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Introduction
Data analysts — whether in industry, government, or academia – 

are faced with increasingly large datasets, or big data. Some examples 
of discourse on big data include its impact on marketing analytics [1], 
official statistics [2], and biomedical research [3]. However, when data 
actually becomes big is subjective. This can refer to a large number of 
records, a large number of measured variables, or both. Nonetheless, 
the growing number of data collection strategies, as well as increases 
in computational efficiency and storage, have resulted in big data being 
relatively cheap to obtain and manage. However, it is fundamentally 
more important to assess how well that data is being used, whether for 
classification, prediction, or modeling. We focus on the last of these 
goals and highlight some flexible modeling paradigms that can be 
helpful for analyzing big data.

Nonnormal Parametric Models
Many classical statistical modeling paradigms for continuous data 

(e.g., linear regression modeling) assume normality, either because 
practitioners characterize the randomness of their observed data using 
a normal distribution or because they appeal to the Central Limit 
Theorem. However, such an assumption may not be strictly or even 
approximately valid. A pertinent issue in this regard is the deviation 
from normality that can be tolerated before one must abandon such 
a classical paradigm; this may vary from one scientific application to 
another. A complicating factor is that, as the sample size grows, the 
power of almost any test for detecting non-normality will increase; 
thus, smaller deviations from normality will be perceptible, and one 
must consider whether such deviations truly warrant abandoning a 
classical paradigm.

In some cases, they will. And, in these cases, the nature of the 
scientific application from which the data arise may suggest other 
parametric distributions to consider. For example, right-skewed 
distributions are often used for lifetime data, which in turn are usually 
parameterized via hazard rate functions. One such right-skewed 
distribution is the Rayleigh distribution, which has been used to 
model background data from magnetic resonance images [4]. Another 
example is the generalized extreme value (GEV) distribution, which 
has a cumulative distribution function of the form
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for 0ξ = . This distribution is often used to characterize the stochastic 
behavior of a process at unusually large (or small) values, such as 
for novelty detection in medical screening [5]. Note that the GEV 
distribution function also includes the Gumbel, Fréchet, and Weibull 

families as special cases; see the text by [6] for a thorough discussion.

For multivariate data also, not constraining oneself to a normality 
assumption may be potentially advantageous. Indeed, while random 
generation, estimation, and testing under multivariate normality are 
well-studied, greater flexibility and fidelity to underlying scientific 
phenomena may be achieved without such an assumption. Related to 
this, [7] presents an approach for joint random generation of binary 
and nonnormal continuous variables in this special issue of the journal. 
The author partitions the correlation matrix of such variables into three 
components: one for the binary variates only, one for the nonnormal 
continuous variates only, and one governing pairs in which one 
variable is binary and the other is nonnormal continuous. The author 
derives modified versions of each component and reassembles them 
into a second correlation matrix, from which multivariate normal data 
are then randomly generated. Finally, these multivariate normal data 
are converted to binary variables and nonnormal continuous variates 
respecting the original correlation matrix via thresholding and a power 
polynomials procedure rooted in the work of [8].  [7] demonstrates the 
efficacy of this strategy through a numerical study based on data from 
the National Institute of Mental Health Schizophrenia Collaborative 
Study [9]. The reported biases for correlation measures, moment-based 
quantities, and regression coefficients are all relatively small under this 
strategy.

Finite Mixture Models
When the sampled data arise from a population that consists of 

several homogenous subpopulations, then one can use finite mixture 
models to characterize the data (e.g., [10]). Let Y1, . . . , Yn denote a 
random sample of size n such that ∈d

iY , i = 1, . . . , n, and let y1, . . . , yn 
denote the corresponding realizations. Assume further that these data 
are drawn from a population consisting of k<∞ subpopulations. The 
k-component mixture density for these data is written as
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component densities. Usually the component densities are taken from 
a known parametric family, with the value of the parameter regarded 
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as unknown in at least one (and perhaps every) component. There are 
many mixture model applications to biomedical research problems, 
such as studies involving phenylthiocarbamide (PTC) sensitivity 
in people [11], screening for hemochromatosis [12], and assessing 
prostate cancer clinical trial data [13].

Note that a k′-component mixture can be re-expressed as a 
k-component mixture for any k′∈  {1, . . . , k −1}, simply by adding more 
components with zero mixing proportions and/or equal parameter 
values in the component densities. Thus, if one is uncertain that a 
k-component mixture provides the most parsimonious characterization 
of the data among all that would be deemed acceptable, one may be 
interested in testing a null hypothesis that the k-component mixture 
could be reduced to a k′ -component mixture. In this special issue [14] 
study a modified likelihood ratio test for two-component binomial 
mixture models, in which k′ =1, k=2, ( )1 ,0.5g Bin m=  for known m, and 

( )2 ,g Bin m θ=  for unknown [ ]0,0.5θ ∈ . More specifically, they derive 
the limiting distribution of the test statistic under two local alternatives, 
one in which θ is close to 0.5 and one in which λ2 is close to 0. Their 
work is motivated by a genetic linkage study for schizophrenia, in 
which the local alternatives correspond to weakness and rarity of the 
linkage, respectively. 

For the remainder of this section, let d=1 so that Y1, . . . , Yn are 
univariate. In this special issue [15] discuss testing procedures for the 
bilaterally contaminated normal with nuisance parameter (BCN+NP) 
model. The density for this model is
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where ( )φ ⋅  is the standard normal density, µ1 ≥ 0 ≥ µ2, σ
2>0, and all 

parameters are unknown. More specifically [15] provide asymptotic 
and simulation results regarding two hypothesis tests:

H0 : λ1µ1=0  and  λ2µ2=0 versus  H1 : λ1µ1 ≠ 0 or  λ2µ2 ≠ 0                     (4)

and 

H0: λ1µ1=0  or  λ2µ2=0  versus  H1: λ1µ1≠ 0 and  λ2µ2 ≠ 0                     (5)

These are referred to as testing the omnibus null hypothesis and 
unliateral null hypothesis, respectively. The former procedure employs 
sample moments in a union-intersection test, while the latter procedure 
is based on sample moments and an auxiliary estimator of the nuisance 
parameter σ2. The procedures are demonstrated on logarithm of the 
odds (LOD) scores in a whole genome linkage analysis from an autism 
study.

When each observation Yi is measured along with a vector of 
covariates, say Xi = (Xi,1, . . . , Xi,p)

T, the conditional distribution for  
Yi|Xi may be characterized by a mixtures-of-regressions model. Mixtures 
of regressions have been applied to diverse data problems involving 
music perception [16], viral propagation by aphids [17], and protein 
structures of DNA [18]. There are also extensions to the mixtures-
of-regressions model that aim at greater flexibility. For example [19] 
developed a mixtures-of-regressions model in which the components 
have changepoints. Maximum likelihood estimation for this model is 
accomplished using an expectation-conditional maximization (ECM) 
algorithm [20] where the parameter vector of interest is partitioned 
and optimized in a series of conditional maximization steps. In this 
special issue [21] investigate mixtures of self-modeling regressions for 
flexibility in describing functional data. The starting point for their 
work is the shape invariant model, in which functions f1, . . . , fn are 
defined by affine transformations of a common shape function g, 

fi(x) = aig(cix + di) + bi,                                      (6)

where θi=(ai, bi, ci, di)
T is a vector of self-modeling coefficients. [21] 

induce a mixture structure by proposing that each fi transform one of k 
possible shape functions g1, . . . , gk instead of a common shape function. 
Their approach to inference entails Bayesian adaptive regression 
splines [22] and is illustrated in an application to synaptic transmission 
data, in which components in the mixture structure may correspond to 
different active zones in a synapse.

Local Models
Greater flexibility in describing data can also be achieved using local 

models. Here we refer to models in which the probabilistic structure 
is not described a priori by a finite specified set of parameters but 
rather is estimated at a given location using mainly those observations 
in proximity to the location. For example, consider estimating the 
probability density function f (·) underlying d−dimensional realizations 
y1, . . . , yn of random vectors Y1, . . . , Yn. A kernel density estimate (e.g., 
[23]) puts 
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where H is a d×d bandwidth matrix, symmetric and positive definite, 

and the non-negative kernel function K satisfies ( ) 1=∫


d
K dt t  

and ( ) ( )= −K Kt t  for all t. One chooses H so that, at the location y, 
observations with yi close to y play a greater role in estimating f (y) than 
observations with yi far from y.

Local models can also be used in regression settings [24], in which 
case interest lies in locally estimating a mean response function and 
perhaps its derivatives as well. A nonparametric regression model has 
a form such as

( )µ ε= +i i iY x                                (8)

where µ(·) is an unknown mean response function and we have again 
assumed that d=1, so that the responses are univariate and are measured 
along with a (vector of) covariate(s). There are various local procedures 
that one can use to estimate µ(·). For example, local averaging moves 
a window continuously over the data and averages the observations 
that fall within that window. Locally-weighted averaging (or kernel 
regression) modifies (7) to 
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One can gain even more flexibility by employing a local polynomial 
structure [25] and solving a minimization problem such as
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The minimizing β0 becomes the estimate of µ(x), while the 
minimizing β1 becomes the estimate of the (vector of partial) 
derivative(s) of µ(·) evaluated at x. Using a local polynomial of degree 
one may suffice for some applications, while a local polynomial of 
higher degree may be desirable for other applications due to a reduction 
in estimation bias.

There also exist other nonparametric regression procedures. 



Citation: Young DS, Feng L, Charnigo RJ (2015) Some Flexible Modeling Paradigms for Analyzing Big Data. J Biom Biostat S12: e001. 
doi:10.4172/2155-6180.S12-e001

Page 3 of 4

J Biom Biostat Big Data and Flexible Modeling ISSN: 2155-6180 JBMBS, an open access journal

For example [26] discussed a paradigm that allows simultaneous 
estimation of the mean response function and its derivatives when 
there is a single covariate. This is accomplished using a compound 
estimator, which is self-consistent (i.e., the estimates of the derivatives 
equal the derivatives of the estimated mean response function) and 
achieves essentially optimal convergence rates in consistency. On the 
other hand, minimizing (10) does not yield self-consistent estimates.

One area that relies on local modeling is image analysis, which 
includes big data problems requiring rapid or even real-time solutions. 
For example [27] proposed a semi-local paradigm that divides a 
volumetric image into blocks and then applies wavelet denoising to 
the blocks individually before re-assembling them. Their approach 
was illustrated using a noisy phantom positron emission tomography 
(PET) image and found to outperform a competing method for image 
processing. Wang and Ye [28] developed a nonparametric test for 
comparing a group of images or multivariate local regression surfaces. 
The authors illustrated their procedure on medical rehabilitation data 
from a neuro-muscular electrical stimulation experiment.

In this special issue [29] discusses nonrigid image registration, 
which maps each pixel from one image to the corresponding 
pixel of another image, in such a way that local distortions can be 
accommodated; the basic idea is to alter a template image so that it more 
closely conforms to a reference image. (The artistic-minded reader may 
try to visualize what Salvador Dali’s timepieces might have looked like 
before they melted; the template image could be of one of the melted 
timepieces, and the reference image could be of a similar but non-
melted instrument.) More specifically [29] presents fluid registration 
methodology, so named because the local distortions may resemble 
fluid flow and potentially useful in medical applications in which, for 
instance, different people’s brains are imaged. [29] also assesses two 
image similarity measures: the sum of squared intensity differences 
(SSD) and mutual information (MI). The computation of MI uses a 
univariate version of (7) with a truncated normal kernel function.

Incorporating a kernel structure into mixture models (thus making 
them local models) is also possible. For example, local approaches in 
mixture models appear in the literature as nonparametric mixture 
models [30] and even as mixtures of regressions ([31-33]). While local 
models are often termed nonparametric (or semiparametric), a sort 
of parametric form may be induced by the estimation method. For 
example, the compound estimator of [26] is a normalized Gaussian 
convolution of polynomials and so can be represented in terms of a 
finite number of parameters, mainly the polynomial coefficients; 
however, the parameters are a feature of the estimation method rather 
than of the model itself, and as such the typical results for parametric 
statistical inference (e.g., n -consistency) are not available. Be that 
as it may, local models offer tremendous flexibility in describing big 
data. However, local models can also break down in high-dimensional 
settings due to the curse of dimensionality [34], from which big data is 
not immune.

Conclusion
We discussed three flexible modeling paradigms that can be helpful 

for analyzing big data: nonnormal parametric models, finite mixture 
models, and local models. As highlighted above, all three paradigms 
have enjoyed successes in various biomedical applications. However, 
the utility of these paradigms is by no means relegated to big data 
settings; on the other hand, they may be particularly valuable when 

attempting to characterize the sorts of complex relationships that 
are often present in big data. While we addressed only a few flexible 
modeling paradigms, the researcher’s recognition of assumptions 
for and limitations of the chosen approach to data analysis should 
not be restricted to these particular paradigms. Indeed, even with 
flexible modeling, misspecifications are still possible and may be more 
detrimental with big data than with small data. 
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