfunction. However, several studies have also shown that SFK
inhibitors may have detrimental effects on cognition with prolonged
use. For example, delayed PP2 administration given on days two
through six post-TBI in one study extended BBB and brain edema
disruption [51].

Even though there has been ample research supporting the
beneficial role of SFK inhibitors in the treatment of TBI, there are still
several questions that need to be addressed before it can be considered
for clinical studies. One issue with current SFK inhibitors is that they
interact with several different SFKs, so the exact mechanism in-which
they improve TBI symptoms is not fully understood [37,44,52].
Furthermore, PP1 and PP2 are only preferential inhibitors of SFKs,
meaning that they can also significantly inhibit other protein kinases
[47]. Also, the specific SFKs that mediate tyrosine phosphorylation are
unknown, even though Fyn kinase is a likely candidate [44,52].
Another aspect to consider is the other possible neurotoxins (e.g.
glutamate, lactate, reactive oxygen species, hemoglobin) that are
released into the CSF after TBI and how they might affect SFK
expression and activity [28].
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