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Abstract
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Introduction

The idea of a string involute is due to, who is also known for his
work in optics [1]. He discovered involutes while trying to develop a
more accurate clock [2]. The involute of a given curve is a well-known
concept in Euclidean 3-space R*[3]. It is well-known that, if a curve
is differentiable at each point of an open interval, a set of mutually
orthogonal unit vectors can be constructed and called Frenet frame
or Moving frame vectors [4]. The rates of these frame vectors along
the curve define curvatures of the curves. The set, whose elements are
frame vectors and curvatures of a curve, is called Frenet apparatus of
the curves [5].

It is safe to report that the many important results in the theory
of the curves in R® were initiated by G. Monge, and G. Darboux
pioneered the moving frame idea [6]. Thereafter, Frenet defined his
moving frame and his special equations which play important role in
mechanics and kinematics as well as in differential geometry. At the
beginning of the twentieth century, Einstein’s theory opened a door to
use of new geometries [7]. One of them, Minkowski space-time, which
is simultaneously the geometry of special relativity and the geometry
induced on each fixed tangent space of an arbitrary Lorentzian manifold,
was introduced and some of the classical differential geometry topics
have been treated by the researchers [8]. In recent years, the theory
of degenerate submanifolds has been treated by researchers and some
classical differential geometry topics have been extended to Lorentz
manifolds. For instance, in [9-11], the authors extended and studied
spacelike involute-evolute curves in Euclidean 4-space and Minkowski
space-time.

An evolute and its involute, are defined in mutual pairs. The
evolute and the involute of the curve pair are well known by the
mathematicians especially the differential geometry scientists. The
evolute of any curve is defined as the locus of the centers of curvature
of the curve. The original curves are then defined as the involute of the
evolute. The simplest case is that of a circle, which has only one center
of curvature (its center), which is a degenerate evolute and the circle
itself is the involute of this point.

Izumiya, et al. defined the evolute curve in hyperbolic 2-space
and found its equation. Following the works of them, we defined the
evolute curve in hyperbolic 3-space and de Sitter 3-space and find its

equations and for more details see [1,6]. In this paper, we calculate
the Frenet apparatus of the evolute curve by apparatus of the involute
curve in hyperbolic 2-space, hyperbolic 3-space, and de Sitter 3-space.
Our results can be seen as refinement and generalization of many
corresponding results exist in the literature and useful in mathematical
modeling and some other applications.

Preliminaries

In this section, we use the basic notions and results in Lorentzian
geometry for Frenet frame in hyperbolic 2-space, hyperbolic 3-space
and de Sitter 3-space [3-8].

Hyperbolic 2-space

Let R’ ={(x,x,,%,)|x,x,,x, € R} be a 3-dimensional vector space,
and x(x,x ,x,) and y=(y,,y,.y,) be two vectors in R*. The pseudo scalar
product of x and y is defined by (x,¥) =—xy, +X,, + X;3;. We call
(R’,{,)) a 3-dimensional pseudo Euclidean space, or Minkowski

3-space. We write R® instead of (R?,(,)) . We say that a vector x in R?
is spacelike, lightlike or timelike if (x,x)>0, (x,x)=0 or (x,x) <0,
respectively. We now define spheres in [’ as follows:
H ={xeE |-x'+x}+x;=-1,x 21}
H’ ={xeE |-x'+x]+xI=-1,x<-1}
S;={xel |-x +x;+x=1}.
We call H ahyperbolaand S? a pseudo-sphere. Now, we discuss

some basic facts of curves in Hyperbolic 2-space, which are needed in
the sequel.

Let y:I—>H) cE; 7)) =(x().%),%) be a smooth regular

curve in H? (ie.,y (t)#0) for any tel, where I is an open interval.
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It is easy to show that <y'(1),;/'(1)> >0, forany re/.Wecall sucha

curve a spacelike curve. The norm of the vector x € B} is defined by
| x|I= [ ¢x,x) | - The arc-length of a spacelike curve y, measured from

vyt )st, €l is s() = Jj |7 (#) || dt . Then the parameter s is determined

such that || y(s) ||=1, where y(s)=

@ . So we say that a spacelike
s

curve y is parameterized by arc-length, if it satisfies ||7(s)|=1.
Throughout the remainder in this paper, we denote the parameter s of
y as the arc-length parameter. Let us denote T(s) = y(s) , and we call
T(s) a unit tangent vector of y at s.
For any x=(x,X,,%),y=(3,,,y;) €, the pseudo vector
product of x and y is defined as follows:
6 & &
XAYy=|x  x, x

Yoo V2 W

= ()3 =52, %0 — X5, XV, — X))

We remark that (xA y,z)=det(x y z). Hence, xAy is pseudo-
orthogonal to x,y. We now set a vector E(s)=y(s)AT(s). By
definition, we can calculate that (E(s),E(s)) =1 and (y(s),y(s))=-1.
We can also show that T(s) A E(s)=—y(s) and y(s) A E(s) =-T(s).
Therefore, we have a pseudo-orthonormal frame {y(s),T(s),E(s)}
along y(s). We have the following hyperbolic Frenet-Serret formula
of plane curves:

7(s)=T(s)
34T(s) = y(s) + K, (5)E(s) 1)
E(s) =, ()T(s),

or in the matrix form:

7(s) 0 1 0]
T(s) =1 0 x| T(s) ()
E(s) 0 -x, 0 ||[E(s)

4

where k_is the geodesic curvature of the curve y in H? , which is given
by

K, (5) = det(y(s) T(s) T(s)).
Hyperbolic 3-space

Let R* be a four-dimensional vector space. For any
X = (X, %5, %, %),y = (72 1. v, v,) € R* 5 the pseudo-scalar product of x

and y is defined by (X, ¥) ==X}, + 5,0, + 5,05 + X, V.

Wecall (R*,(,)) Minkowski4-space and denoted by [} . We say thata
vector x € B is spacelike, lightlike or timelike if (x,,x,) > 0,(x,,x,) =0
or {x,,x,) <0, respectively. The norm of the vector x € E} is defiend

by || x ||= /| {x,x) | . For a non-zero vector v € E; and a real number c,
we define a space with pseudo normal v by

S(v,¢) = {x e B} | {x,0) = c}.

We call S(v,c) a spacelike space, a timelike space or a lightlike
space if v is timelike, spacelike or lightlike, respectively.

Now, we define a hyperbolic space by
HE (=1) = {x € B! [(x,x) = —1,x, > 0}.

Forany X = (x17x27x3ax4) Y= (y17y27y3»y4) and z = (21’22’23’24)

e B}, the pseudo vector product of x,y and z is defined as follows:

-i j k1
Xox X X,
XAYAZ=
N Vs Vs W
Zl ZZ Z3 Z4
x, x x| |x x x|lx x x| |x x x
STV Vs W\ Vs Vals\ o Va2 Va0 V2 Vs
ZZ Z3 Z4 Zl 23 24 Zl ZZ Z4 Zl ZZ 23

We now prepare some basic facts of curves in hyperbolic 3-space.
Let 7:/>HcE: 7(0)=x0.50).50,x0) be a smooth
regular curve in Hi (ie,y ()= 0) for any el where I is an open
interval. So that, (y'(¢),y'(z))>0 for any ¢ e[ . The arc-length of y,
measured from 7(t,),t, €I is s(t)= I: |7 (®) || dt . Then the parameter
s is determined such that || 7(s) ||= 1, where y(s)= % So we say

that, a spacelike curve y is parameterized by arc-length if it satisfies that
[l7(s)|[=1. Let us denote T(s)= y(s), and we call T(s) a unit tangent
vector of y at s.

Here, we construct the explicit differential geometry on curves
in H’(-1). Let y:I —TH’(~1) be a regular curve. Since H(-1)
is a Riemannian manifold, we can reparameterize y by the arc-

length. Hence, we may assume that y(s) is a unit speed curve. So we
have the tangent vector T(s)=y(s) with || T|=1. In case, when

<T(s),T(s)> - —1, then we have a unit vector
T(s) - y(s)
IT(s)=7(s) |
Moreover, define E(s)= y(s) A T(s) A N(s) » then we have a pseudo

N(s) =

orthonormal frame {y(s), T(s),N(s),E(s)} of E; along y. By standard
arguments, under the assumption that <T(s),T(s)> # —1, we have the
following Frenet formulae:
7(s)="T(s),
T(s)=y(s) +x,N(s),

. (3)
N(s) = —x,T(s) + 7,E(s),
E(s) = —7,N(s).
Or in the matrix form:
7(s) (U 0 0]y
T(s) 0 &, 0 T(s)
NGs)| |0 —x, 0 7, | NG)
Es)] |0 0 -z, 0| E(s)
where
K, = T(s) =), (4)
; :_det(}/(S),7'/(8),77(3),7(S))
¢ (K, () '

are the geodesic curvature and geodesic torsion respectively, of the
curve y in H3(-1).
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Since (T(s) - y(s), T(s) - 7(s)) = (T(s), T(s)) + 1, the condition

(T(s),T(s)) # -1,

is equivalent to the condition &, (s) # 0 . Moreover, we can show that
the curve y(s) satisfies the condition «,(s) =0 ifand only if there exists

a lightlike vector ¢ such that 7(s)—c¢ is a geodesic. Such a curve is
called an equidistant curve (see [5,8]).

De Sitter 3-space

Moreover, in this subsection we introduce some basic facts which
we will use in this paper. Let R* be a four-dimensional vector space. For

any x = (x,,%,,%;,%,), ¥ = (J, ¥,, 13, »,) € R*, the pseudo-scalar product of
x and y is defined by (x,y) =—x,y, +x,7, + X,y +x,, . We call (R*,(,))

Minkowski4-space. Wewrite ;| instead of (R*,(,)) . We say thata vector
xeR;} is spacelike, lightlike or timelike if {(x;,x,)>0,(x;,x,) =0 or

(x,,x,) <0, respectively. The norm of the vector X € E! is defined by
Ix I
We now define de Sitter 3-space by
D ={xeE] [(x,x)=1}.

For any x=(x.%,.%,%,), 5 = (0.2, 00,2 = (2.2,,2,.2,) € B/, the pseudo
vector product of x,y and z is defined as follows:

6 6 & &
Oy ox oxox,
XAYAZ= .
N V2 Vs W
z, z, 2z, Z

1 2 3 4

Let y:1 —'S; be a smooth and regular spacelike curve in S; . We
can parameterize it by arc-length s, since S? is a Riemannian manifold,

we can reparameterize y by the arc-length. Hence, we may assume that
y(s) is a unit speed curve. So, we have the tangent vector T(s) = y(s)

with ||T||=1. In this case, we call y a unit speed spacelike curve. If

<T(s),T(s)> #1, then || T(s)+ y(s) [l 0, and we define the unit vector

N(s) = M . Moreover, define E(s) = y(s) A T(s) AN(s) , then we
IT(s)+7(s) |
have a pseudo orthonormal frame {7(5),T(s),N(s), E(s)} of Ef’ along
y. By standard arguments, under the assumption that <T(S),T(s)> =1,
we have the following Frenet-Serret type formula:
7(s)="T(s)
T(s) =—y(s)+x,N(s)
N(s) = -0(y)x,T(s) + 7, E(s)
E(s)=7,N(s).

(5)

Or in the matrix form:

7(s) 0 1 0 0|y
T(s) |-t 0 Kk, 0| T(s)
N(s) 10 =Sk, 0 7, ||NGs)
E(s) 0 0 7, 0| E(s)

where 5(y) = sign (N(s)) (which we shall write as simply §) and

K, = T()+7(s)

©6)

. Sdet(y(s),7(s),7(5), 7 (s))
: (x, ()’

are the geodesic curvature and geodesic torsion respectively, of the
curveyin S; .

s

Since <T(s) +y(s5), T(s) + y(s)> = <T(s), T(s)> -1, the condition

<T(s),T(s)> # 1 is equivalent to the condition x,(s) =0 (see [7]).

The Frenet Apparatus of an Evolute Curve in Hyperbolic
2-Space

In this section, we introduce the Frenet apparatus of an evolute
curve according to the Frenet apparatus of the involute curve in H? .

Definition 3.1 :We define the hyperbolic evolute curve of y(s)
under the assumption that K; (s)=+1 in H? as;

%(;«g (5)7(s) + E(s)).

<2 ()1

a(s)=

We remark that a(s) is located in H2 UH? if and only if K; >1.1f
a(s) is located in H* , we may consider -a(s) instead of a(s) and we call
y(s) an involute curve of a(s) (for more details see [6]).

The Frenet apparatus of an evolute curve a(s) denoted by

{a(s),T,(s),E,(s),/C,(s)} can be formed according to the Frenet
apparatus of the involute curve y(s).

Theorem 1: If a(s) is a unit speed space-like curve and «af(s) is an
evolute curve of y(s). Then the Frenet apparatus of the evolute curve
a(s) is as follows:

a(s)zé(’(g]/(s)‘l'E(S)), E (S): k‘g T(S),
‘Kg _1‘ “ K, -1
X 2 7)
T, (5) = ——=—(y(9) + K, E(s))s| K, ()= —=—.

(<2 -1 (<2 -1)°

Proof. It follows from the definition of the evolute curve in
hyperbolic 2-space that

a(s) \/é(icgy(s)ﬁLE(s)). (8)

Differentiating both sides of the previous equation with respect to s
and substitute from Egs.(1), we obtain

¥(1&g7/ +x,T- K‘gT),

T,(s)= Lkg}(/cgy + E) +
-1

(2 -1y

which, can be written as

T, (s)= L’(‘}(/{ v+ E) +K§7_1}(kg;f +x,T~ KgT)
(2 -1y (2 -1y

2 . . 2 . .
_ KK, KoK KoK, Ke

= V- zE+ ;}/_ ;75

(-F (e-lF (et (-1
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then, we get

—K KK
T, (5) = —5— () - —E K (s). ©)
(Gl N G}

Moreover, from definition of the vector Ea(s), where
E, (s)=a(s)AT,(s),

we have
-y(s)  T(s) E(s)
E()=|—— o0 ——|
NP o=
_kg - 0 _nggé
(-1 (s - 1])?
then, we get
E (s)= K T(s).
* k2 -1

Also, by differentiating the eqn.(9) and substitute from eqn.(1), we
have

&, — KK, +3K K K
£ £ E 88 \y(s)+—=T(s)

(2 -1))2 -1
. (10)
2T, (s)=
N KK, — Kj,r?g + 3K;kg 5—1(51'(; + kgz E(s).
(21
where
K, = det(a(s) T, Ta).
In eqn. (8), (9) and (10), we have
K, 1
‘K‘j - l‘ Ké - 1‘
K- — 0 TR ,
(I<: 1) (I -1])
K, — KK, +3K,K, K, K Ky — Kok, +3KK, — KiKs + K2
3 2 5
(CRE )

from the previous determinant, we have

gK‘

K = K, kg KoKe -
b =t =10 (e -

K

_ 1 g ’.(g
=) (e - Ll -1

k] (x2-1)
s
(-1

then, we get

k,2

K, = %
(<2 -1y
This completes the prove.

The Frenet Apparatus of an Evolute Curve in Hyperbolic
3-Space

In this section, we study the Frenet apparatus of an evolute curve
according to the Frenet apparatus of an involute curve in hyperbolic

3-space and define the equation of the evolute curve in H (-1).

Definition 4.1

We define the hyperbolic evolute curve S:1 — H?(-1) of y(s) by

Bls) =

(Kgﬂ’(S) +N(s) - :g E(S)J,

ng

. 2
K
under the assumption that K; —{ £ ] >1.
K,T
£ g

We remark that f(s) is located in H?(-1) if and only if

KT,

. 2
K; _[ K, J ~1° where y(s) is an involute curve of (s) (see [1]).
g

The Frenet apparatus of an evolute curve in H’(-1) denoted by

{B(9) Ty(5), N (5), E 5 (5), K, (5, T, (5)}.

can be formed according to the Frenet apparatus of an involute curve
y()-

Theorem 2 : If 3(s) is a unit speed spacelike curve and an evolute
curve of y(s). Then the Frenet apparatus of the evolute curve S(s) is as
follows:

Proof: It follows from the definition (4.1) of the evolute curve in
hyperbolic 3-space that

3B(s)= =
) £, )
\/K;— £ ] -1
K,T,

If we denote

H = s M = ’
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5 ie.,
- g “ee . . .
# s 2 ' (11) 411 :(ﬂl+3ﬂ1_2Kgﬂz_3Kgﬂz+Kngﬂ3)
KT, K;_( £ ] -1 Gy =G+ — Ky = Ko pty = 3K, 1, = 3K, jI
K,T . . .
ge K, Ty + 2K,T 1y + 3K, f15)
Then, the evolute curve 5(s) can be written in the formula 5 G = Cr iy —3K,K 4, — 31(;,[12 + K+ Kzrg,u} (20)

B(s) =ty (s) + 1,N(s) + s1E(s). (12)

Differentiating both sides of the previous equation with respect to s
and substituted from Eqs.(3), we obtain

T,(s) = f47(5) + t47(s) + fN(s) + 1,N(s) + fLE(s) + g1 E(s)
=ty () + w4 T(s) + (N(s) + 11, (=i, T(s) + 7, E(5))

+iE(s) — p5(7,N(s))

=ty () + (1 — i 1, )T(s) + (4, = 7, 11, )N(s)

+(fty + T 11, )E(S). (13)
Now, we need to find T,(s) , by differentiating Eq.(??), we have

(,ul + - Kgﬂz)y(s) + (zlul - k'g/’lz - 2K'g/’.t2 + KgrgﬂS)T(S)
(K g = Ko ply + fly =Ty pty = 27 fs = Tt )N(s) (14)
(T i, — T;/‘z A+ Ty T 1)E(s),

3T,(s) =

or in another form

T, (s) = m,7(s) + 17, T(s) + 7,N(s) + 17, E(5), (15)

where

n = (i + 4y — Kg/uz)
n,=Qp - kg/-lz - 2Kgl[12 + KngﬂS) (16)
= (Kgﬂl - ’(;/uz + /uz - Z:g/ﬁ - 2Tg/.l3 _T;/uz)
N, = (T, — T;,u3 Ty + T L)

Thus, in eqn.(12) and (14), we can compute the value of the vector
N, (s), where

B
N = ) =F)
[ T,(s) = B(s) ||
It follows that

J? (0~ (o)
+772T(S)+ (773 _ﬂz)N(s) + (774 _/u})E(S))) (17)

Also, in eqn.(16) and eqn.(17), we obtain

Ny () = (|=n = ) +23 + (1, = )" + (0, = 1)’

Ky = \/\—(m — ) +175 + (= )+ (7, = )|

Therefore, by differentiating in eqn. (14) and from Frenet formulae,
we can obtain

B(5) = (Gl + 34 = 26 bty = 3K 1y + K, T, p13)7(5) + Bl + = K ply = Ko fty
3Ky = 3K, jly + K T by + 20,7 gy + 3K, 7, (1) T(s) + Gr 1, — 3K,K, 44,
BKLfly + Koy + KT bty = 3T, Tty = 2T 1y + iy — Tty — 32 g1y = 37, iy
—ng,az - rgz,us)N(s) + (K, T 14 — K‘;Tgluz - T;yz +37, i, = 37,7 4 + [
=37, 1, + 37 1, + 7 11,)E(9), (18)

which, can be written as

B(s) =Gy (s)+ & T(s) + G N(s) + CLE(s), (19)

=37, T 4, — 27;/22 + iy =T gty = 3T f1y = 37 iy
- ;ﬂz - f;#;)
Gy =k, T p— K;Tgluz - T;/Uz +37 41, = 37,7, 13
+ﬁ3 - 37;:[13 + 31:gﬂ2 + fg/-lz)
In eqn. (12), (16), (15), (19), and (20), we can compute the torsion
Tﬁ of the evolute curve f(s) as

H 0 y7A n
f]—/j(s):_i2 y (Iul_Kgﬂz) (ﬂz—fgy3) (ﬂ3+z-g#2),

’Cﬂ m m, 7, 1,

51 42 53 44

or in the form

(e (1 = K1) 384 = 1483) = (i, = T 1) (1,64 = 10,85)
+(t - oty )11.85 = 1m:8,))
T,(s)= 1 i, (MG —1,85) — (W — Ko i, )G —10,81) (21)
’ K/? (i =T )18 —m,60))
(4 (7,65 —11:65) — (4 — KgﬂZ)(nlé} -17$)
(i, = T )G, = 1,6)))-

Also, in eqn. (12-14), we can compute the equation of the vector
Eﬁ(s), where

E/;(S) =B A Tﬁ(s) A Nﬁ(s):

leads us to
-7(s) T(s) N(s) E(s)
0
E,(s) = 1 ;.ll . Hy ‘ Hy .
Icﬂ H (,u1 - Kgﬂz) (,uz - Tgﬂs) (,u3 + Tgﬂz)
(7 — ) , (73— 1) (n, — 1)
or in the format
1 0 Hy H
Eﬁ(s):_F (ﬂl_KgﬂZ) (/lz_fg,us) (ﬂ}"'ﬂ;ﬂz) 7(s)
4 1, (75— 1) (14— 15)
1 Hy Hy H
_F /'11 (/uz - Tg/u3) (/uz + Tglle) T(S)
v =) (15— ) (n, — 1)
| H 0 Hy
+IC7 s (ty =Ky y) (5 + 7 1,)|N(s)
4 (1 — ) m, (n,— 1)
| H 0 H,
_Ki o (e — Kg/uz) (4, - Tg/uz) E(s),
v (- 1) , (75— 1)

which completes the proof.
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The Frenet Apparatus of an Evolute Curve in De Sitter
3-Space

Moreover, we introduce the Frenet apparatus of an evolute curve
according to the Frenet apparatus of an involute curve in de Sitter

3-space. Otherwise, we define the hyperbolic evolute curve in de Sitter
3-space as follows:

Definition 5.1 We define the hyperbolic evolute curve ¥ : 1 — S;
of y(s) by

Y (s) = —————| K,7(s) + N(s) + e E(S)]
K

ng

2
K
under the assumption that K; —( £ J <1.
K,T
g g

£ )
We remark that y (s) is located in Sf if and only if ’fé —[K £ j <1,
where y(s) is an involute curve of y(s) (see [1]).

The Frenet apparatus of the evolute curve in S; denoted by
{(W(9). T, (). N, (). E, (). K, (5). T, (5)}.
can be formed according to the Frenet apparatus of the involute curve
y()-

Theorem 3: If y(s) is a unit speed spacelike curve and is an evolute
curve of y(s). Then, the Frenet apparatus of the evolute curve y(s) is as
follows:

Proof: It follows from the definition of an evolute curve in de Sitter
3-space that

K. 1 K.

w(s)= f 7+ - £ - E.
\/( Ke J —x, +1 \j[ K J —x, +1 KHTHJ[ X J —x, +1 (22)
Kgrg KL’TJJ Kﬂrﬂ
If, we refer to
K 1
g =
A ——— e —— .,
K K
[ gJ—K§+1 ( g]—lc;+1
Ké’Tg Kng
= kg .
Y (23)
KT, g — K, +1
ng-g

Then, we have

Y (s) = Ay(s)+ LN(s) + AE(s). (24)
Differentiating both sides of Eq.(24), and from Egs (5), we have

T, (s) = 47 (s) + 47(s) + LN(s) + L,N(s) + LE(s) + LE(s)

= 3y (8)+ AT(s) + AN(s) + Ay (~0K, T(s) + 7, E(s))

+AE(s) + 24, (z,N(s))

= Ay (s)+ (4 = Ok, ) T(s) + (4, +7,4)N(s)

+(Ay +7,4,)E(s). (25)
Therefore, by differentiating Eq.(??), we get

Ay = 24+ 5K, 2)7(8) + (24 = 5k 1oy = 25K Ay = 0,7, ) T(s)
i Ay — k2 + Ay + 3,2, + 27,4y + 72 2,)N(s) (26)
Hr dy + 700 + Ay + 3,0, +7,4,)E(s),

3T, (s) =

or in the formula

T, () = §7(5) + ET(5) + EN(s) + S E(s), (27)
where
&= (h = A+ 5K, 4)
3 & = A4 -6k, A, — 20K, A, — 0Kk, T 1)
& = (kA — kA + Ay + T, A+ 21 A +T2A,)
&= A+l + A+t A+, 4).

Thus, in eqn. (24) and (27) we can compute the value of the vector
N, (s)> where

T, () +y(s)
IT, () +w ()|
Then, we have
N, ()= (& +2) +& + &+ 4) +(E+A)]) (& + ()
+&,T(s) + (&5 + 4)N(s) + (&, + A4)E(s))). (28)
Also, in eqn.(27) and (28), we have

K, =@ g @Ay e ]

Therefore, by differentiating in eqn.(26) with respect to s, one can
obtain

F(8)= (4 =34 +26k 4, + 35k, A, + 0,7, )y (s) + (34, — A + 0K 4,
—Ok Ay = 36K Ay = 30K, Ay — Ok T Ay — O, F My = 3K,T Ay — Ok,
+0K Ay — O, T2 ) T(8) + (Bic A, = 30K K Ay = 3K A, + K, Ay
—OKIT A+ 3T, E A + 3T + Ay +E A+ 3E A T A+ T

+22 LIN(S) + (k7,4 — Ot Ay + Tody + 37,4, + 37,8, 4 + s

N, (s) =

+372 4, + 32,4, +7,4,)E(s), (29)
then, we have
W (s)= By(s)+ B, T(s)+ BN(s) + B,E(s), (30)
where
B, = (4 =34 + 20k 4, + 36k, 4, + Ok, 7, 2)

B, =Q@A-A+0kA— KA -3k, 4, -3k, 4, - 5K,7 2
—OK, T, Ay = 3K,T, Ay — S A + Ok Ay — Ok, ToAy)
= B,y = 30K & Ay = 3O, + K 2y — ST g + 37,24, B1)
W32+ Ay + T A+ 3T A+ T A+ T A + 28 )
B, =(k,z,A =Kt Ay +T.0 +31,0, + 30,0 4+ 4, + 3704
+3¢ 4, + 1.4).

In eqn.(24), (25), (27), and (30), we can compute the torsion T, of
the evolute curve y(s) as

Ho 0 A A
T =— LA h=rh) (h+rd) (h+rh)
/(S)__iz >
! Ko |4 S S S

B B B, B,

which implies
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(h((h =K o )EB, = EB) = (s + T, 4 )EB, ~ EB,) Examples

(A4 + 7, )88, - &,B,)) In this section, we construct two examples of an evolute curves in

T (s)= 1 2 (A(&B, = £,B,) ~ (4 =K, L)EB, —£,B,) hyperbolic 2-space and hyperbolic 3-space and show that the Frenet

s K HA+ T, L)EB, - &B) apparatus of an envolute curves in hyperbolic space can be obtained
+2,(A(&,B, ~£,B,) (A — K, L)EB, ~£B) from Frenet apparatus of an involute curves.

+HA +7,4)(6 B, - 5,B). Example 6.1 Consider the general helix curve y in H2(-1), where

(32)

(Figure 1)
(33)

-Gyl ol {2

Also, from eqn. (24), (28) and (29), we can compute the equation
Now, we need to find the Frenet frame on the curve y. From

of the vector Ew(s), where
E,(s)=y(s) AT, () AN, (s),
then, we get equation ( 33), the tangent vector of the curve y is given by
=7(s) T(s) N(s) E(s) LR 3 3 3
1 A 0 A A T(s)=y(s)= ,\fcos(\fs],—\fsin((s]]. (34)
E,()=— - ~ ; V2'\2 2 2 2
Y K| A (h-xA) (h+r k) (L+1.h)
(& +2) & (& +4) (& +4) Thus, from Egs. (33) and (34), we get
ie.,
—i j k
1 0 . & . A s . 3 3
E, ()=~ |(h=KA) (h+rh) (h+r,A)r6) YOATE) == sin & cos ES : (35)
B &+h) (Gt h)
A 2 y3 L \/gcos[\/gs] —\/Esin[\/gsJ
1 . : V2 N2 2 2 2
| A GrnA) (A+rh)T6) .
) (GrA) (G A) stee
] A 0 2 E(s) = 7(s) A T(s).
| A imrA) (htr NG Then, we get
S (& +4) E()Z\E'z\ﬁﬂﬁ Z\E _
&) 2 sin 25 5 cos 2S l

Y&+ A)
A0 A
4 A - 4) (L+7,4)  |Es), [ﬁ [\FJ ) [\FD
+| ——ssIn| ,|—=s [+—=C0S8| ,|—=5 | | ]
2 NG 2

1
K,
(& +A) e‘z (& +4)

which completes the proof.

Figure 1: (a) Evolute curve a(s), (b) Involute curve y(s).
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L )yl E o0

or in simplified format

o )l )
TN

Also, from in eqn. (34), we have

T(s) = (0,—3sin[\/§sj,—3cos[\/§sj}
2 2 2 2

we can compute the curvature of the curve y as follows:
sin| [=s cos| ,|=s
[ 2 2
—co8| ,[=S | —4/=sin|,[=s
2 2 2 2
0 —3sin(\/§sj —écos( Es)
2 2 2 2
s 133 L3 33 ., 3
= | — |— — +— [— —
RN [2\&005 {\fzsj 2\f2Sln ( 2SD
+i sin \/Es cos \/Es —sin \/Es cos \/Es
22 2 2 2 2 )f

then, we have

l\)‘»—- s“h

K, (s)=

or

K, (s)= —@s.
¢ 4
Then, we can find the equation of an evolute curve from definition
(3.1) as
| (\E(4—352),écos(\/ﬁs}—ﬁssin[\/ﬁs}
2a(s) = (38)

|27s* —16| 4 (3 3
’_ﬁSIH[\ES]_ﬁSCOS( Es)).

Therefore, in eqn. (7) we obtain the Frenet apparatus of the evolute
curve a(s) as follows:

63 (=5+/2s, (9s* -2) sin[\/gs] — 365 cos( %s)

1275 - 16 ,(9s? —2)cos(\/§sJ+ 365 sin[\/gs]),
and
E (s)=ﬂ € \/Ecos \/Es —\/Esin \/Es .
‘ |27s% -16]| V2V 2 2 )7 \N2 2

Also, we get

2T, (5) =

K, (s)= 27

3

[27s2 -16]?

Example 6.2 Let y be a general helix in H?(-1) , where
7(s)= (ﬁ cosh(s),v2 sinh(s),sin(s),cos(s)). (39)

Now, we need to find the Frenet frame on the curve y. From in eqn.
(139), the tangent vector of the curve y given from

T(s) = (JE sinh(s),~/2 cosh(s), cos(s), —sin(s)), (40)
and we get
T(s) = (\/Ecosh(s),ﬁsinh(s),—sin(s),—cos(s)). (41)
In eqn. (39) and (41), we get
_ T(S)_7/(S) _ Cw _ 42
N(s) 7” T =70 (0,0, sin(s), cos(s)), (42)

we can compute the curvature of the curve y as follows:

K, ()= T(s) = y(s)[|= 2.

Also, we get
E(s)=y(s) AT(s) AN(s)
—i j k I
_ x/zcosh(s) x/zsinh(s) sin(s)  cos(s)
J2sinh(s) +2cosh(s) cos(s) —sin(s)|
0 0 —sin(s) —cos(s)
or in the form
V2 sinh(s) sin(s)  cos(s)
E(s)=- x/icosh(s) cos(s) —sin(s)|i
0 —sin(s) —cos(s)
V2 cosh(s) sin(s)  cos(s)
—|/2sinh(s) cos(s) —sin(s)|j
0 —sin(s) —cos(s)
V2 cosh(s) V2 sinh(s)  cos(s)
+|\2sinh(s) ~2cosh(s) —sin(s)|k
0 0 —cos(s)
V2 cosh(s) ~/2sinh(s) sin(s)
- \/Esinh(s) x/icosh(s) cos(s) /,
0 0 —sin(s)

then, we have
E(s)= (ﬁ sinh(s),~/2 cosh(s),—2cos(s),2 sin(s)).
Therefore, we obtain

\/Ecosh(s) x/zsinh(s)
det(y.7.5.7) = V2sinh(s) /2 cosh(s)
nerr \/Ecosh(s) \/Esinh(s) —sin(s) —cos(s) ’

V2sinh(s) 2cosh(s) —cos(s)

sin(s)  cos(s)

cos(s)  —sin(s)
sin(s)
where

det(,7,7,7) = /2 cosh(s)[—v/2 cosh(s) — cos(s)(~/2 sin(s)sinh(s)
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and then, we obtain the Frenet apparatus of the evolute curve f3(s) as
2

T,(s) = ——

7B

++/2 cos(s)cosh(s)) — sin(s)(—\/i cos(s)sinh(s)
++/2 sin(s)cosh(s))]— x/zsinh(s)[—x/i sinh(s)
—cos(s)(+/2 sin(s) cosh(s) + /2 cos(s)sinh(s))

(ﬁ sinh(s), x/Ecosh(s), —2co0s(s),2 sin(s)),

—sin(s)(—/2 cos(s) cosh(s) + v/2 sin(s)sinh(s)] Nale)= %(72 sinh(s),~260sh(s),(-242 + S)sin(s), (22 + S)COS(S))’

+sin(s)[v2 sinh(s)(V2 sin(s)sinh(s) + /2 cos(s) cosh(s)) E, () = —(\2 sinh(s).v2 cosh(s),cos(s).~sin(s)).

—J2 cosh(s)(+/2 sin(s) cosh(s) +~/2 cos(s)sinh(s)) 35

—2sin(s))] — cos(s)[V/2 sinh(s)(—v/2 cos(s)sinh(s) Also, we get [, (s) = \E sand T(s)=0.

++/2 sin(s)cosh(s)) — x/zcosh(s)(—x/fcos(s) cosh(s) References

++/2 sin(s)sinh(s)) + 2 cos(s))], 1. Abdel-Aziz HS, Khalifa M, Abdel-salam AA (2018) Some geometric invariants
of pseudo-spherical evolutes in the hyperbolic 3-space. CMC Comp Mater Cont

then, we get 57 :389-415.
de17.7.7) =8 2 St CoL 4 201 et s ki e oo
Therefore, we have 3. Hayashi R, Izumiya, Sato T (2013) Duals of curves in hyperbolic space. Note

det(y,7.7.7) di Matematica 33: 97-106.
— IV EVE) —
7, ()= 2 2. 4. Boyer BC (1968) A History of Mathematics. New York: Wiley.
g
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