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Abstract 

Solving systems of nonlinear equations is a relatively 

complicated problem for which a number of different 

approaches have been presented. In this paper, a new algorithm 

is proposed for the solutions of systems of nonlinear equations. 

This algorithm uses a combination of the gradient and the 

Newton’s methods. A novel dynamic combinatory is developed 

to determine the contribution of the methods in the 

combination. Also, by using some parameters in the proposed 

algorithm, this contribution is adjusted. We use the gradient 

method due to its global convergence property, and the 

Newton’s method to speed up the convergence rate. We 

consider two different combinations. In the first one, a step 

length is determined only along the gradient direction. The 

second one is finding a step length along both the gradient and 

the Newton’s directions. The performance of the proposed 

algorithm in comparison to the Newton’s method, the gradient 

method and an existing combination method is explored on 

several well known test problems in solving systems of 

nonlinear equations. The numerical results provide evidence 

that the proposed combination algorithm is generally more 

robust and efficient than other mentioned methods on some 

important and difficult problems.  

 

Keywords: Systems of nonlinear equations, Newton’s Method, 

Gradient method, Line search, Global 

convergence  

 

1. Introduction 

The solutions of systems of equations have a well-developed 

mathematical and computational theory when solving linear 

systems, or a single nonlinear equation. The situation is much 

more complicated when the equations in the system do not 

exhibit nice linear or polynomial properties. In this general 

case, both the mathematical theory and computational practices 

are far from complete understanding of the solution process.  

Systems of nonlinear equations arise in various domains of 

practical importance such as engineering, medicines, chemistry, 

and robotics [15, 21, 37]. They appear also in many geometric 

computations such as intersections, minimum distance, creation 

of centenary curves, and when solving initial or boundary value 

problems in ordinary or partial differential equations [13] and 

[16]. The application of nonlinear systems in load flow 

calculation in power system has been done by Spong and et. all 

[32] in which their results of block Guass-Sidel iteration are 

compared with those of Newton-Raphson iteration. Solving 

such a system involves finding all the solutions of equations 

contained in the mentioned system.  

In this paper, we consider the problem of finding solutions to a 

system of nonlinear equations of the form ���� � �,   (1) 

where �: 
� � 
� , � � �0, … ,0�, and � refers to � variables, � �  ���, … , ���. We denote the �-th component of � by ��, 
where ��: 
� �  
 is a nonlinear function and twice 

continuously differentiable on a convex set � � 
�. 

There is a class of methods for the numerical solutions of the 

system (1), which arises from iterative procedure used for 

systems of linear equations [12]. These methods use reduction 

to simpler one-dimensional nonlinear equations for the 

components ��, �� …��.   
There are some iterative methods for solving systems of 

nonlinear equations in the book written by Kelley [15]. A wide 

range class of iterative methods for solving systems of 

nonlinear equations has been suggested in the papers [2, 11, 25, 

26]. 

Most of the methods for solving (1) are optimization-based 

methods [1, 4, 6, 11, 17, 22, 37]. In the approach proposed in 

[22], the system (1) is transformed in to a constraint 

optimization problem. At each step, some equations that are 

satisfied at the current point are treated as constraints and the 

other ones as objective functions.  In a strategy based on 

optimization methods, at each iteration, a quadratic function is 

minimized to determine the next feasible point to step to. The 

quadratic function is the squared norm of the original system.  

To find a solution of (1), one can transform the system (1) into 

an unconstrained optimization problem and then solving the 

new unconstrained problem instead by applying an optimization 

method. The transformed problem is formulated as: ���� � �� �������,                              (2) 

where, here and throughout the paper, �·� stands for the 

Euclidean norm. Obviously, optimal solutions of problem (2) 

with the zero value of the objective function correspond to 

global solutions of system (1).    

In the last decades, many publications, both in theoretical and 

especially numerical issues, have been done for solving the 

problem (2) [3, 5, 9, 10, 18, 24, 27, 31, 33, 35]. Many search 
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direction methods such as the gradient method, the Newton’s 

method, the quasi-Newton methods, the conjugate gradient and 

coordinate direction methods have been applied to find a 

minimizer of (2). 

The steepest descent method (or gradient method) is a 

commonly used method. It has the globally convergence 

property, however, this method suffers from the slow speed and 

is easy plunging into local minima. In order to accelerate these 

difficulties, many methods have been used [10]. One way is the 

use of combination of different local optimization methods. It 

has been found that these methods show significant reduction in 

the number of iterations and the expense of function 

evaluations. In recent years, there has been a growing interest in 

applying these combination methods [7, 29, 30, 36]. Buckley 

[7] proposed a strategy of using a conjugate gradient search 

direction for most iterations and using periodically a quasi-

Newton step to improve the convergence. This algorithm offers 

the user the opportunity to specify the amount of available 

storage. Wang and et al. [36] proposed a revised conjugate 

gradient projection method, that is, a combination of the 

conjugate projection gradient and the quasi-Newton methods 

for nonlinear inequality constrained optimization problems. 

Recently, Y. Shi [29] proposed a combined method of the 

Newton’s and the steepest descent methods for solving 

nonlinear systems of equations within each iteration. Further in 

[30], in order to deal with an unconstrained problem, the 

combination of the steepest descent with the Newton and the 

quasi-Newton methods were developed and compared with 

some traditional and existing methods.  

Our procedure here for solving systems of nonlinear equations 

is based on the combination of local optimization methods. We 

apply the gradient and the Newton’s methods for our 

combination algorithm. They are combined into an integrated 

procedure, and especially the dynamic combination is of our 

interest challenge. The combined algorithms proposed in this 

paper are different from the existing algorithms [7, 29, 30, 36]. 

In the other words, we propose a novel algorithm with a new 

combination which offers the user the opportunity to specify the 

amount contribution of the methods.  

The rest of the paper is organized as follows: Section 2 gives a 

brief review to preliminaries about optimization. In Section 3, 

we review the descent methods. We present the proposed 

combination algorithm in Section 4. The global convergence 

property of this algorithm has been proved in Section 5. We 

have demonstrated the efficiency of the proposed algorithm 

with some experiments in Section 6. Section 7 concludes the 

paper. 

 

2. Preliminaries 
Usually, optimization methods are iterative. The basic idea is 

that, with an initial guess of the optimal values of the variables, ����, an optimization method generates a sequence ���� of 

improved estimates until it reaches a solution. When ���� is a 

finite sequence, the last point is the optimal solution; when ���� 
is infinite, it has a limit point which is the optimal solution of 

the problem. The strategy used to move from one iterate to the 

next distinguishes one algorithm from another. A typical 

behavior of an algorithm which is regarded as acceptable is that 

the iterates ���� move steadily towards the neighborhood of a 

point local minimizer, and then rapidly converge to that point. 

When a given convergence rule is satisfied, the iteration will be 

terminated. In general, the most natural stopping criterion is ���� �  ,                                                                (3) 

where �� stands for !���� at �� and � is defined by (2).  " 0 

is a prescribed error tolerance.  

Let ��  be the #-th iterate, $� #-th search direction, and %� #-th 

step length, then the #-th iteration is ��&� � �� ' %�$� .                                                 (4) 

There are two fundamental strategies for moving from the 

current point �� to a new state ��&�:  Trust region [24, 38] and 

Line search [24, 28, 31, 33]. 

In the trust region strategy, the information gathered about � is 

used to construct a model function whose behavior near the 

current point �� is similar to that of the actual objective 

function �. When � is far from �� , the model may not be a good 

approximation of  �. Therefore, the search for a minimizer of 

the model is restricted to some region around ��. 

In the line search strategy, the algorithm chooses a direction $� 

and searches along this direction from the current iterate ��  for 

a new iterate with a lower function value.  

The line search and trust-region approaches differ in the order 

in which they choose the direction and distance of the move to 

the next iterate. Line search starts by fixing the direction $� and 

then identifying an appropriate distance, namely the step 

length %�. In trust region, firstly a maximum distance is chosen, 

the trust region radius, and then a direction and a step that attain 

the best possible improvement subject to this distance constraint 

is found. If this step proves to be unsatisfactory, the distance 

measure will be reduced and tried again [24].  

A trust region method is effective since it limits the step to a 

region of greater confidence in the local model and attempts to 

utilize more information from the local model for finding a 

shortened step. However, trust region models are more difficult 

to formulate and solve than a line search strategy [31]. In this 

paper, we will focus on line search strategies. 

 

2.1 Line Search 

Line search methods are traditional and efficient methods for 

solving unconstrained minimization problems. Its convergence 

has attracted more attention in recent years [3, 19, 35].  

The success of a line search method depends on effective 

choices of both the direction $�  and the step length %�. It is 

clarified that the search direction plays a main role in the 

algorithm and that step length guarantees the global 

convergence in some cases. 

There are two alternatives for finding the distance to move 

along $�  namely the exact line search and inexact line search 

[19, 28, 31, 33]. In the exact line search, the following one-

dimensional minimization problem will be solved to find a step 

length %: (��) ���� ' %$��.                                                  (5) 

If we choose %� such that the objective function has acceptable 

descent amount, i.e., it means the descent ����� *���� ' %�$�� " 0                                     (6) 

is acceptable by users, such a line search is called inexact line 

search. Since, in practical computation, exact optimal step 

length generally cannot be found, and it is also expensive to 

find almost exact step length, therefore the inexact line search 

with less computation load is highly popular.  

A simple condition we could impose on %� in an inexact line 

search is to require a reduction in �: ���� ' %�$�� � �����.                                           (7) 

It has been shown that this requirement is not enough to 

produce convergence to optimal point [24, 33]. The difficulty is 

that there is not always a sufficient reduction in � at each step, a 

concept we discuss next. 

There are several inexact line search rules for choosing an 

appropriate step length %�, for example the Armijo rule, the 
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Goldstein rule, and the Wolfe-Powell rules [24, 31, 33], which 

are described briefly in the following. 

 

Armijo Rule and Goldstein Rule 

Armijo rule is as follows: ����� * ���� ' +,-$�� . */+,0��1$�,     
where + 2 �0,1�, / 2 40, ��5,  and 0 " 0,                    (8)  ( � 0,1, …, are tried successively until the above 

inequality is satisfied for ( � (�. 
 

Goldstein presented the following rule. Let 6 � �% " 0: ���� ' %$�� � ������ 
be an interval. In order to guarantee the function 

decreases sufficiently, we want to choose α such that it 

is away from the two end points of the interval 6.  
The Goldstein conditions are ���� ' %$�� 7 ����� ' /%��1$� ,                           (9) 

and ���� ' %$�� . ����� ' �1 * /�%��1$� ,                  (10) 

which exclude those points near the right end point and 

the left end point. 

 

Wolfe-Powell Rule 

It is possible that the rule (10) excludes the minimizing value 

of % outside the acceptable interval. Instead, the Wolfe-Powell 

gives another rule to replace (10): ��&�1 $� . 8��1$�, 8 2 �/, 1�. 
Therefore, the step length %� in the Wolfe-Powell rule will be 

determined along the direction $� satisfying: ���� ' %$�� 7 ����� ' /%��1$� ,                          (11) 

and ��&�1 $� . 8��1$�, 8 2 �/, 1�.                                  (12) 

The Wolfe-Powell rule is a popular inexact line search rule. We 

will use it in our algorithm and all experiments in this paper. 

 

2.2. Search Directions  

The search direction in gradient-based methods often has the 

form $� � *9�:��� ,                                                         (13) 

where 9� is a symmetric and nonsingular matrix. For example, 

in the gradient method 9� is simply the identity matrix, $� �*��  ;3, 24, 33?. $� � *@�:�g� corresponds to the Newton’s 

method with @�:� being available, where  @� is an exact Hessian 

of � ;24, 33?. In quasi-Newton methods, 9� is an 

approximation to the Hessian @� that is updated at every 

iteration by means of a low-rank formula [5, 9, 24, 33]. In the 

conjugate gradient method, $� is defined by  $� � *�� ' +�$�:�, # . 2, and $� � *�� ; +�  is a parameter 

[8,18, 24, 33]. 

When $� is defined by (13) and 9� is positive definite, we 

have $�1�� � *��19�:��� � 0, and therefore $� is a descent 

direction. 

The search direction $�   is generally required to satisfy the 

descent condition: ��$� � 0.                                                                 (14) 

The condition (14) guarantees that $� is a descent direction of � 

at �� [24, 33]. 

 

3. Descent Methods 

Many techniques have been devoted for solving (2), as well as 

(1). These problems are usually carried out using iterative 

methods due to the fact that there are generally no analytical 

methods to solve these problems. Among the variety of the 

exiting methods, the descent direction methods are the most 

popular techniques because of their fast convergence property. 

A general descent direction algorithm is given in the Algorithm 

1. 

 

Algorithm 1. A General Descent Framework 

0. Lets �� 2 
� be a given initial point, and  " 0 an error 

tolerance. Each iteration # � 1,2, … of a descent direction 

method contains the following steps: 

1. If ���� �  , then stop. 

2. Compute a descent direction $� at  �� satisfying (14). 

3. Determine an appropriate step length %� " 0. 

4. Set ��&� � �� ' %�$�, and go to the next iteration. 

Let Ω � ��|���� 7 ������ be the level set, and consider the 

Wolfe-Powell conditions (11) and (12) to determine %�, then the 

global convergence of the Algorithm 1 is given by the following 

Theorem [33]. 

 

Theorem 1. Let %� in the above descent direction algorithm be 

defined by (11) and (12). Let also $� satisfies DEF G� . H, (15) 

for some H " 0 and for all k, where G� is the angle between $� 

and *��. If ���� exists and is uniformly continuous on the 

level set Ω, then either �� � 0 for some k, or �� � *∞, 

or �� � 0.  

Proof can be found in [33], Theorem 2.5.4.  

One of the most widely used methods satisfying Theorem 1 is 

the gradient method, in which d� � *�� for all #. Although the 

method is globally convergent and usually works well in some 

early steps, as a stationary point is approached, it may descend 

very slowly. In fact, it is shown that the convergence rate of the 

gradient method is at least linear, and the following bound holds  �KLMN:KO��KL:KO� 7 PQRS:PQTUPQRS&PQTU,                                          (16) 

where V,WK  and V,�� are the largest and the smallest 

eigenvalues of the Hessian matrix, respectively. 

In order to cope with the above-mentioned difficulties, one can 

use the Newton’s method with the quadratic convergence 

property. At the #-th iteration, the classical Newton’s direction 

is the solution of the following system:  @�$� � *�� , (17) 

where @�  is the Hessian matrix at ��. If @ is positive definite, 

then the Newton’s direction is a descent direction and 

consequently the system has a unique solution. Even when @ is 

positive definite, it is not guaranteed that Newton’s method will 

be globally convergent. Although the Newton’s method 

generally converges faster than the gradient method, it depends 

strongly on a starting point. On the other hand, the application 

of the Newton’s method for solving the nonlinear equations is 

expensive due to the direct calculations of second order 

derivatives of the function, @. A number of techniques avoiding 

the direct computation of @ may be used. Upon different 

approximation there are different methods. In this category are 

the quasi-Newton methods which approximate second 

derivatives in a most subtle and efficient way. Another 

alternative is the use of a fusion of different local optimization 

methods which lead naturally to powerful algorithms and has 

been attracted extensive attention in recent years. One of the 

most successful methods of this category, introduced by Shi 

[30], uses a combination of the gradient method and the 

Newton’s method. This algorithm is an efficient algorithm for 

solving problem (2) due to its global convergence property. In 

our experiments, we compare our results with this combination 

algorithm and refer it by ShA. The direction in algorithm ShA is 

very close to the Newton’s direction. However, practical 
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implementations show that, in some cases the gradient method 

can be a more suitable choice than the Newton’s method. For 

instance, when the difference of the function values, in two 

previous iterations, and also the value of the gradient in the 

previous iteration is large enough, the gradient method may 

work better than the Newton’s method. 

 

4. Proposed Algorithm 

Our aim here is to present an algorithm with two different 

combinations for solving the problem (2), as well as the 

problem (1). Both proposed combinations are constructed so 

that they satisfy in the condition of descent methods and as well 

as  the Theorem 1. 

Let H�, X, / and 8 be four parameters so that 0 � H � 1, 0 � X � 1, 0 � / � �� and / � 8 � 1. Take any positive 

constants 0�, 0� and Y�, � � 1,2,3, such that 0� " 1, 0 � Y� � 1, 1 � Y� � 1 H⁄  and Y[ " 1 and initialize \� by 1. Let also T, and τ  be very large and small positive numbers, respectively, and 

let ����� � �����. The steps of the proposed algorithm are as 

follows. 

 

Algorithm 2. A Combination of the Gradient and Newton’s 

Methods 

0. Choose a starting point �� 2 
�, and an error tolerance  "0. For # � 1,2, … do 

1. If �g����� �  , then stop. 

2. If the Newton’s direction $� is not computable, due to the 

singularity of the Hessian, then compute the gradient 

direction $� � *�� at  ��, and go to step 8. 

3. Compute the gradient direction $� and the Newton’s 

direction $� at �� that satisfies (17). 

4. Set H � H� and \ � \�. If |����� * ����:��| " 0� and �� " 0�, set H _ Y�H� and go to step 7. 

5. If # � 1 or if  ���� 7 ���:��, set � � �� ' $� and go to 

step 6. 

6. If ���� � ����� and ���� 7 X�� then H _ Y�H�. 

7. If $�1$� . 0 go to step 9, otherwise go to the next step. 

8. Use rules (11) and (12) to determine a step length %� " 0 

along the direction $� � $�, set F� � %�$� and go to step 

12. 

9. Compute ` as follows: ` � 1\ ' |����� * ����:��|     

(18) 

  and set $�`� � �1 * `�$� ' `$�. 

10. If $�`�1$� � H�$�`���$��, set \ _ Y[\ and and go back 

to step 9. 

11. Consider one of the following two versions to calculate F�:  

a. Use rules (11) and (12) to determine a step length %� " 0 along the direction $� � $� and set F�a �%��1 * `�$� ' `$�. If ���� '  F�a� 7 ����� *τ� F�a�  and %��d�� 7 T�d��, set F� �  F�a ; otherwise set  F� � αdd�. 
b. Use rules (11) and (12) to determine a step length %� " 0 along the direction $� � $�`� and set F� � %�$�. 

12. Set ��&� � �� ' F�. 

 

Parameters Y�, Y� and Y[ are positive constants so that they 

offer the user the opportunity to specify the amount contribution 

of the methods. More precisely, when the slope of the function 

is slight, the algorithm tends to the Newton’s method, otherwise 

the contribution of gradient is increased and is considered close 

to the gradient method. In (18), when a difference between two 

previous values of the function is high then ` is close to 0,  and ` � 1 as |����� * �����| � 0. Moreover, this equation is a 

dynamic form and has a crucial rule in the algorithm so that it 

specifies the amount contribution of the methods. It, also, 

guaranties that, near the solution, we get the optimal point with 

a super-linear convergence rate. 

In step 11 of the above algorithm, we use two different 

strategies by means of the combination. Step 11. e is a new 

combination and different from the existing methods in the 

literature. In this combination, the step length %� is determined 

only along the gradient direction. In other words, we use a 

novel combination of the pure Newton’s method (i.e., %� � 1) 

and the gradient method. The second one is the usual 

combination which has been developed in some research works. 

The step length in this case is found along a combination of the 

gradient and the Newton’s directions. 

 

5. Global convergence Theorem 

Here, we establish the global convergence of the proposed 

combination algorithm based on the global convergence 

property of the Theorem 1. 

 

Theorem 2. Consider using the Algorithm 2 to solve the 

problem (2). Assume that ���� exists and is uniformly 

continuous on the level set Ω. Then either �� � 0 for some #, or �� � *∞, or  �� � 0. 

Proof. Let assume that �� f 0 and �� is bounded below for 

all #. It is clear that in this case, �� � ��:� for all #. 
Denote HO _ Y�H�, clearly HO 2 �0,1�. We will show that the 

direction $� obtained by the algorithm satisfies condition (15) 

of the Theorem 1 for HO; that is, DEF G� . HO,  (19) 

for all #, where G� is the angle between $� and $� � *��. 

Suppose Fd is obtained at Step 8. Then $� � *�� (Step 8), and 

it is easy to see that DEF G� � 1 " HO; it means (15) holds. Now, 

we consider other cases: case 1: Fd is obtained via Step 11.b and 

case 2:  Fd is obtained via Step 11.a. We will proof each case 

separately as follows:  

Take any integer #.  

1.  In this case, we assume that Fd is obtained at Step 11.b. Then $� � $�`� is chosen as a descent direction and according to 

steps 9-10, the number ` can be chosen so that the 

inequality $�`�1$� . H�$�`���$��   holds, where H _ Y�H� 

or H _ Y�H�. Therefore, we have 

DEF G� . $�`�1$��$�`���$�� . H . HO,                    

(20)  

that is, (19) holds and therefore the obtained direction, $�, 

satisfies in the assumption of the Theorem 1, hence the 

remainder proof is similar to the proof of the Theorem 1 in [33]. 

2. In this case, we assume Fd is obtained at Step 11.a, i.e. Fd �%��1 * `�$� ' `$�.  

If the number of cases in Fd obtained by Step 11.a is finite, then 

it means Fd is defined by the gradient direction, $�, for all 

sufficiently large k,  and therefore the proof will be easily 

obtained.  

Now suppose it is not finite, i.e., there is a subsequence #, � ∞ such that F�Q is obtained via Step 11.a.  

By considering the first condition in 11.a, since �� is bounded 

below we have hF�Qh � 0 as #, � ∞. 
In addition, from $�$� . 0 we obtain hF�,h� . %�Q� �1 * ξ���$��� ' ξ��$���. 
Now, we are going to show �� � 0. Suppose it is not true. Then 

there exist a subsequence �#,� such that h��Qh .  j " 0, k#,.  
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Here we consider two cases: (i) �$�� � 0 as #, � ∞, and (ii)  �$�� does not converge to zero. The case (i) leads to 

contradiction by applying the second condition in Step 11.a. In 

the case (ii), let us consider h$�,�Qh .  ̃ " 0, k#,  which is 

contradiction by hF�Qh � 0. Therefore, the proof is complete, 

i.e., �� � 0 

 

6. Experiments and Results  

We have evaluated the performance of the proposed algorithm 

for several well known benchmark test problems given in [20, 

34].In the proposed algorithm, we use two different 

combination as described in steps 11.a and 11.b; we refer these 

cases as 'Ala' and 'Alb', respectively. The group of methods we 

have compared includes Ala, Alb, the gradient method (GM), 

the Newton’s method (NM), and ShA presented in [8]. In all 

algorithms we use the Wolfe-Powell line search rules to find an 

acceptable step length. 

The calculations were carried out using MATLAB. The 

comparison of the methods is based on the following criteria: all 

methods are terminated if the gradient converges to a 

predefined tolerance, �g����� �  ,  � 10:m, or the iteration 

number exceeds 500. 

The parameters H�, \�, X, /, 8, 0�, Y� , τ and T used in this paper 

are: H� �  0.001, \� � 1, X �  0.99, / � 0.001, 8 �  0.9, 0� � 0� � �,  Y� � 0.01, Y� � �oN , Y[ � 1.1, τ � 10:��and T � 10��. 
We have listed the following ten test problems used in the 

experiments. To define the test functions, the general formats 1 

to 3 have been adopted [20, 34]: 

1. Dimension, � . 

2. Function definition,  ��, �� …�,. 
3. Standard initial point, ��.  

 

Problem 1. Helical Valley function � �  ( � 3 ����� � 10;�[ * 10G���, ���? ����� � 10;����', �����.p * 1? �[��� � �[ 

where 

G���, ��� �
qr
s 12t arctan y����z ,            �� �� " 012t arctan y����z ' 0.5, �� �� � 0| �� � �*1,0,0�. 

 

Problem 2. Powell Singular function  � �  ( � 4 ����� � �� ' 10�� ����� � 5�.p��[ * �}� �[��� � ��� * 2�[�� �}��� � 10�.p��� * �}�� �� � �3,*1,0,1�. 
 

Problem 3. Wood function � �  4, ( � 6 ����� � 10��� * ���� ����� � 1 * �� �[��� � 90�.p��} * �[�� �}��� � 1 * �[ �p��� � 10�.p��� ' �} * 2� �m��� � 10:�.p��� * �}� �� � �*3,*1,*3,*1�. 
 

Problem 4. Watson function  2 7 � 7 31, ( � 31 

����� � ��� * 1��
��� ��  ���:� * ����  ���:��

��� �� * 1 

�� � �29 , 1 7  � 7 29 �[���� � ��, �[���� � �� * ��� * 1 

 

Problem 5. Extended Kearfott function  � �  ( � 7 ����� � ��� * ��&� ����� � ��� * �� �� � �0.1,0.1, … ,0.1�. 
 

Problem 6. Extended Eiger-Sikorski-Stenger � �  ( � 9 ����� � ��� * 0.1�� ' ��&� * 0.1 ����� � ��� * 0.1�� ' �� * 0.1  �� � �*2000,… ,*2000�. 
 

Problem 7. Variably dimensional function � variable, ( � � ' 2 ����� � �� * 1, � � 1,… , � 

��&���� � ����
��� �� * 1� 

��&���� � �∑ ������ �� * 1���       �� � 0�,  where 0� � 1 * 4��5. 

 

Problem 8. Discrete Boundary Value function � variable, ( � � 

����� � 2�� * ��:� * ��&� ' ����� ' �� ' 1�[2  

where � � ��&� , �� � ��, e�$ �� � ��&� � 0 �� � 0�  where 0� � ����� * 1�. 
 

Problem 9. Extended Rosenbrock function    � variable but even, ( � � ���:���� � 10���� * ���:�� � ������ � 1 * ���:� �� � 0� where 0��:� � *1.2, 0�� � 1. 
 

Problem 10. Trigonometric function � variable,     ( � � 

����� � � *�DEF�
��� �� ' ��1 * DEF��� * F���� 

�� � 4�� , �� , … , ��5. 

 

Table 1 lists the performance of the above-mentioned 

algorithms relative to the number of iterations used. We have 

multiplied the given initial points by 10 to have an additional 

initial point. In this table, “TP” and “IP” stand for test problem 

and initial point, respectively. Table 2 shows the summary of 

convergence results for the Table 1. In order to compare the 

algorithms with more initial points, we have generated 50 

random initial points uniformly distributed from their domains 

with the intersection of ;*10,10?. The summary of the 

convergence results of the algorithms considering these random 
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initial points is given in Table 3. In these tables, notations “AC” 

and “NC” stand for the almost convergence and not 

convergence, respectively. Convergence means that the method 

finds the solution and �g����� � 10:m, almost convergence 

means that the method finds a solution almost close to the 

optimal local solution and 10:m � �g����� 7 10:� ; otherwise 

not convergence.  

 

Table 1. Number of iterations for 10 test problems 

TP � IP Ala Alb ShA NM GM P1 

 

3 

 

�� 10��  
11 13  

11 21  
13 21  

25 NC  
�� ��  P2 

 

4 

 

�� 10�� 

 

7 9 

 

10 15 

11 17 

11 19 

135 �� 

P3 

 

4 

 

�� 10��  
20 19  

AC AC  
AC NC  

NC NC  
�� �� 

P4 

 

6 

 

�� 10��  
10 11  

12 18  
12 21  

75 77  
�� �� 

P5 

 

7 

 

�� 10�� 

 

13 8 

 

10 11 

 

9 15 

 

�� �� 

 

10 13 

 P6 

 

10 

 

�� 10�� 

 

10 17 

 

5 11 

 

7 14 

 

�� �� 

 

6 8 

 P7 

 

10 

 

�� 10��  
14 27  

17 34  
23 37  

24 38  
56 ��  P8 

 

20 

 

�� 10�� 

 

4 12 

 

5 14 

 

3 7 

 

4 8 

 

�� �C 

 P9 

 

100 

 

�� 10�� 

 

15 57 

 

17 73 

 

26 78 

 

�� �� 

 

�� �� 

 P10 

 

100 

 

�� 10�� 

 

19 23 

 

21 24 

22 27 

 

AC 34 

 

129 472 

 

 

Te numerical results in Tables 1 to 3, demonstrate the high 

performance of the proposed combination algorithm compared 

to other mentioned methods. This is confirmed by the number 

of iterations obtained, and the convergence properties. For 

example, the proposed algorithm, Ala, converges in all test 

problems for two different initial points. Alb converges in nine 

test problems out of ten. This algorithm finds the solution in the 

Wood function  almost near the optimal solution. Although the 

algorithm proposed by Shi, ShA, convergences in nine test 

problems out of ten, but it fails to find the solution in the 

problem 3. Also, the number of iterations obtained by ShA is 

more than the proposed algorithms, in average. This is worse 

for the Newton’s and the gradient methods with more AC and 

NC properties. 

 

Table 2. Summary of convergence results for Table 1 

Algorithm Convergence �� �  

Ala 100.00 0.00 0.00 

Alb 90.00   10.00       0.00 

ShA 90.00 5.00 5.00 

NM       50.00 5.00 45.00 

GM 40.00 35.00 25.00 

Table 3. Convergence results, by considering 50 initial random 

points for each test problem 

Algorithm Convergence �� �  

Ala 96.40 2.80 0.80 

Alb 88.80 9.40 1.80 

ShA 87.80 4.40 7.80 

NM 54.60 2.20 43.20 

GM 51.70 30.40 17.90 

 

7. Conclusion 
A combined algorithm of the gradient and the Newton’s 

methods has been presented for solving systems of nonlinear 

equations. We have considered two different combinations. One 

of them is a usual case which has been recently introduced in 

some research works. Another one is a new combination and 

different from others in the literature. According to the 

numerical experiments, it is clear the proposed algorithm, 

especially the proposed algorithm with the new combination, is 

more efficient than others.  
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