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Spruce Budworm Model With and Without Delay

Abstract
Mathematical modeling is the art of translating problems from an application area into tractable mathematical formulations whose theoretical and numerical analysis 
provides insight, answers, and guidance useful for the originating application.

Mathematical modeling:

• is indispensable in many applications

• gives direction for the problem solutions

• prepares the way for better designing or control system

Learning about mathematical modeling is an important step for a theoretical mathematical training to an application oriented mathematical expertise, and makes the 
student fit for mustering the challenges of our modern technological culture. One of the most important mathematical model is Spruce Budworm model for researchers 
as well as for students. Understanding the dynamic of spruce budworm is very important for the protection of spruce and fir trees of Canada and Northern Minnesota 
(also in recent time Indian Himalayan range forest). This model was designed to identify the (a) critical factors that affect the Budworm population dynamics (b) to 
evaluate the effect of budworm population on the growth and yield of wood industry and also the present loss claimed by irruptions done by Budworm (c) to formulate 
mathematical model and to find out the steady state and the existence of the steady state and steady state analysis. The bifurcation analysis and the hysteresis 
effect of the model has been discussed. Analysis of the equilibrium stability and examination of amplitudes and periodic oscillations are conducted, and the effect of 
Budworm control, immature population control and predation by the birds are assessed.
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Preface

Mathematics and ecology

Ecology is the science, which deals with interactions between living 
organisms and their environment

Historically it has focused on questions such as: 

• Why do we observe certain organisms in certain places and not others?

• What limits the abundances of organisms and controls their dynamics?

• What causes the observed groupings of organisms of different species, 
called the community, to vary across the planet?

• What are the major pathways for movement of matter and energy within 
and between natural systems?

The above questions serve as the focus of several distinct fields within 
ecology.

• Physiological ecology deals with interactions between individual organisms 
and external environmental forces, such as temperature, with a focus on 
how individual physiology and behavior varies across different environment

• Population ecology deals with the dynamics and structure (age, size, sex, 
etc.) of groups of organisms of the same species. Community ecology deals 
with the biological interactions (predator-prey, competition, mutualism, 
etc.), which occur between species

• Ecosystem ecology like the R.M May’s model [1,2] deals with the movement 
of matter and energy between communities and the physical environment

Mathematics, as the language of science, allows us to carefully phrase 
questions concerning each of the above areas of ecology. It is through 
mathematical descriptions of ecological systems that we abstract out the basic 
principles of these systems and determine the implications of these. Ecological 
systems are enormously complex. A major advantage of mathematical ecology 
is the capability to selectively ignore much of this complexity and determine 
whether by doing so we can still explain the major patterns of life on the 
planet. Thus simple population models group together all individuals of the 
same species and follow only the total number in the population. By ignoring 
the complexity of differences in physiology, size, and age between individuals, 
the models attempt to compare the basic dynamics obtained from the model 
with observations on different species. As a next step, additional complexity, 
associated with introducing different age classes for example, is included. How 
the inclusion of such additional complexity affects the predictions of the model 
determines whether this additional complexity is necessary to answer the 
biological questions one is interested in. 

Mathematical models in physiological ecology are often compartmental in 
form, in which the organism is assumed to be composed of several different 
components. For example, many plant growth models consider leaves, stem 
and roots as different compartments. The models then make assumptions 
about how different environmental factors affect the rate of change of biomass 
or nutrients in different compartments. These models are typically framed as 
systems of differential equations with one equation for each compartment. 
Population models are used to determine the effects of different assumptions 
about the age, size, or spatial structure of a population on the dynamics of the 
population.

Mathematical approaches 

Mathematical approaches include differential equations (both ordinary 
and partial), integral equations, and matrix theory. Models for communities 
are often framed as systems of ordinary differential equations, with separate 
equations for each of the interacting populations. Additional models apply 
graph theory to elucidate the topological structure of food webs, the links 
which determine who eats who in a particular community. The above has 
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focused on the use of mathematics to formulate basic theory in ecology. There 
are also many applications of mathematical and computer models to vary 
practical questions arising from environmental problems. This includes the 
entire field of ecotoxicology, in which mathematical models predict the effects 
of environmental pollutants on populations and communities. The field of 
natural resource management uses models to help set harvest quotas for fish 
and game, based upon population models similar in form to those mentioned 
above. Conservation ecology uses models to help determine the relative 
effects of alternative recovery plans for endangered species, as well as aid in 
the design of nature preserves.

Mathematical ecology took start from works A. Lotka [3] and V. Volterra 
[4]. It accumulates big arsenal of research models of temporal regularity, 
recurrence in ecosystems. Recently models and methods of special structure 
of populations and communities research are developed. 

Traditional object of eco-mathematical modeling is phytoplankton. Its 
cynetic processes of growth are good researched qualitatively. But the 
reasons of specially-temporal structuring observed in nature are not quite 
clear. We will analyze the phenomenon “spotting quot; of special distribution, 
recurrence and also will research spatial-temporal reconstruction of specific 
plankton association under the influence of anthropogenic factors. For the 
first time mathematics description in biosystems was obtained on the model 
scraper-victim (Lotka) [3]. It is necessary to note that mathematical modeling 
don’t substitute experimental researches. Quite the contrary it stimulates the 
accumulation of real material and specifies direction of realizing experiments. 

Construction of mathematical modeling science branch needs for building 
dynamics prognosis of the real objects, for science predictions of various 
interaction consequences on the studied objects. Sometimes answers on the 
noted questions may be obtained by the way of laboratory modeling on physics, 
chemical and biological model; It is not concerned with natural ecosystems, 
experiments with they are very complicated and sometimes are not impossible.

Firstly such unit as population subject to mathematical modeling. As 
principles development and widening of knowledges in the field of population 
ecology models became more perfect and complicated. At the same time 
investigations on modeling of community of water animals and plants were 
developed starting with V. Volterra’s [4] works. With appearance of models 
realization possibility on computers the works on description by the help of 
mathematical models of ecosystems dynamics were began.

Models and methods for analysis of spatial-temporal 
structures 

Organization of ecological and biochemical systems allow to make 
decomposition of their mathematical modeling to quantitative description of 
kinetic processes of local interaction of components in space. Mathematical 
research apparatus of cynetics processes in local systems is theory of ordinary 
differential equations. Well-constructed qualitative and numerical research 
methods allow to study stable and oscillating regimes, equilibriums and others 
dynamics factors. 

Simple models of ecological processes: For examination of composite 
processes in plants varying with passage of time, the descriptive mathematical 
models such as the differential equations (or systems of the differential 
equations) are applied. The equations of models are made on the basis of the 
physical, chemical, biological laws. 

The solutions of such systems of the differential equations are functions of 
time and, therefore, can feature modifications in time of processes happening 
inside simulated objects. The models are divided on two basis- 

i) With concentrated parameters-such as ordinary differential 
equations. These models are real for exposition of processes, which do not 
depend on coordinates (focused in a point)

ii) With distributed parameters-such as differential equations if the 
form of partial derivatives. Their solutions depend both on time, and from 
coordinates of area of a solution

Introduction

Spruce budworm is a serious pest in eastern Canada and Northern 
Minnesota. The spruce budworm crawls upon and consumes the leaves of 
coniferous trees. Excessive consumption can damage and kill the host. The 
Budworm themselves be eaten primarily by birds who eat many other insects 
as well. The budworms prefer larger trees. A key factor in determining the 
spruce budworm population is the leaf surface area per tree. Larger trees have 
larger leaf surface area resulting in larger surface budworm.

The Canadians had observed that the spruce budworm population 
underwent irruptions approximately every 40 years. 

For unknown reasons, the budworm population would explode devastating 
the pineries and then return to their manageable levels. The loss of timber 
represented a significant cost to the Canadian wood products industry and 
various management techniques, pesticide application. For example, we tried 
without success.

To understand the cycles of spruce budworm population. Several 
scientists of the University of British Columbia-R. Morris [5,6], D Ludwig [7-11], 
D. Jones [12], and C.S. Holling [13,14] studied the problem in the year 1978.

This model was designed for scientists to identify the critical factors 
that affect the budworm population dynamics. To evaluate the effects of the 
budworm population on the growth and yield of the wood industry and also to 
present the loss claimed by the irruptions done by the budworms respectively.

Interaction between trees, budworms, and birds-

Here are some of the pertinent features of the system

• The leaves of the trees provide food to the budworms

• The leaves of the trees also provide coverage to the budworms; essentially 
helping them in hiding from the birds

• The birds feed on the budworms if they can find them. If the budworms 
are present in a large number the birds will make short work of them. 
However the birds have plenty of other sources of food, so they will not 
critically dependent on the budworms. This means that we can consider the 
population of the birds to be constant

The growth rate of budworm considered here does not 
act instantaneously. There is a time delay for the larva to grow 
that becomes  adults.  This  is  called  the  maturation  period. 
Other  two-point: One can modify this model to introduce lag due to the 
gestation period (i.e. the period needed by the birds to digest budworms). 
Or Regeneration period (i.e. the time taken by leaves to grow, consumed by 
budworm to grow).

The Mathematical Tools

The existence and uniqueness theorem

Consider the initial value problem

X=F(X), X(t0)=X0

where 0
nX I∈ ℜ  suppose that : n nF I Iℜ → ℜ  is C′ then, first of all, 

there exists a solution of this initial value problem and, secondly this is only 
such solution. More precisely, there emits an a>0 and a unique solution

2
0 0: ( , )X t a t a I− + → ℜ

of this differential equation satisfying the initial condition X(t0)=X0

The phase portraits or phase plane 
The phase portraits is a picture of a collection of representation solution 

curves of the system stem in 2Iℜ  which is called phase plane (Figure 1).



J Generalized Lie Theory Appl, Volume 14:3, 2020Maji D

Page 3 of 9

Figure 1. Saddle phase plane for xl=x and yl=y.

Bifurcation

Bifurcation is the study of qualitative change of dynamics. Particular 
example- let us consider the dynamics of the system x=r + x2 when r=0 

Figure 2. r=0.

when r>0

Figure 3. r>0.

When r<0 then

Figure 4. r<0.

Here the controlling parameter is r. Depending on different values of r (r>0, 
r=0, or<0) there are no find point when r=0 as depicted in Figures 2-4. There is 
only one find point when r>0 and to find r<0. Those finding point appears and 
disappeared as the values of r passes from positive (+) to negative (-) and to 
positive respectively (+), this phenomenon is well represented by the following 
Figure 5.

Figure 5. Find points.

Saddle node bifurcation

Let us consider ' ( )x fa x=  is a first order differential equation for which-

 0 0( ) 0;fa x =
 

0 0( ) 0;af x =
 

0

"
0( ) 0;af x ≠

 
0

0
0

( ) 0;fa x
x

∂
≠

∂
then this differential equation undergoes a saddle node bifurcation at a=a0. 

Limit cycle

A closed trajectory of a dynamical system is called an orbit of the system. 
The motion along the orbit is periodic. An orbit is said to be limit cycle if every 
trajectory that starts at a point closed to the orbit converge towards the orbit at 
the end as shown in Figure 6.

Figure 6. Limit cycle.

Periodic point

The point x is called fixed point for f if f (x)=x. The point x is a periodic point 
of period n if fn(x)=x. The last positive integer n for which fn(x)=x, is called the 
prime period on minimal period. 

The Spruce Budworm Model and its 
Analysis

Assumption and formulation of mathematical model

i) In absence of predation, the population satisfies the logistic growth 
(P.F. Verhulst’s model [15]).

ii) i.e (1 ) ( )dN NrN p N
dt K

= − −

iii) The effect of predators saturates at high prey density i.e. there is an 
upper limit to the rate of budworm mortality due to predation
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iv) If the spruce budworm density is low it will opt for some other prey 
which mostly lives in the other parts of the trees

So 
lim
N →∞

p(N)=B>0, 
lim
n →∞

( ) 0p N
N

=

or p(n) ≈ bN2 near holing type-III model (Figure 7).

Figure 7. Holing type-III model.
2

2 2(1 )dN N BNPN
dt K A N

∴ = − −
+

                                                        (1)

Where

r: The natural growth rate , as in the logistic model 

K: The caring capacity

D: is a measure of predation efficiency. If the birds are good at catching 
spruce budworm this number will be larger than when the birds miss the 
budworm they are attacking.

C: is the bird’s population, considered a constant in this model.

A:  is called the switching value that is the population, which predates 
begins showing increased interest in here costing budworm.

Through observation it had been observed that out of all the model 
parameters A and K are directly dependent on the average leaf surface area 
per tree. Letting the average leaf surface area then A=0.55, N=45.

As the finishing touch of this modeling denotes B=CD
2

2 2(1 )dN N BNPN
dt K A N

∴ = − −
+

                      (2)

Now here the terms N+N/(A+A+N+N ) is called a Holing type-III predation 
function. It measures how intensively the bird will select spruces budworms for 
predation. The idea is that birds are lazy, they will go where food density is high 
allowing them to consume much while expending minimal energy. If the spruce 
budworms density is low, birds will opt for some other prey which most likely 
are present in other parts of trees.

Nondimentionalization

It is often convenient to change variables when analyzing models. In this 
case the model equation.

2

2 2(1 )dN N BNrN
dt K A N

= − −
+

contains four parameters, we introduce new variables

Nu
A

= and Bt
A

τ =

then from (2)
2

2 2

1 (1 )dN rN N N
B dt B K A N

= − −
+

( )
( )

2 2

2 21
1

d N A Ar N N A N A
d Bt A B A K A N A

 
⇒ = − −  + 

Now this implies

2

21
1

du Ar u uu
d B K A uτ

 
= − −  + 

                   (3)

We assume Ar R
B

= and Q K A= are called “lumped constants” then 

equation (3) reduces to

( ) 21
1

du uuu R Qd uτ
 = − − + 

                      (4)

We are not required to show this, but we might want to do computation 
any away.

In the above formulation u, τ, R and Q are all dimensionless quantities

Where u: Represents the population of spruce budworm

τ: Represents time

R: Represents the reproduction rate

Q: Represents the caring capacity

The advantages of reformulation in (4) are two-fold

(i) First the number of parameters required are reduced to two from four 
parameter

(ii) Secondly, now both parameters appear in the expression R, which is 

linear in ‘u ‘and more complicated expression 21
u

u+ is parameter free

Steady state

Analytical approaches: Now from the equation (4) we see that the steady 
state are detune by

( )1 0
1

uuu R Q u
 − − = + 

                     
 (5) 

This implies that the trivial equilibrium is u=0. The remaining equilibrium 
points are calculated by setting the remaining factors of equation (5) equal to 
zero

i.e ( ) 21 0
1

uuR Q u
− − =

+                       
 (6)

( ) 21
1

uuR Q u
− −

+

( ) 21 (1 u )uR uQ⇒ − + =

( ) ( ) 21 1 u 0u uR R uQ Q⇒ − + + − =

3 2 0RuR u Ru u RQ Q
⇒ − + − − + =

( ){ }3 2 1 0QR u Qu u QQ R⇒ − − + + − =

( )3 2 1 0Qu Qu u QR⇒ − + + − =                     (7)

which is in the form of u3+Qu2+Bu+C=0

here the roots of these equations are 

1 2
1

1 2
2

1 2
3

2 sin

2 sin( 3 )

2 sin( 3 )

u a
u a
u a

α φ

α π φ

α π φ

= −


= − + − 
= − − 

                      (8)

Where ( ) { }3
21 sin / 23

τφ β α =   
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6 6π φ π− ≤ ≤

A=3a= 1 3 3a Q a Q= − ⇒ = −

( )1 3 1b Q R= + and C=-Q
2a bα = − and 32 3a ab cβ = − +  (9)

Existence of steady state by graphical approaches: This eventually 
leads to a rather intractable solution of a cubic polynomial. So an alternating 
strategy, that of determining where

( ) 21
1

uR u Q
u

− =
+

                  (10)

The analysis continues by plotting graphs of the left and right hand sides 
of equation (10) versus ‘u’ and looking for point of intersection.

The following Figure 8 shows the intersection set for two values of R and 
one value of u.

Figure 8. Predation and growth curves plotted vs. budworm density.

Now the positive equilibrium is given by the intersection of straight line 
and the curves.

We have plotted the straight line, the left hand side of equation (10) and 
the function of right hand side of equation (10) the existence of one, three or 
again, one solution as R increases to find Q as in the Figure 8 or also happen 
for affixed R and roaring Q . When R is in opposite range, which depends on Q.

Stability analysis

For trivial equilibrium: We get the trivial equilibrium point u=0. We 
analyze whether it is stable or unstable. From equation (2) we have

( ) 21
1

du uuu R Qd uτ
 = − − + 

                       (11)

Let us consider ( ) ( )u u Vτ τ= +                  (12)
dV du
d dτ τ

=

By putting the values of equation (12) in equation (11) we get

( )
2dv u uvRu Rv u v

d Q Qτ
= − − + − +                    (13)

After linearizing to neglect the higher and second order terms we get

( )
2dv u uvRu Rv u v

d Q Qτ
= − − + − +

Substituting 0u = then we get 
dv Rv v
dτ

= −

( 1)dv v R
dτ

= −

( 1)dV R d
V

τ⇒ = −

Consider (R-1)=P

Stability of non-trivial equilibrium: As shown in Figure 9. We see that 
u=0, u=u2 are line only unstable. Since 

2.0 0f at u and u
u
∂

> =
∂

. Where 

( ) 2

2

( ; , ) 1
1

uf u r q ru u q
u

= − −
+

 

Figure 9. There one 3 non-trivial steady state with f (u; r; q) are typically shown.

Where u=0, u=u3 are stable steady state as shown in Figure 10. Since at 

this 1 2.0 ,f at u u u u
u
∂

< = =
∂

.

There is a domain in R, Q parameter space where the root of equation (10) 
exists (by the existence and uniqueness the Orem ).

 

Figure 10. Stable steady state.

The Bifurcation Point and Hysteresis  
Effect

The bifurcation points

We have seen that sometimes when we increase R a new equilibrium 
point suddenly appears and Min divides into two, or two equilibrium point 
coalesces into one and then disappear. The point (R, Q) for which this occurs 
are called bifurcation point.

At the bifurcation points the graphs of the functions ( )1R u Q− and 
21u u+ intersect tangentially the curve intersecting means that

( ) 21
1

uR u Q
u

− =
+

                     (14)

In fact the curve here shows same tangent that means

( ){ } 21
1

d d uR u Q
du du u

 − =  + 
                (15)

from equation (15) we have
2

2

1
(1 )

uR
Q u

−
− =

+
 ; now again from equation (14) we get

2

2 2 2

(1 )
(1 ) 1

u u uR
u u

+
⇒ + =

+ +
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2

2 2 2

(1 )
(1 ) 1

u u uR
u u

+
⇒ + =

+ +

3

2 2

3

2

2
(1 )

2
1

uR
u
uand Q

u


⇒ + + 


= 

− 

                      (16)

Now from the bifurcation point we get Q K A=  and ArR
B

=  and 
A=0.55, N=45.

Q ≈ 8 and R ≈ rS/2B.

When Q=8, the curve is

2

8
(8 )(1 )

uR
u u

=
− +

These are the saddle node bifurcation point that are called a1(L)a2

 
Figure 11. Parameter domain for the number of positive steady states for 
the budworm model. The boundary curves are given parametrically by 

3 3

2 2

2 2( ) , ( )
(1 ) ( 1)

u ur u q u
u u

= =
+ −

. 

Hysteresis effect

This model exhibit a hysterics effect suppose we have a fixed Q say, and 
R increases from zero along the path ABCD in the Figure 11. We see that if 
u1=0 at R=0 the u1 equilibrium simply increases monotonically with R until C 
as shown in Figure 11 in reaching for a large R, this steady state disappears 
and the equilibrium value jumps to u3. If we now reduce R again the equilibrium 
state is the u3. One and it remains so until R reaches the lower critical value, 
where there is again only one steady state. In other words as R increases 
along ABC there is a discontinuous jumps down at B.

The example of cusp catastrophe, which is illustrated schematically in 
Figure 12.

 

Figure 12. Cusp catastrophe for the equilibrium states in the (Unsteady state r, α) 
parameter space. As r increase from A, the path is ABCCD and as r decreases from D, 
the path is DCBBA. The projection of this surface onto r, α plane is given in Figure 11.

The parameters from field observation are such that there are possible 
steady state for the population. The smaller steady state u1 is the refuge 

equilibrium and u3 is the out brake equilibrium.

The Spruce Budworm with Delay and 
without Delay and Numerical Results

Delay Model

One of the deficiencies of single species population model like (2) is that 
the birth rate considers being act instant outlay whereas there may be a time 
delay to take into account of the time to reach maturity. The finite gestation 
period and so on we can incorporate such delays by considering delay 
differential equation model of the forms.

( ( ), ( ))dN f N t N t T
dt

= −                      (17)

Where T>0, the delay parameter one such model has been used as an 
extension of the logistic growth model namely the delay differential equation.

( )( ) 1dN N t TrN t
dt K

− = −  
                   (18)

Where r, K, T are positive constant. This say that the regulatory effect 
depends on the population at an earlier time t-T rather than at t. This equation 
is itself a model for a delay effect which should really in an intrigue differential 
equation. Thus more accurate model than (2) is the example of convolution 
type model.

( ) ( ) ( )11
tdN rn t K W t S N S dS

dt
−

−∞

 
= − − 

 
∫                   (19)

Where W (t) is a Wright function, which says how much emphasis, should 
be given to the size of the population at earlier times to determine the present 
effect.

 

Figure 13. Typical weight function w(t) for an integrated delay effect or growth limation 
for delay model.

On resource availability partially W(t) will tend to zero for large negative 
and positive t and will probably have a maximum at same reprehensive time 
T-typically W(t) is an illustrated in Figure 13. If W(t) in sharper in sense that the 
region around T is narrower are larger than in the limit or can think of W(t) an 
approximately the direct function S(T-t).

Where 

( ) ( ) ( )t f f t dt f Tδ
∞

−∞

− =∫
Now equation (9) in this case reduces to 

( ) ( )
t

t T S N S dSδ
−∞

− −∫
=N (t-T)

The character of the solution of equation (18) and the type of boundary 
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conditions required are quite similar to those of logistic equation. Even with 
seemingly innocuous equation (18) the solutions in general have to be found 
numerically N(t) for –T ≤ T  0. We can however get some qualitative impression 
of the kind of the solution of equation (18) which are possible by hearistic 
reasoning.

 

Figure 14. Schematize periodic solution of the delay equation of population model 2.

Rater now to the above Figure 14 and support that for some

t=t1, N(t1)=K and for some t<t1

N(t-T)<K (20) 

Thus from the equation 18 we have

N(t-T)<K

( ) 1

( )1 0

N t T
K
N t T

K

−
⇒ <

−
⇒ − >

0dN
dt

⇒ <                   (21)

So N(t) at t1 is still increasing.

When t= t1+T, N(f-T)=N(f1)=K and so

0dN
dt

⇒ <                   (22)

For t1+T<t<t2, N(t-T)>K

0dN
dt

⇒ <                       (23)

and N(t) decreases until t=t2+T since 0dN
dt

= again because  
N(t2+T-T)=N(t2)=K (24)

Therefore this is a probability of oscillatory behaviors for example, with 
linear delay equation

1 ( )
2

dN T N t T
dt T

= −

1N(t) Acos
2
Tt
T

⇒ =                                   (25)

Which is periodic in time.

The effect of delay of the spruce budworm

The spruce budworm model by delay effects become
2

2 2

( )1dN N f BNrN
dt K A N

τ− = − −  + 

Which is in the form of

( )dN f N
dt

=

Where 
2

2 2

(t )( ) 1 N BNf N rN
K A N
τ− = − −  + 

                   (26)

Now we simulate this model numerically. We solve this numerically by 
using mat lab programming.

Mat lab programming (Figure 15): Function y dot=DIPAK (t, y)

global r, k, A, B log 

y dot=( ) ( ) ( ) ( )1 1 (1) (1) (1) (1)
y lagr y B y yk A A y y

τ  × × − − × ×   × + ×    

global r, k, A, B log τ

r=0.2; 
k=0.8; 
A=0.1; 
B=0.01; 
lag τ=; 
ts=[0, 1000 ]; 
Z0 = [0.9]; 
[ t, z ] = ode 40 (‘DIPAK’, ts, Z0); 
plot (t, y);

Figure 15. 1D model with delay=8.

Simulation of spruce budworm

Simulate the Spruce budworm model by using Mat lab (Figures 16-18). 
Programming- 
Function y dot=DIPAK (f, y); 
Global r, k, A, B 

‘y dot= ( ) ( ) ( ) ( )
( ) ( )( )

1 1& 1 1 & 1 &
& 1 1

y yr y B yK A A y y
 − − −  + + 

 

We write the main code as follows 
‘r=0.5; 
K=0.8; 
A=0.1; 
B=0.5; 
fs=[0, 40] 
y0= [10] 
[t, z]=ode 45 [‘DIPAK’, ts=0] 
plot (f , z);

 
Figure 16. 1D model with delay=1.

ts=[0, 100], r=0.2, k=0.8
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Figure 17. 1D Spruce-budworm model simulation.

ts=[0, 200], r=0.5, k=0.8

 

Figure 18. 1D Simulation of the spruce-budworm model.

The numerical solution of spruce budworm problems

|*Solution of spruce budworm model*|

# include<stdio .h>

# include<math .h>

# include<conio.h>

float r, k, a1, b1

Float function (float x)

answer=1/ ( ( )( ) ( ) ( )1 1 / 1 1xr x b x x a a x xk× × − − × × × + ×

return (answer);

}

void main ( )

{

int n;

float b, a, h, x, s1, s2, s4, intregal;

printf (“ Enter the value of r\n”);

scanf (“%f “ , and r);

printf (“Enter the value of k\n”);

scanf (“%f”, and k );

printf (“Enter the value of a1\n”);

scanf (“%f’, and a1);

printf (“Enter the value of b1\n”);

scanf (“%f”, and b1);

printf (“Enter the value of upper limit\n”);

scanf (“%f”, and b);

printf (“Enter the value of lower limit\n”);

scanf (“%f”, and a);

h=(b-a)/n;

s1=function (a)+function (b);

s2=0;

x=a;

While (x<b)

{

h=x+2 ´ h;

s4=s4+function(x);

}

integral = (s1+4 ´ s4+s2) ´ ( )3.0
h ;

printf (“our integral value is %f”, integral);

printf (“our s1 value is %f”, s1);

printf (“our s1 value is %f”, s4);  

printf (“our s1 value is %f”, s2);

printf (“number of subinterval %d”, n);

}

Output

‘r=0.5

k=0.8

a1=0 .5

b1=0.1

upper limit=140

lower limit=20

subinterval=n=10

our integral value is -0.040718

our s1 value is -0.00424

our s4 value is -0.0010874

our s2 value is -0.001584

Discussion and Conclusion

1. When the forest is young, so s is small, and R<a1 , then there is only 
one small positive equilibrium point which sink, so the budworm population is 
controlled by birds, the equilibrium is kept at a low level, which we call refuge

2.  When the forest grows, R passes a1, then there are three positive 
equilibrium points, two of them are sinks, the refuge and a much larger one, 
which we call out break level. Outbreak level of budworm is dangerous for the 
forest. But since when the forest grows, the budworm is kept at refuge level, 
then it can jump to the outbreak level. Thus the forest is still in good shape 
since budworm is stalled at low level

3. But when the forest grows such that R passes a2, there is only one 
equilibrium point left, which is the outbreak level. So the budworm population 
has a sudden increase in a short time we say an outbreak occurs

4.  When an outbreak occurs the budworm population is in a height 
level, then the forest growth cannot keep up with the budworm, so R in fact 



J Generalized Lie Theory Appl, Volume 14:3, 2020Maji D

Page 9 of 9

decreases but when R decreases, the budworm population cannot drop back 
to refuge level, which is called hysteresis effect

5. The fir tree forest are defoliated by budworm, and the forest is taken 
over by birch trees but they are less efficient at using nutrients and eventually 
the fir trees come back, but this recovery will take about 50-100 years

6.  In general view, our results suggest that predator maturation delay 
and functional response are potentially the key causative factors generating 
population cycles. They appear to determine the cycle period and amplitude. 
Maturation delay has the strongest effect on the period whereas the functional 
response has the largest effect on amplitude and existence of the cycle. In 
particular, maturation periods that are too long or too short inhibit population 
cycles, as does a Holling Type I functional response

References
1. May Mccredie, Robert. “Stability and Complexity in Model Ecosystems (Second 

Edition), Princeton University Press,” 1975.

2. May Mccredie, Robert. “The Croonian Lecture, 1985-When Two and Two do 
not make Four: Nonlinear Phenomena in Ecology.” Proc R Soc Lond B 228 
(1986): 241-266.

3. Lotka, Alfred J. “Elements of Physical Biology.” Williams and Wilkins, Baltimore, 
Maryland, (1925).

4. Volterra, Vito. “Fluctuations in the Abundance of a Species Considered 
Mathematically.” Nature 118 (1926): 558-560.

5. Morris, RF. “The Dynamics of Epidemic Spruce Budworm Populations.” 
Memoirs of the Entomological Society of Canada. 95 (1963): 1-12.

6. Morris, RF, WF Cheshire, CA Miller and DG Mott. “The Numerical Response of 
Avian and Mammalian Predators during a Gradation of the Spruce Budworm.” 
Ecology 39 (1958): 487-494.

7. Ludwig, Donald. “Forest Management Strategies that Account for Short Term 
and Long-Term Consequences.” Can J For Res 23 (2011): 563-572.

8. Ludwig, Donald. “Uncertainty and Fisheries Management.” Lecture notes in 
Biomathematics. Springer-Verlag, (1994).

9. Ludwig, Donald. “A Theory of Sustainable Harvesting.” SIAM J Appl Math 52 
(1995): 564-575.

10. Ludwig, Donald. “The Distribution of Population Survival Times.” Am Nat 147 
(1996): 506-526.

11. Ludwig, Donald, Brian Walker and Crawford S Holling. “Sustainability, Stability 
and Resilience.” Conserv Ecol 1 (1997): 1-7.

12. Jones, DD. “The Application of Catastrophe Theory to Ecological Systems.” 
IIASA Research Report. IIASA, Laxenburg, Austria, 1975.

13. Holling, CS. “The Components of Predation as Revealed by a Study of Small 
Mammal Predation on the European Pine Sawfly.” Can Entomol 91 (1959): 293-
320.

14. Holling, CS. “Resilience and Stability of Ecological Systems.” Annual Review of 
Ecology and Systematics 4 (1973): 1-23.

15. Verhulst, PF. “Notice sur la loi que al population suit dans son accroissement.” 
Corr Math Et Phys 10 (1838): 113-121

How to cite this article: Maji, Dipak. “Spruce Budworm Model with and 
without Delay.” J Generalized Lie Theory Appl 14 (2020): 304. doi: 10.37421/
GLTA.2020.14.304.


