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Introduction
Asthma is a severe disease that inflames and narrows the airways, 

causing difficulty in breathing. The primary cause of asthma is known 
to be sensitization to allergic and non-allergic triggers. Allergic triggers 
can be mould, animal dander, pollen, cockroach, and dust mites, and 
non-allergic triggers can be weather, humidity, rain/precipitation, high 
surface pressure, low solar irradiance, winds, air pollution, respiratory 
viral infections, chemicals, and certain drugs. The major risk factors for 
developing asthma are known to be a family history of asthma and/or 
allergy (eczema, allergic rhinitis); exposure, in infancy, to high levels of 
antigen such as house dust mites; and exposure to tobacco smoke or 
chemical irritants in the workplace triggers.

According to the World Health Organization, asthma is now 
a serious public health problem with over 300 million sufferers 
worldwide [1]. Over the past two decades, asthma has reached epidemic 
proportions in large areas of North America. Asthma rates have been 
increasing remarkably particularly in children where the disease occurs 
in up to 12% of all children in North America, and about twice as 
frequently in children living in poorer conditions, such as inner cities 
[2]. Asthma is a disease affecting approximately 8% of the Canadian 
population [3]. According to Statistics Canada, 10% of the Canadian 
children population have been diagnosed as having asthma (2008-
2009) and it is the major cause of hospitalization of children in Canada 
[4]. Asthma is responsible for increasing numbers and proportions 
of emergency room visits and hospitalizations, with some increase 
in deaths as well [2]. With such an impact, it is important to identify 
trends in asthma incidence that may suggest further epidemiological 
studies to identify risk factors and identify any changes in important 
factors. Trends may occur over region and the focus of our paper is 
to examine geographical variation in the number of asthma visits to 
hospital during 2000 to 2010 in the province of Manitoba, Canada.

A limited region within the study regions with a high ratio of disease 
cases is defined as a spatial cluster [5]. The identification of a cluster of 
disease can help to find potential factors associated with disease and 

lead to improved understanding of etiology. Moreover, identification 
of clusters may lead to more detailed investigations to find out the 
association between exposures and disease interventions [6].

Statistical cluster detection methods are generally classified into 
two main categories, focused and general (also called as non-focused). 
Methods for focused cluster detection are designed to identify regions 
with excess number of cases in the vicinity of potential causes (e.g., 
toxic waste site) [7, 8]. On the other hand, methods for general clusters 
are designed to identify regions with excess number of cases. Typically, 
these models adopt extra-Poisson variability in different ways [9,10,11]. 
These methods are reviewed and compared in [12].

Methods for focused cluster detection include, but are not limited 
to, circular spatial scan statistic (CSS) [13], flexible spatial scan statistic 
(FSS)[14], and Bayesian disease mapping (BYM)[9]. The methods for 
general cluster detection include the Besag and Newell (BN) [15,16] test 
and the maximizing excess events test (MEET) [17]. The aim of focused 
tests is to test the null hypothesis of no local spatial cluster, while, the 
general tests are used to detect the potential clusters in the study region. 
In other words, for the focused tests (CSS, FSS, and BYM), the goal is to 
find a cluster for a specific region of interest, and consequently the test 
statistics are designed to capture the potential cluster. For the general 
tests (BN and MEET), the goal is to find any significant cluster in the 
study region without specifying any region of interest.

In this paper, we mainly focus on the focused cluster detection 
approaches. With advances in computational power, the Bayesian 
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Abstract
Cluster detection is an important part of spatial epidemiology because it may help suggest potential factors 

associated with disease and thus, guide further investigation of the nature of diseases. Many different methods have 
been proposed to test for disease clusters. The most popular methods for detecting spatial focused clusters are circular 
spatial scan statistic (CSS), flexible spatial scan statistic (FSS) and Bayesian disease mapping (BYM). The only latter 
approach is based on rigorous modeling approach. However, the Bayesian inference may depend on the choice of 
priors. We propose a frequentist approach, which yields to maximum likelihood estimation, to identify potential focused 
clusters. The proposed approach is based on the recent introduction of the method of data cloning. We can also provide 
the prediction (and prediction interval) for relative risk values. The advantages of data cloning approach are that the 
answers are independent of the choice of priors and non-estimable parameters are flagged automatically. We illustrate 
the proposed approach, and compare with aforementioned approaches, by analyzing a dataset of childhood asthma 
visits to hospital in the province of Manitoba, Canada, during 2000-2010. Our results showed that the potential clusters 
are mainly located in the north-central part of the province.
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regions K to be included in the cluster. Let : ( = 1,..., )i jS j J  denote the 
window composed by the (j-1)-th nearest neighbours to region i. The 
set of all windows to be scanned by the circular spatial scan statistic is 

1 := { ; = 1,..., ; = 1,..., }.i jS S i m j J  For each circle, a likelihood ratio statistic 
is computed based on the number of observed and expected cases 
within and outside the circle. Let 0L  and ( = 1,..., )iL i m be likelihood 
under the null and alternative hypothesis, where the null hypothesis 
is no cluster in region i and the alternative hypothesis is a cluster in 
region i based on its j-th nearest neighbours. Then the likelihood ratio 
statistic is given by 

0

= ( ) ( ) ( > ),max
−−

−
C N Ci i ii i

i i
i i i

L C N C I C E
L E N E

		                (1)

where Ci and Ei denote the observed and expected number of cases in a 
circle, respectively, and ( )− iN C  and ( )− iN E  denote the observed and 
expected number of cases outside the circle, respectively. Note that the 
indicator function ( )⋅I  is equal to one when >i iC E  and 0 elsewhere.

The circles with the highest likelihood ratio values are identified as 
potential clusters. We can implement this method using SaTScan [21] 
or FleXScan [22] software. In general, the K is chosen to include at most 
50% of population at risk. We used K = 15, the FleXScan default, and 
since our example uses aggregate data, the region centroid had to be 
included in the radius of the circle for the region to be part of the circle.

Flexible spatial scan statistic (FSS)

This method is similar to the method of CSS; however, the 
detected cluster is allowed to be flexible in shape while at the same 
time the cluster is confined to a relatively small neighbourhood of 
each region. The flexible scan statistic imposes an irregularly shaped 
window S on each region by connecting its adjacent regions. For each 
region i, the set of irregularly shaped windows with length j, the j 
connected regions including i, can move from 1 to the pre-specified 
maximum J. The connected regions are restricted to the subsets of 
the set of regions i  and (J-1)-th nearest neighbours to the region i, 
where J is a pre-specified maximum length of cluster. The set of all 
windows to be scanned by the flexible spatial scan statistic is then 

2 : ( )= { ; = 1,..., ; = 1,..., ; = 1,..., }.i j k ijS S i m j J k k  Note that the circular 
spatial scan statistic considers J circles for a given region i; however, 
the flexible spatial scan statistic considers J circles in addition to the 
all sets of connected regions whose centroids are located within the 
J-th largest concentric circle. As a consequence, the size of S2 is much 
larger than S1 which is at most mJ. Under the Poisson assumption, the 
test statistic for the flexible spatial scan statistic based on the likelihood 
ratio test is obtained by (1), where the circle defined in (1) now refers 
to the S2 rather than S1. We implement this method with the FleXScan 
software, using the default setting J=15. Similar to the circular spatial 
scan statistic, the circles with the highest likelihood ratio values are 
identified as potential clusters.

Bayesian disease mapping (BYM)

A Bayesian approach using Markov chain Monte Carlo (MCMC) 
can also be used for cluster detection [9, 10, 23, 24]. This approach was 
first used by Besag et al. (BYM) [9] and the model consists of two parts. 
In the first part, the cases are assumed to follow a Poisson distribution 
with an area specific parameter :θi iE  

( ),θi i iC Poisson E

where Ci and  Ei are the observed and expected number of cases in 
region i respectively. The second part of the model is obtained by 

approach especially the non-informative Bayesian approach has 
become quite popular as a modeling approach to identify the potential 
clusters in a research study. However, the inference may depend on the 
choice of priors.

Recently, Lele et al. [18] introduced an alternative approach, called 
data cloning (DC), to compute the maximum likelihood estimates 
(MLE) and their standard errors for general hierarchical models. 
Lele et al. [19] also described an approach to compute prediction and 
prediction intervals for the random effects. The DC approach, thus, 
is well suited to address the issues in spatial focused cluster detection 
using the frequentist paradigm. The other advantages of DC method 
are that the answers are invariant to the choice of priors and non-
estimable parameters are flagged automatically.

In this paper, we propose a frequentist approach via data cloning 
for identifying the potential focused clusters. In particular, we evaluate 
the performance of the proposed approach, and compare with other 
focused cluster detection approaches such as CSS, FSS and BYM, by 
applying to a real dataset of childhood asthma visits to hospital in the 
province of Manitoba, Canada, during 2000-2010.

Materials and Methods
Study subjects

The study was based on a yearly dataset of asthma visits to hospital 
by children (age ≤ 20) in the Canadian province of Manitoba during the 
2000-2010 fiscal years (see http://atlas.nrcan.gc.ca/site/english/maps/
reference/national/can_political_e/map.pdf for a map of Canada). The 
population of Manitoba was stable during the study period from 1.15 
million in 2000 to 1.20 million in 2010, with an average population of 
children of around 336,000. The province consisted of eleven Regional 
Health Authorities that were responsible for the delivery of health 
care services. These eleven regions were further sub-divided into 56 
Regional Health Authorities Districts (RHAD) and these RHAD are 
the geographic unit used in our model and all data were linked to these 
geographic boundaries. For simplicity, we call these regions 1,2,...,56. 
In addition, a population-based centroid was provided for each RHAD 
and these centroids were not necessarily geographic centres. The data 
was aggregated over the study period 2000-2010.

The number of asthma visits totaled 14,691 over the study period 
with mean and median number of yearly cases per region of 26 and 
17 (range 3 to 422), respectively. The region children population sizes 
varied from 319 to 173,400, with mean and median numbers of 5,998 
and 2,432, respectively. The largest population was in region 56, while 
region 42 had the least population.

The key data requirements for the focused methods are the number 
of cases and the number of expected cases or the population size for 
each region. When the expected number of disease cases varies by 
important strata, such as year and gender, adjustments can be made. 
The expected number of disease cases is then adjusted by year (1-10) 
and gender (male, female). We first briefly review the spatial focused 
clusters such as CSS, FSS, and BYM, and then explain the proposed 
approach of data cloning.

Circular spatial scan statistic (CSS)

The spatial scan statistic has been used in a wide range of 
applications within the field of epidemiology [20]. The circular spatial 
scan statistic imposes a circular window  S on each region, and for 
any of those regions, the radius of the circle varies from zero to a pre-
specified maximum distance d or a pre-specified maximum number of 
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log( ) = ,θ µ η+i i

where θi  is the relative risk (RR) in region i, µ is the overall mean ratio 
over region and ηi  represents spatially correlated random effects. We 
use conditionally autoregressive (CAR) model to capture the spatial 
random effects ηi . A variety of CAR models may also be used by 
taking a collection of mutually compatible conditional distributions  

( | ), = 1,...,η η−i ip i m  where = { : , }η η− ≠ ∈∂i j ij i j  and ∂i  refers a set of 
neighbours for the i-th region [9]. We consider the following general 
model for the spatial effects ηi  

1= ( ,..., ) (0, ),ηη η η ′ Σm N 				                    (2)
2 1= ( ) ,η η ησ λ −Σ −mI D P

where P is a m×m diagonal matrix with elements = 1/ ;ii iP e  D is a 
m×m  matrix with elements  1/2= ( / )ij j iD e e  if region i and j are adjacent 
and  = 0ijD  otherwise; 2

ησ  is the spatial dispersion parameter; ηλ  

measures the spatial autocorrelation, ,ηλ λ λ≤ ≤min max  where 1
minλ−  and 

1λ−
max  are the smallest and largest eigenvalues of 1/2 1/2 ;−P DP  and mI  is an 

identity matrix of dimension m (see [25] for details of this proper CAR 
model). The parameters can be then estimated within the Bayesian 
framework (MCMC) using vague priors for the parameters. This 
produces the posterior distributions for the parameters in the model.

A cluster is defined as a region where the estimated relative risk is 
significantly larger than 2 (in terms of their credibility sets) [26]. To 
implement this method, we used WinBUGS software [25] to compute 
the relative risk values.

Frequentist approach using data cloning for disease mapping 
(DC)

The DC method uses the Bayesian computational approach for 
frequentist purposes. In DC, the observations y 1= ( ,..., )′my y  is repeated 

39

41

32

26

20

40

14

35

29

37

36

34

38

10
50

55

18
53

12
2

51

21

4

28

9

27

3 23

54
6

52

31

24

30

33

5

87

1

22 15

13
11

43
17

25

1916

56

42

48 43

48
47

49

45 46
44

39

41

32

26

20

40

14

35

29

37

36

34

38

10
50

55

18
53

12
2

51

21

4

28

9

27

3 23

54
6

52

31

24

30

33

5

87

1

22 15

13
11

43
17

25

1916

56

42

48 43

48
47

49

45 46
44

CSS FSS

39

41

32

26

20

40

14

35

29

37

36

34

38

10
50

55

18
53

12
2

51

21

4

28

9

27

3 23

54
6

52

31

24

30

33

5

87

1

22 15

13
11

43
17

25

1916

56

42

48 43

48
47

49

45 46
44

39

41

32

26

20

40

14

35

29

37

36

34

38

10
50

55

18
53

12
2

51

21

4

28

9

27

3 23

54
6

52

31

24

30

33

5

87

1

22 15

13
11

43
17

25

1916

56

42

48 43

48
47

49

45 46
44

BYM DC
Figure 1: Regional health authorities districts (RHAD) identified as potential clusters (shaded regions) for methods CSS, FSS, BYM, and DC.
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independently by L different individuals and all these individuals obtain 
exactly the same set of observations y which are called ( ) = ( , ,..., ).Ly y y y  
The posterior distribution of 2= ( , , )η ηα µ λ σ ′  conditional on the data y( )L  
is then given by 

( )
( )

{ ( | )} ( )( | ) = ,
( )

α π απ α
L

L
L L

L yy
C y

			                  (3)

where ( )π α  is prior distribution on the parameter space and 
( )( ) = { ( | )} ( )α π α α∫L LC y L y d  is the normalizing constant. The expression  

{ ( | )}α LL y  is the likelihood for L copies of the original data. Lele et al. 
[18, 19] showed that, for L  large enough, ( )( | )π α L

L y  converges to a 
multivariate Normal distribution with mean equal to the MLE of the 
model parameters and variance-covariance matrix equal to 1/ L  times 
the inverse of the Fisher information matrix for the MLE. This factor 
of 1/ L  adjusts for the fact that the cloned dataset has L times more 
information than the original dataset. Hence, this distribution is nearly 
degenerated at the MLE α for large L. Moreover, the sample mean 
vector of the generated random numbers from (3) provides the MLE 
of the model parameters, and L times their sample variance-covariance 
matrix is an estimate of the asymptotic variance-covariance matrix for 
the MLE α. Lele et al. [19] also provided various checks to determine 
the adequate number of clones L.

Prediction of relative risk: Prediction of relative risk (random 
effects), particularly from the frequentist viewpoint, is usually 
problematic. A naive approach, when α is estimated using the data, is 
to use ˆ(RR| , )π αy  where 1RR= (RR ,...,RR ) .′m  However, this approach 
does not take into account the variability introduced by the model 
parameters estimate. An approach that has been suggested in the 
literature (e.g., Hamilton [27]) to take into account the variation of the 
estimator is to use the density: 

1
1 2 ˆ ˆ( |RR, ) (RR| ) ( , , ( ))

(RR| ) = ,
( )

α α φ α α α α
π

−∫ f y g I d
y

C y
	                 (4)

where 2
1 2= , = ( , ) , ( )η ηα µ α λ σ ′ ⋅f  and ( )⋅g  are appropriate distributions, 

and 2(., , )φ ξ σ  denotes Normal density with mean ξ and variance σ2, 
which are equal to the MLE and the inverse of the Fisher information 
matrix here. In this paper, we obtain prediction of the RR using the 
density in equation (4) along with MCMC sampling. Similar to the 
Bayesian approach, a cluster is defined as a region where the estimated 
relative risk is significantly larger than 2 (in terms of their prediction 
intervals). We used the package of dclone [28] in software R [29] to 
compute the relative risk values.

Note that these focused methods have different assumptions. While 
the CSS and FSS methods are distribution free, the number of cases in 
BYM and DC methods is assumed to follow a Poisson distribution. We 
also need to specify the number of regions to be included in the cluster 
for the CSS and FSS methods while it is not required for the BYM and 
DC methods.

Results

We have provided the comparison of methods CSS, FSS, BYM, 
and DC to detect the potential clusters in our childhood asthma visits 
to hospital for the period of 10 years (2000-2010) in the province of 
Manitoba, Canada.

In Figure 1, the areas that are statistically significant (potential 
clusters) are shown for each method separately. The summary of 
the results is presented in Table 1. The order of significant regions 

of different methods is also reported in Table 1. More precisely, the 
regions are ordered based on which one is more significant to be as a 
cluster. For instance, 1 in the DC method means that the region 37 is 
most likely to constitute a significant cluster, while 6 means that the 
region 26 is least likely to be a significant cluster. Hence, it is easy to see 
which region has more contribution to constitute a cluster.

It seems that the methods CSS and FSS identified somehow similar 
regions as potential clusters with 13 regions for the FSS method 
and 14 regions for the CSS method. In particular, the CSS method 
detected the regions {10,14,20,21,26,31,33,34,35,36,37,38,40,41}  
as potential clusters while the FSS method identified the regions 
{25,26,29,32,33,34,35,36,37,38,39,40,41} as potential clusters. The 
main reason for different results between CSS and FSS is due to non-
circular shape of some regions in the province of Manitoba, where 
the FSS method had the ability to identify those non-circular shaped 
regions as potential clusters compared to the CSS method.

The DC method detected the regions {26,28,34,36,37,41}  as 
potential clusters. The same regions were also identified as potential 
clusters for the BYM method but with different order of significance 
(e.g., regions 28 and 36). However, the BYM approach may depend 
on the choice of priors and we may get different results with using 
different priors; noting that we used gamma distribution for the inverse 
of variance component with shape and scale parameter 0.001 and 
Normal distribution with mean 0 and variance 106 for the fixed effect. 
It is worthwhile to mention that regions identified as potential clusters 
by the methods DC and BYM were also detected by methods CSS and 
FSS except for the region 28.

Discussion
The most popular approaches for detecting spatial focused clusters 

are distribution free methods such as CSS and FSS. The Bayesian 
method (BYM) which is based on a Poisson model is also popular as a 

Methods
Region Ci Ei CSS FSS BYM DC

10 273 121 1 - - -
14 156 80 1 - - -
20 362 229 1 - - -
21 292 138 1 - - -
25 296 170 - 1 - -
26 359 124 1 1 6 6
28 356 105 - - 5 4
29 394 213 - 1 - -

31 333 231 1 - - -

32 135 48 - 1 - -
33 73 23 1 1 - -
34 218 52 1 1 3 3
35 257 96 1 1 - -
36 327 91 1 1 4 5
37 624 167 1 1 1 1
38 49 16 1 1 - -
39 117 33 - 1 - -
40 240 80 1 1 - -
41 268 70 1 1 2 2

Ci and Ei are observed and expected number of cases in region i; CSS, FSS, BYM, 
and DC are circular spatial scan statistic, flexible spatial scan statistic, Bayesian 
disease mapping, and the method of data cloning, respectively. 

Table 1: The order of significant regions for methods CSS, FSS, BYM, and DC.
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This article was originally published in a special issue, Medical statistics: 
Clinical and experimental research handled by Editor(s). Dr. Herbert Pang, 
Duke University, USA.

method for identifying spatial focused clusters. However, the Bayesian 
inference may depend on the choice of priors.

Using DC, we have proposed a frequentist approach which 
identifies potential clusters with high ratio of disease. The advantages 
of DC approach are that the answers are independent of the choice 
of priors and non-estimable parameters are also flagged automatically. 
We applied the proposed approach to a real dataset of childhood 
asthma visits to hospital in the province of Manitoba, Canada. We also 
compared the proposed approach with other methods such as CSS, FSS, 
and BYM. Two methods CSS and FSS detected some different regions 
as potential clusters due to non-circular shape of some regions in the 
province of Manitoba. Two methods BYM and DC identified lower 
number of regions combined as a potential cluster compared to CSS 
and FSS methods. Although, the results of DC and BYM were similar 
for detecting potential clusters in our analysis, however, one may get 
different results for BYM, unlike DC, with using different priors. 

In the BYM and DC approaches, we conservatively defined a region 
as a cluster if the credibility set of the estimated relative risk was larger 
than two. One may define different decision rule where the estimated 
relative risk would be larger or smaller than two [30].

We adjusted our expected number of asthma cases by two 
important factors gender and year. The proposed method can be also 
easily extended to include some covariates directly, which may be 
required for some applications.

In general, the potential clusters are located in the north-central 
part of the province. These findings may represent real increases or may 
be indicative of different distributions of important covariates, such 
as demographic characteristics of the population of the north-central 
region, that are unmeasured and unadjusted for in our modeling. 
Further investigation is needed to explore these findings. 
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