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Abstract
AlN-TiB2 composites ceramics were prepared by Spark Plasma Sintering (SPS). The effects of Nb2O5, Y2O3 and 

ZrO2 additives on mechanical properties and densification were investigated. X-ray diffraction was used to identify the 
phases in the resulting composites. Good densification results were obtained using the different sintering additives. 
The mechanical properties such as hardness and fracture toughness were obtained using a Vickers indentation, the 
maximum values of hardness and fracture toughness were 13.9 ± 0.4 GPa for A4TN (90.48% AlN-4.76% TiB2-4.76% 
Nb2O5. wt% of composite ceramic) and 5.8 ± 0.9 MPa.m1/2 for A23TZ (71.43%AlN-23.81%TiB2-4.76%ZrO2 wt% of 
composite ceramic).
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Introduction
Researchers specializing is materials science continue developing 

improved and more versatile ceramics for advanced technological 
applications. The high thermal conductivity and corrosion resistance 
of aluminium nitride (AlN) in combination with the hardness and 
electrical conductivity of titanium diboride (TiB2) allows us to consider 
the composite AlN-TiB2 as a promising wear and corrosion resistant 
ceramics, besides they can be used as the thermocouple protection tube 
[1,2].

Aluminium Nitride (AlN) ceramics have attracted interest due 
to their high thermal conductivity and good electrical properties. 
Their thermal conductivity varies between 80 and 260 Wm-1K-1. They 
exhibit good electrical insulation and have a low dielectric constant 
(9 at 1 MHz), high thermal conductivity and low thermal expansion 
coefficient (4.4 x 10-6 K-1) [3]. AlN-based materials have a wide field of 
applications in structural and refractory areas [4].

Titanium diboride (TiB2) is a material of growing interest 
among various ultra-high temperature ceramics (UHTC) due to its 
characteristic high melting point (~3225°C), low density (4.5 g/cm3), 
high hardness (25 GPa), high thermal conductivity (96 W/m/K), and 
electrical conductivity (22 x 106 Ω-1.cm-1). Low thermal expansion 
coefficient (7.4 x 10-6 K-1) and high wear resistance [5]. These excellent 
properties makes it attractive for many high-temperature structural 
applications [6]. The densification of monolithic TiB2 requires 
extremely high sintering temperatures of up to ~2100°C and long 
holding times due to the predominance of covalent bonding and the 
low self-diffusion coefficient. Such extreme processing conditions 
result in exaggerated grain growth of the as-sintered materials, leading 
to degradation of mechanical properties [7,8].

One way to sinter these materials is through an advanced sintering 
method such as Spark Plasma Sintering (SPS). During the SPS process, 
by virtue of special heat effects such as joule heat, electromagnetic 
field and electrical discharge, highly densified ceramics are obtained 
at relatively low temperature, in a very short sintering time and with 
uniform heating for sintered bodies. Functional materials, ceramics, 
cermets, intermetallic compounds, and so on [9] have been processed 
by this method.

In this study, for the first time, composites of AlN-TiB2 were 
sintered by SPS to evaluate the applicability of SPS techniques in 
sintering the AlN-TiB2 composites. The effect of the Nb2O5, Y2O3 and 
ZrO2 content, used as sintering additives, on mechanical properties 
and densification of composites were also studied in detail.

Materials and Methods
Raw materials

Commercially available AlN powder (grade A100 WR, available 
from Advanced Refractory Technologies, Buffalo, N. Y., USA), TiB2 
powder (98.64wt%, Storchem, Inc., Burlington, ON, Canada), were 
used as raw materials. Nb2O5 powder (99.5wt%, Strem Chemicals, 
Newburyport, MA, USA), ZrO2 powder (99wt%, Strem Chemicals, 
USA) and Y2O3 powder (99.99wt%, Strem Chemicals, USA) were used 
as sintering additives. The sample compositions studied in this work 
are shown in Table 1.

Experimental procedure

Powders were homogenized by stirring in a plastic bottle for 4 
hours with acetone as dispersant and then were ball milled in a plastic 
bottle for 25 min with absolute isopropanol as dispersant. After mixing 
and drying, each of the resulted powders was put into a graphite die of 
20 mm in diameter and then sintered in a SPS equipment (Dr. SINTER 
SPS-1050-CE). During SPS process, both heating and cooling rate were 
controlled at 150°C/min for all samples. A pressure of 60 MPa from the 
beginning to the end of the sintering cycle was applied. After 10 min of 
holding time, samples of 20 mm in diameter and thickness in the 6.9-
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8.9 mm. range were obtained. The sintering temperature was selected 
after previous sintering cycles, evaluating the density and shrinkage 
behaviour, using the SPS internal dilatometer.

Characterization and methods

Once the SPS process was completed, the densities of samples were 
measured in water according to Archimedes´ principle. The relative 
density was calculated based on the densities of AlN (3.26 g/cm3), TiB2 
(4.52 g/cm3), NbB2 (6.97 g/cm3), NbN (8.24 g/cm3), Al2O3 (3.95 g/cm3), 
BN (2.10 g/cm3), Al0.9B2 (2.96 g/cm3), TiN (5.40 g/cm3), Y3Al5O12 (4.56 
g/cm3), YAlO3 (5.35 g/cm3) and ZrN (7.09 g/cm3), identified phases by 
X-ray diffraction, according to the rule of mixtures. Hardness (HV) of 
samples were measured at room temperature by the Vickers indentation 
method; 10 indentations were made on each sample under a load of 
1.96 N and a dwell time of 15 s. The Indentation fracture toughness 
(KIC) of the samples was based on the length of the cracks originating 
from the edges of the indentation marks using the equations given 
by Evans and Charles [10] after being carefully polished by standard 
diamond polishing techniques down to 1 μm finish. 5 indentations 
were carried out for each sample under a load of 196 N and a dwell 
time of 15 s.

The crystalline phases were characterized by X-ray diffraction 
(XRD, Bruker 08 Advance) with Cu Kα radiation. The polished 
surfaces of the samples were observed by scanning electron microscope 
(JEOL JSM-7600F, Akishima, Japan) equipped with energy-dispersive 
spectroscopy (EDS) with a ultra-thin window (UTW) detector to 
examine the microstructure.

Results and Discussion
According to the literature, the surface of TiB2 when oxidized 

forms rutile (TiO2) and boron oxide (B2O3), according to the following 
reaction [11]:

( ) ( ) ( ) ( )2 2 2 2 3s g s s2TiB 5O 2TiO 2B O+ → +                  (1)

While the surface of AlN is oxidized, alumina (Al2O3) and nitrogen 
(N2) are formed, according to the following reaction (2):

( ) ( ) ( ) ( )2 2 3 2s g s g4AlN 3O 2Al O 2N+ → +                   (2)

Table 2 and Figure 1 show the relative density of the obtained 
composites. It can be observed that as the amount of TiB2 increases, 
the relative density decreases, these results confirm again the difficulty 
to sinter TiB2. For the samples with Nb2O5, the densities obtained were 
97% for the sample A4TN, 94% for A14TN and 95% for A23TN. The 
samples with Y2O3 were sintered at 1850°C, obtaining densities of 96% 
for A4TY, 97% for A14TY and 92% for A23TY by the formation of a 
liquid phase. ZrO2 was found to be the best sintering additive for the 
AlN-TiB2, obtaining densities of 100% for A4TZ, 99% for A14TZ and 
94% for A23TZ.

As shown in Figure 1, the best densification results were obtained 
with a small amount of TiB2, as the content of TiB2 is increased the 
percentage of densification decreased drastically.

Crystalline Phases
Figure 2 shows the XRD pattern for samples A23TN, A14TN and 

A4TN sintered by spark plasma sintering at 1950°C for 10 min at an 
applied pressure of 60 MPa in argon atmosphere. The XRD analysis 
shows that AlN and TiB2 are the main phases of all composites. Niobium 
diboride (NbB2), niobium nitride (NbN, only in A4TN), alumina 
(Al2O3), hexagonal boron nitride (hBN), aluminum diboride (AlB2) 
and titanium nitride (TiN) were identified. The possible reactions for 
the production of NbB2, NbN, Al2O3 and TiN in the system could be 
represented as follows:

( ) ( ) ( ) ( ) ( ) ( )2 5 2 2 3 2s s s s s gNb O 1.2AlN 1.6NbO 0.6Al O 0.4NbN 0.4N+ → + + +     (3)

( ) ( ) ( ) ( )s2s2s2s2 TiONbBTiBNbO +→+                                     (4)

( ) ( ) ( ) ( ) ( )g22
1

s32sss2 NO2Al3TiN4AlN3TiO ++→+                  (5)

Sairam, et al. [12], obtained NbB2 by spark plasma sintering at 

Samples Starting powders (wt. %) Preparation Conditions
AlN TiB2 Nb2O5 Y2O3 ZrO2 Sintering

Temperature (°C)
Holding Time 

(min)
Pressure (MPa)

A4TN 90.48 4.76 4.76 - - 1950 10 60
A14TN 80.95 14.29 4.76 - - 1950 10 60
A23TN 71.43 23.81 4.76 - - 1950 10 60
A4TY 90.48 4.76 - 4.76 - 1850 10 60
A14TY 80.95 14.29 - 4.76 - 1850 10 60
A23TY 71.43 23.81 - 4.76 - 1850 10 60
A4TZ 90.48 4.76 - - 4.76 1950 10 60
A14TZ 80.95 14.29 - - 4.76 1950 10 60
A23TZ 71.43 23.81 - - 4.76 1950 10 60

Table 1: Materials compositions and sintering parameters.

Composites Theoretical density (g/cm3) Measured density (g/cm3) Relative density (%)
90.48% AlN – 4.76% TiB2 – 4.76% Nb2O5 (A4TN) 3.45 3.35 97

80.95% AlN – 14.29% TiB2 – 4.76% Nb2O5 (A14TN) 3.59 3.38 94
71.43% AlN – 23.81% TiB2 – 4.76% Nb2O5 (A23TN) 3.50 3.32 95

90.48% AlN – 4.76% TiB2 – 4.76% Y2O3 (A4TY) 3.50 3.36 96
80.95% AlN – 14.29% TiB2 – 4.76% Y2O3 (A14TY) 3.43 3.32 97
71.43% AlN – 23.81% TiB2 – 4.76% Y2O3 (A23TY) 3.62 3.32 92

90.48% AlN – 4.76% TiB2 – 4.76% ZrO2 (A4TZ) 3.39 3.38 100
80.95% AlN – 14.29% TiB2 – 4.76% ZrO2 (A14TZ) 3.41 3.38 99
71.43% AlN – 23.81% TiB2 – 4.76% ZrO2 (A23TZ) 3.58 3.37 94

Table 2: Densities values of the produced composites.
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1900°C, obtaining 97.7%ρth. With the synthesis of NbB2 (4) with 
hexagonal crystal structure in the sintering process, the high densities 
in the samples with Nb2O5 could be explained.

The presence of hBN and TiN, is attributed to the reaction of N2 
(reactions 3 and 5) with TiB2:

( ) ( ) ( )ss22
3

s2 2BNTiNNTiB +→+                                   (6)

The presence of AlB2 and TiN, was attributed to the following reaction:

( ) ( ) ( ) ( )ss2ss2 TiNAlBAlNTiB +→+                   (7)

In reaction (7) the aluminum diboride was assigned the formula 
“AlB2”, it was found that the density of such phase was 2.955 g/cm3, 
which corresponds to Al0.9B2, not to AlB2, which has a theoretical 
density of 3.17 g/cm3 [13]. 

Figure 3 shows the XRD pattern for samples A23TY, A14TY and 
A4TY sintered by spark plasma sintering at 1850°C for 10 min at an 
applied pressure of 60 MPa in an argon atmosphere. The XRD analysis 
showed that AlN and TiB2 are the main phases. However, Al0.9B2 was 
identified as a secondary phase in all samples, i.e. Y3Al5O12 (YAG) in 
A4TY and A14TY, AlYO3 (YAP) in A14TY and A23TY. In addition, 
TiN and BN were found in samples A14TY and A23TY. No peaks of 
TiN and BN were found in samples A4TY.

The existence of TiN and BN in the samples A14TY and A23TY 
can be related to the presence of TiO2 in the surface layer of the TiB2 
particles, which reacted with the AlN in the sintering process according 
to the reaction (5), the N2 from nitride reacted with TiB2 according to 
reaction (6). Only a limited amount of TiN and BN was formed in the 
sintering process under argon, since only a limited amount of TiO2 was 
available [14].

Figure 4 shows the XRD pattern for samples A23TZ, A14TZ 
and A4TZ sintered by spark plasma sintering at 1950°C for 10 min 
at an applied pressure of 60 Mpa under an argon atmosphere. The 
XRD analysis showed that AlN and TiB2 were the main phases for all 
composites. As secondary phases, zirconium nitride (ZrN), alumina 
(Al2O3), boron nitride (BN) and titanium nitride (TiN) were identified. 
Aluminum diboride (Al0.9B2) was identified in samples A23TY and 
A14TY.

The real process to explain the presence of ZrN is complex but it 
should be modelized with the following reactions [15]:

( ) ( ) ( ) ( ) ( )g22
1

s32sg2s NO2Al3ZrN3ZrO4AlN ++→+                   (8)

( ) ( ) ( ) ( ) ( )g22
1

s32sg2s OOAl2ZrN2ZrO2AlN ++→+                  (9)

Microstructural Analysis
Figure 5a-5c shows SEM micrographs of polished surfaces of the 

A4TN, A14TN and A23TN ceramics, respectively. It was observed 
in Figure 5 that AlN-TiB2- Nb2O5 ceramics were mainly composed 
of three dark, gray and white phases. The elemental composition was 
obtained through EDS analysis at point A and point B in Figure 5a, as 
shown in Figure 6. The EDS of Figure 6a and 6b revealed that the dark 
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Figure 1: Relative density of the composite ceramics.
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Figure 2: XRD patterns of sintered AlN-TiB2 samples with Nb2O5: (a) A23TN; 
(b) A14TN; (c) A4TN.
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Figure 3: XRD patterns of sintered AlN-TiB2 samples with Y2O3: (a) A23TY; 
(b) A14TY; (c) A4TY.
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phase, point A in Figure 5a, consisted mostly of Al and N elements and 
the gray phase, point B in Figure 5a, predominantly contained Ti and 
B elements, indicating that the dark phase was AlN and the gray phase 
TiB2. 

Some white phases were also observed among the AlN grains and 
TiB2 grains in the composites A4TN, A14TN and A23TN (marked with 
arrows in Figure 5). In order to deeply clarify the phases, EDS analyses 
were employed (Figure 7). It was concluded with the support of XRD 

patterns, SEM-EDS that AlN, TiB2, NbB2, NbN, were found in A4TN. 
Al2O3, hBN, Al0.9B2 and TiN phases were observed in A4TN, A14TN 
and A23TN composites.

Figure 8a-8c shows SEM micrographs of polished surfaces of the 
AlN-TiB2-Y2O3 composites with different amounts of TiB2, A4TY, 
A14TY and A23TY. The AlN grains were composed with a yttria-based 
secondary phase. TiB2 grains were randomly dispersed in the AlN 
matrix. EDS analyses showed that dispersed gray particles are TiB2.
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Figure 4: XRD patterns of sintered AlN-TiB2 samples with ZrO2: (a) A23TZ; (b) A14TZ; (c) A4TZ.

Figure 5: SEM micrographs of ceramic composites (a) A4TN, (b) A14TN and (c) A23TN. The grain pattern was observed on polished surfaces of 
composite ceramics.
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The grain pattern was observed on polished surfaces of composite 
ceramics.

According to the EDS analyses (Figure 9) the white particles, were 
attributed to yttria-based secondary phase (marked with arrows in 
Figure 8a-8c). As shown in Figure 8, the presence of Y2O3 as a sintering 
additive forms with Al2O3, from the Surface of AlN, an eutectic 
composition that helps sintering and normally precipitates as YAG, 
diffuses between the particles, which helps to achieve highly dense 
materials. The interesting point is to observe that the results of the 
densification are not very high in comparison with other oxides used as 

additives, this may be due to the fact that grain growth is controlled by 
diffusion at the grain edge.

Figure 10a-10d displays the SEM micrographs of polished surfaces 
of the composites A4TZ, A14TZ and A23TZ, respectively. From this 
figure, it is observed that AlN-TiB2 composite was mainly composed 
of three phases. The chemical composition of the gray and dark zones 
were identified by EDS. Several white phases were observed among 
AlN and TiB2 grains (see arrows in Figure 10a-10c), these analyzed by 
EDS (Figure 11). The results revealed that the microstructure consists 
predominantly of zirconium. Therefore it was concluded with supports 
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Figure 7: EDS spectrums of (a) A4TN, (b) A14TN and (c) A23TN composites corresponding to arrows in Figure 5 (a)-(c) respectively.
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Figure 8: SEM micrographs of ceramic composites (a) A4TY, (b) A14TY and (c) A23TY. The grain pattern was observed on polished surfaces of 
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of XRD patterns, and SEM-EDS that AlN, TiB2, ZrN, Al2O3, BN and 
TiN phases are the main contributors of the three composites, besides 
the phase Al0.9B2 was found only in the A14TZ and A23TZ composites. 

Mechanical Properties
Table 3 shows the mechanical properties of the sintered composites. 

The hardness results for all composites were found to be above to that 
of the monolithic AlN, but well below to the magnitude of the TiB2 
value. The fracture toughness of the composites was improved when 
compared to the value of the monolithic AlN. The composites A23TN, 
A14TZ and A23TZ showed higher fracture toughness, surpassing the 
fracture toughness value of the monolithic TiB2. The fracture toughness 
of the composites, exceeded the values reported in our previous paper, 
using the same amount of Nb2O5, Y2O3 and ZrO2 [16,17].

Figure 12 shows the hardness and fracture toughness measurements 
for the sintered samples. It is noteworthy that all the samples have a 
higher hardness that of the monolithic AlN due to the contribution of 
TiB2 phase. A significant increase of the hardness was observed in the 
samples that contain Nb2O5 (A4TN, A14TN and A23TN), this could 
be a consequence of a remarkable presence of nitrides, identified by 
the XRD spectrum. The presence of a mixture of NbB2 [10] and NbN 
phases [18] increased the hardness. It can also be observed that as the 
amount of TiB2 increased to 14.29 wt.%, the hardness in the samples 
sintered with Nb2O5 and ZrO2 decreased, being attributed to the high 

covalent character of TiB2 and its difficulty to be sintered properly, 
increasing the porosity and the grains growth, reducing the density 
and hardness. In the sample sintered with Y2O3, it was observed that as 
the amount of TiB2 increased, the hardness also increased. This result 
was associated to the formation of a secondary liquid phase (YAG and 
YAP), which diffuses between the grains of AlN and TiB2, acting as an 
elastic interface.
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Figure 10: SEM micrographs of ceramic composites (a) A4TZ, (b) A14TZ and (c) A23TZ. The grain pattern was observed on polished surfaces of 
composite ceramics.
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Composites Hv 
(GPa)

KIC (MPa.m1/2)

AlN 10.6a 3.2a

TiB2 25a 5.2b

A4TN 13.9 ± 0.4 4.3 ± 0.4
A14TN 12.8 ± 0.5 4.4 ± 0.6
A23TN 13.1 ± 0.4 5.4 ± 0.9
A4TY 10.7 ± 0.2 4.5 ± 0.6

A14TY 11.5 ± 0.4 4.7 ± 0.6
A23TY 11.9 ± 0.4 4.8 ± 0.9
A4TZ 12.7 ± 0.3 3.8 ± 0.4

A14TZ 12.4 ± 0.3 5.5 ± 0.8
A23TZ 12.9 ± 0.3 5.8 ± 0.9

a,b Values taken from the reference [3,17], respectively.

Table 3: Results of the mechanical properties for the composites.
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Conclusions
The sintering of AlN-TiB2 with Nb2O5, Y2O3 and ZrO2 as sintering 

additives, was achieved by SPS, obtaining excellent densification 
results, increasing the values of hardness and fracture toughness with 
respect to the monolithic AlN. The ceramic composites that showed 
the best densification results were A4TZ and A14TZ, with values up to 
100% of theoretical density.

With respect to mechanical properties, higher values of hardness 
and fracture toughness were obtained when compared to those of the 
monolithic AlN. The composites that showed the highest hardness 
were A4TN and A23TN, with values of 13.9 ± 0.4 GPa and 13.1 ± 
0.4 GPa, respectively. Regarding fracture toughness, it was observed 
that it increased when the amount of TiB2 increased. Therefore, the 
composites with a content of 23.81% of TiB2 showed the best results.
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Figure 12: Mechanical properties of ceramic composites: (a) hardness and (b) fracture toughness.
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