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Abstract
This paper proposes a novel optimization which named as Swarm based Mean-variance mapping optimization 

(MVMOS) for solving the economic dispatch. The proposed optimization algorithm is the extension of the original 
single particle mean-variance mapping optimization (MVMO). The novel feature is the special mapping function 
applied for the mutation base on the mean and variance of n-best population.The MVMOS outperforms the classical 
MVMO in global search ability due to the improvement of the mapping. The proposed MVMOS is investigated on four 
test power systems, including 3-, 13- , 20- thermal generating units and large-scale system 140 units with quadratic 
cost function and the obtained results are compared with many other known methods in the literature. Test results 
show that the proposed method can efficiently implement for solving economic dispatch.

Keywords: Economic dispatch; Quadraticfuel cost function;
MVMO; MVMOS

Nomenclature
N              Total number of generator

FT Total operationcost

Fi               Fuel cost function of generator i

ai, bi, ci         Fuel cost coefficients of generator i

Bij,B0i,B00   B-matrix coefficients fortransmissionpower loss

PD Total system load demand

Pi Power output of generatori

Pi,max Maximum power output of generator i

Pi,min Minimum power output of generator i

PL Total transmission loss

itermax         Maximum number of iterations

n_var         Numberof variable (generators)

n_par	         Number of particles

mode	          Variable selection strategy for offspring creation

archive zize    n-best individuals to be stored in the table 

di	          Initial smoothing factor
ini
0d∆          Initial smoothing factor increment
final
0d∆         Final smoothing factor increment

*
_inisf          Initial shape scaling factor

*
_ finalsf         Final shape scaling factor

Dmin	          Minimum distance threshold to the global best solution

n_randomly  Initial number of variables selected for mutation 

indep.runs   m steps independently to collect a set of reliable indi-
vidual solutions

Introduction
The Economic Dispatch (ED) is an essential optimization task 

in the power generation system and its objective is to determine the 
economical real power output of the thermal generating units to supply 
required power load demand at the minimum fuel cost while satisfying 
all units and system constrains [1,2]. Since the concept of economic 
dispatch (ED) started in the 1950’s, there are a lot of various methods 
have been employed for solving ED problems, but in short there are 
three main categories: Methods based on mathematical programming 
(Classical calculus-based techniques), methods based on artificial 
intelligence and hybrid methods.

For mathematical convenience, the objective cost function of ED 
problem is the quadratic function approximations [3], was solved by 
methods based on mathematical programming such as lambda iteration 
method, Newton’s method, gradient search, dynamic programming [3], 
linear programming [4], non-linear programming [5] and quadratic 
programming [6]. These methods are conventional techniques that 
were early employed. Over the past years, more advanced methods 
based on artificial intelligence have been developed and implemented 
outstandingly to ED problem such as Hopfield Neural Network (HNN) 
[7,8], Evolutionary Programming (EP) [9], Differential Evolution (DE) 
[10], Genetic Algorithm (GA) [11], Ant Colony Optimization (ACO) 
[12], Particle Swarm Optimization (PSO) [13,14] Bacterial Foraging 
(BF) [15], and Artificial Bee Colony (ABC) algorithm [16]. These 
methods do not always guarantee to find the global optimal solution in 
finite computational time but their ability often find near global optimal 
solution for optimization problems. Besides the single mentioned 
methods, hybrid methods have been also developed for solving the 
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ED problems such as hybridization of evolutionary programming 
with Sequential Quadratic Programming (EP-SQP) [17], combining of 
chaotic differential evolution and quadratic programming (DEC-SQP) 
[18] hybrid technique integrating the uniform design with the genetic 
algorithm (UHGA) [19], self-tuning hybrid differential evolution (self-
tuning HDE) [20], and fuzzy adaptive particle swarm optimization 
algorithm with Nelder–Mead simplex search (FAPSO-NM) [21]. These 
hybrid methods become powerful search methods for obtaining higher 
solution quality due to using the advantages of each element method to 
improve their search ability for the complex problems. Nevertheless, 
they may be slower and more complicated than the element methods 
because of combination of several operations.

The above artificial intelligence methods are population based 
meta-heuristic which can deal with multiform optimization problems 
[22]. Recently, Prof. István Erlich has been conceived and developed a 
novel optimization technique which is named Mean-variance mapping 
optimization (MVMO) [23]. This algorithm is so-called “population-
based stochastic optimization techniques”. MVMO has the capability 
to find the optimum solution quickly with minimum risk of premature 
convergence.

The extensions of MVMO, which named Swarm based Mean-
variance mapping optimization (MVMOS) [24], has been developed to 
become more effective. In this paper, MVMOS is proposed for solving 
the economic dispatch problem with quadratic cost function.

Section II presents the formulation of the ED. The review of 
MVMO, extension of MVMO-MVMOS and implementation of the 
proposed MVMOS to ED problem are addressed in Section III. The 
numerical results are showcased in Section IV. The discussion is 
followed in Section V. After all, the conclusion are given.

Problem Formulation
The power system consists of N thermal generating units. Each unit 

has a fuel cost function, shown as Fi , togenerates a power out Pi. The 
total fuel costof the system,FT,is sum of fuel cost of each unit.

1 2 3
1

... ( )
=

= + + + + = ∑
N

T N i i
i

F F F F F F P 		                (1)

The optimization problem of the ED is to minimize the total fuel 
cost FT, which be written as:

1
Minimize ( ) 1,2,3,...,

=

=      =∑
N

T i i
i

 F F P i N 	                (2)

Generally, the fuel cost curve of a thermal generating unit is 
presented as quadratic function as:

2( )i i i i i i iF P a b P c P= + + 				                        (3)

 The constraints of the ED problem must be satisfied during the 
optimization process are peresented as follows: 

Real power balance equation

The total active power output of generating units must be equal to 
total active power load demand plus power loss:

1

N

i D L
i

P P P
=

= +∑ 				                 (4)

 The power loss PLis calculated by the below formulation [3]:

0 00
1 1 1

N N N

L i ij j i i
i j i

P P B P B P B
= = =

= + +∑∑ ∑ 		                (5)

Generator capacity limits

The active power output of generating units must be within the 
allowed limits:

,min ,maxi i iP P P≤ ≤ 				                  (6) 

MVMOS for Eonomic Dispatch
Review of MVMO

Mean-variance mapping optimization (MVMO) is a novel 
optimization algorithm falls into the category of the so-called 
“population-based stochastic optimization technique”. The similarities 
between MVMO and the other known stochastic algorithms are three 
evolutionary operators: selection, mutation and crossover. However, 
the major differences between MVMO and other existing techniques 
are as follows:

- The key feature of MVMO is a special mapping function which 
applied for mutating the offspring based on mean-variance of the 
solutions stored in the archive. 

The mean ix  and variance iv  are calculated as follows:

1

1 ( )
=

= ∑
n

i i
j

x x j
n 				                 (7)

2

1

1 ( ( ) )
=

= −∑
n

i i i
j

v x j x
n

			                                  (8)

where, j= 1,2,..., n (n is population size).

The mapping function is depicted in Figure 1. The transformation 
mapping function, h, is calculated by the mean x  and shape variables 
si1 and si2 as follows:

1 2. (1 ).
1 2( , , , ) .(1 ) (1 ).− − −= − + −i ix s x s

i i ii ih x s s x x e x e 		                  (9)

where,

ln( ).= −i i ss v f 				                                   (10)

 The scaling factor fs is a MVMO parameter which allows for 
controlling the search process during iteration. si is the shape variable.

• All variables are initialized within the limit range [0,1]. The output 
of mapping function is always inside [0,1]. However, the function 
evaluation is carried out always in the original scales.

Figure 1: Variable mapping.
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• MVMO is a single-agent search algorithm because it uses a single 
parent-offspring in each iteration. Therefore, the number of fitness 
evaluations is identical to the number of iterations.

Interested readers can find the basics of algorithm and reference 
values for the algorithm’s settings in [23,24].

Extension of MVMO-MVMOS

Recently,theswarm version of MVMO has been developed. This 
version is abbreviated as MVMOS. The new approach extends the 
ability of global searching of the classical MVMO by starting the search 
with a set of particles.

Modified version of MVMO: The MVMO-algorithm extends two 
important parameters. These two parameters are used for calculation 
and assignment of si1 and si2 as follows:

Variable FS factor: In (10), the factor fs allows the modification of 
the shape factor calculated from the variance. 

The extension of fs factor is for the need of exploring the search 
space at the beginning more globally whereas, at the end of the 
iterations, the focus should be on the exploitation. It is determined by:

( )*. 1 ()= +s sf f rand 				                  (11)

Where

( )
2

* * * *
_ ini _ final _ ini

final

 
= + − 

 
s s s s

if f f f
i

		               (12)

r and () is a random number with the bounds [0, 1].

In (12) , the variable i represents the iterationnumber.

For the more accuracy of the optimization ,the initial and final 
values of *

sf  it is recommended that *
_inisf < 1 and *

_ finalsf > 1. The 
suggested range of initial values of *

sf is from 0.9 to 1.0 and forfinal 
values of *

sf is from 1.0 to 3.0 .

When * *
_ final _ ini 1= =s sf f , which means that the option for controlling 

the fs factor is not used.

Variable increment ∆d : The MVMOS algorithm uses the factor 
∆d as presented below:

si1=si2=si

if si> 0 then

d∆ = (1 + 0∆d ) + 2 . 0d∆ (rand() – 0.5)

if si>di

di=di . d∆

else

di=di / d∆ 					                  (13)

end if

if rand() ≥ 0.5 then

si1=si ; si2=di

else

si1=di ; si2=si

end if

end if

The extension of variable increment d∆  is used for the asymmetric 
characteristic of the mapping function. 

At the start ofthe algorithm, the initial values of di(typically 
between 1-5) are set for all variables. At every iteration, if si>di , di will 
be multiplied by d∆  leads to increased di. In case si<di, the current 
diis divided by d∆ which is always greater than 1.0 and thus resulting 
in reduced value of di. Therefore, di will always oscillate around the 
current shape factor si. Furthermore, d∆  is varied randomly around 
the value(1 + 0d∆ ) with the amplitude of 0d∆  adjusted in accordance 
to (14), where 0d∆ can be allowed to decrease from 0.4 to 0.01.

( )
2

ini final ini
0 0 0 0

final

 
∆ = ∆ + ∆ − ∆ 

 

id d d d
i

			                (14)

Swarm variant of MVMO: Compared with classical MVMO, 
the swarm variant explores the solution space more aggressively. The 
search process is started with a set ofparticles, each having its own 
memory defined in terms of the corresponding archive and mapping 
function. Initially, each particle performs m steps independently to 
collect a set of reliable individual solutions. Then, the particles start to 
communicate and to exchange information.

The scheme of MVMOS is depicted in Figure 2. 

i and k donate the function evaluation and particle counters, 
respectively. Whereas m and np stand for maximum number of 
independent runs and total number of particles, respectively.

It is not worth it to follow particles which are very close to each 
other since this would entail redundancy. To avoid closeness between 
particles (i.e. redundancy), the normalized distance of each particle’s 
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Figure 2: MVMOS flowchart.
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local best solution xlbest,i to theglobal best xgbest is calculated by:

, 2

1

1 ( )
=

= −∑
n

gbest lbest i
i k k

k
D x x

n
			              (15)

where, n denotes the number of optimization variables. 

The i-th particle is discarded from the optimization process if the 
distance Di is less than a certain user defined threshold Dmin.

A zero threshold means that all particles are considered throughout 
the whole process whereas a unit threshold will result in the dropping 
of all particles except the global best. In this case after (m*np+ np) 
fitness evaluations only one particle, the gbest, remains. Intermediate 
threshold values entail better adaptation to any optimization problem.

After independent evaluation, and if the particle is further 
considered, the global best solution guides the search by assigning 
xgbest, instead of xlbest,i, as parent for every particle’s offspring. The 
remaining steps are identical with those of the classical MVMO: A 
subset of dimensions in the parent vector is directly inherited whereas 
the remaining dimensions are selected and mutated, based on local 
statistics (mean and variance) of the particle, via mapping function.

Implemention of MVMOS to ED

Handing of constraints: To guarantee that the equality constraint 
(4) is always satisfied, a slack generating unit is randomlyselected from 
N generating units and therefore its power output will be dependent 
on the power outputs of remaining N-1 generating units in the system. 
The method for calculation of power output for the slack unit is given 
in [25]. The power output of the slack unit is as follows:

1=
≠

= + −∑
N

s D L i
i
i s

P P P P 				                 (16)

where,s is a random unit selected from N units

The power transmission loss in (5) is rewritten by considering PS as 
an unknown variable

2
0

1

2
=
≠

 
 
 = + +
 
 
 

∑
N

L ss s si i s s
i
i s

P B P B P B P

0 00
1 1 1= = =

≠ ≠ ≠

+ + +∑∑ ∑
N N N

i ij j i i
i i i
i s i s i s

PB P B P B 			              (17)

Substituting (17) into (13), a quadratic equation is abtained as 
follows:

2 0× + × + =s sA P B P C 				                 (18)

where A, B and C are given by:

= ssA B 					                 (19) 

0
1

2 1
=
≠

= + −∑
N

si i s
i
i s

B B P B 				                (20)

0 00
1 1 1 1= = = =

≠ ≠ ≠ ≠

= + + + −∑∑ ∑ ∑
N N N N

i ij j i i D i
i i i i
i s i s i s i s

C P B P B P B P P 	             (21)

The power output of the slack generator is the posstive root of (18) 
between the two ones abtained as follows:

2

2

4
2

where 4 0

− ± − × ×
=

         − × × ≥

s
B B A CP

A
B A C

			               (22)

Based on the slack variable method, the fitness function for the 
proposed MVMOS will include the objective function (2) and penalty 
terms for the slack unit if inequality (6) is violated. The fitness function 
is as follows:

( ) ( )
1

2 2
,max ,min

( )

max(0, ) max(0, )

=

=

 + × − + −  

∑
N

T i i
i

s s s s

F F P

K P P P P
	              (23)

Implemention of MVMOS to ED: The steps of procedure of 
MVMOS for the ED problem are described as follows:

Step 1: Setting the parameters for MVMOS including itermax, n_var, 
n_par, mode, di, 

ini
0∆d , final

0∆d , archive zize, *
_inisf , *

_ finalsf , n_randomly, 
n_randomly_min, indep.runs(m), Dmin

Set i=1, i donates the function evaluation

Step 2: Normalize initial variables to the range [0,1] (i.e. swarm of 
particles).

x_normalized= rand(n_par,n_var)

Step 3:  Set k=1, kdonate particle counters.

Step 4: Using de-normalized variables to evaluate fitness function, 
store fbestand xbestin archive

Step 5: Increase i =i+1. If i<m ( independent steps), go to Step 5. 
Otherwise, go to Step 6.

Step 6: Check the particles for the global best, collect a set of 
reliable individual solutions. The i-th particle is discarded from the 
optimization process if the distance Di is less than a certain user defined 
threshold Dmin.

Step 7: Create offspring generation through three evolutionary 
operators: selection, mutation and crossover.

Step 8: if k<np ,increasek=k+1 and go to step 4. Otherwise, go to 
step 9.

Step 9: Check termination criteria. If stoping criteria is satisfied, 
stop. Otherwise, go to step 3.

De-nomalization of optimization variables: The output of 
mapping function is always inside [0,1]. However, the function 
evaluation is carried out always in the original scales. De-nomalization 
of optimization variables is carried by using (24):

Pi=Pi,min + Scaling.x_normalized(ι,:) (24)

where,

Scaling=Pi,max -Pi,min

Termination criteria:The algorithm of the proposed MVMOS is 
terminated when the maximum number of iterations itermax is reached.

Numerical Analysis
The proposed MVMOS has been applied to the ED problem with 
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the quadratic cost function.Four test cases including 3, 13, 20 thermal 
generating units and large-scale systemwith 140 units are carried out. 
For each case, the algorithm of MVMOS is run 50 independent trialsona 
Intel Core i5-3470 CPU 3.2 GHz PC, Ram 4GB. The implematation of 
the proposed MVMOS was done in Matlab R2013a platform.

Selection of parameters

The parameters of MVMOSinclude itermax, n_var, n_par, mode, 
di, 

ini
0∆d , final

0∆d ,archive zize, *
_inisf , *

_ finalsf , n_randomly, indep.runs(m), 
Dmin. Since different parameters of the proposed method effect on 
the performance of MVMOS. Hence, it is important to determine an 
optimal set of parameters of the proposed methods for ED problem. 
For each problem, selection of parameters is carried out by varying 
only one parameter at a time and keeping the other. The parameter is 
first fixed at the low value and then increased. Multiple runs are carried 
out to choose the suitable set of parameters. The typical parameters are 
selected as follows:

• itermax : maximum number of iterations depend on the 
dimension of problems. The maximum number of iterations is selected 
in the range from 1000 to 50000 iterations for case 1, case 2 and case 3, 
and 80000 for case 4.

• n_var: number of variable (generators), dimension of problems. 
n_var is set to 3,13, 20, 140 for case 1, case 2, case 3and case 4, 
respectively. 

• n_par: number of particles is varied from 5, 10, 20, 30, 40 and 
50, respectively. By experiments, the good solution is obtained when 
number of particles isset to 5. Hence, number of particles is set for all 
cases. 

• mode: There are four variable selection strategy for offspring 
creation [23]. Afer all simulations, stragy 3 (mode=4) is suporior to 
the other stragy.

ini
0∆d , final

0∆d : The range ofin (14) is [0.01-0.4]. By experiments,andis 
set to 0.4 and 0.02, respectively for all cases.

*
_inisf , *

_ finalsf : Therange of values ofis from 0.9 to 1.0 and forvalues 

ofis from 1.0 to 3.0 [24]. For all cases,is set to 0.95 in the range [0.9, 1.0] 
andis set to 3 in the range 3 in the range [1.0, 3.0].

indep.runs(m) : The maximum number of independent runs can be 
selected in the range from 100 to 800.

D min is set to 0 for all cases.

Numerical results

Case 1: 3 unit -system: The test system consists of 3 generating 
units without transmission loss. Here, the system load demand is 
450MW and 850MW, respectively. The data of the system is taken from 
[25]. The power transmission loss is neglected in this case. The obtained 
results by the MVMOS corresponding to the two load demand are 
given in Table 1. 

The parameters for MVMOS are set as follows: itermax=1000, 
n_var(generators)=3, np=5, archive size=4, indep.runs (m)=100, 
n_randomly=2, n_randomly_min=2, *

_ini 0.95=sf , *
_ final 3sf = , 1id = ,

ini
0 0.4∆ =d , final

0 0.02∆ =d , Dmin=0

The total cost comparison between MVMOS and the other methods 
are presented in Table 2. In case ofthe 450MW load demand, the results 
and computational time of MVMOS are less than PSO and ABC. In 

case ofthe 850MW load demand, the results ofMVMOS is less than IEP, 
HS, GA, BGA, and the same as NM, PSO. The proposed MVMOS is 
faster than HS, GA and BGA. There is no computer processor reported 
for PSO, ABC, HS, GA and BGA and no computational time for the 
other methods. Table 1 shows that the power output obtained by the 
MVMOS is always satisfy the constraints.

Case 2: 13 unit - system: The data of 13 generating unit test system 
is from [27]. In this case, the power transmission loss is neglected. The 
obtained results by the MVMOS corresponding to the twoload demand 
of 1800MW and 2520MW are shown in Table 3. 

For the load demand of 1800MW, the parameters for MVMOS are 

Unit Power outputs Pi (MW)
PD=450 MW         PD=850 MW

1 205.3077 393.1698
2 183.3457 334.6038
3 61.3466 122.2264

Total power(MW) 450 850
Min Cost ($/h) 4652.4735 8194.3561

Average CPU time (s) 0.87 0.88

Table 1: Power output of 3-unit system for load demand of 450 MW and 850 MW 
by MVMOS.

Method 450 (MW) 850 (MW)
Cost ($/h) CPU (s) Cost ($/h) CPU (s)

PSO [26] 4653 7.69 - -
ABC [26] 4653 3.91 - -
NM [25] - - 8194.3561 -
IEP [25] - - 8194.3561 -
PSO [25] - - 8194.3561 -
HS [27] - - 8194.5 27.62
GA [27] - - 8194.3591 10.94

BGA [27] - - 8194.357 3.66
MVMOS 4652.4735 0.87 8194.3561 0.88

Table 2: Comparison of results and CPU time by MVMO and other techniques for 
3-unit system.

Unit Power outputs Pi (MW)
PD=1800 MW              PD=2520 MW

1 506.9117 679.9970
2 253.4558 359.9957
3 253.4560 360.0000
4 99.3627 155.1418
5 99.3627 155.1929
6 99.3627 155.0396
7 99.3628 156.0892
8 99.3628 154.4661
9 99.3627 154.0705
10 40.0000 40.0015
11 40.0000 40.0038
12 55.0000 55.0022
13 55.0000 55.0000

Total power (MW) 1800.0000 2520.0000
Min Cost ($/h) 17932.4741 24050.1408

Average CPU time (s) 2.97 16.29

Table 3: Power output of each generating unit in 13-unit system for load demand of 
1800 MW and 2520 MW by MVMOS.
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set as follows: itermax=5000, n_var(generators)=13, npnp=5, archive 
size=4, indep.runs (m)=300, n_randomly=5, n_randomly_min=4,

*
_ini 0.95=sf , *

_ final 3=sf , 1=id , ini
0 0.4∆ =d , final

0 0.02∆ =d  , Dmin=0.

For the load demand of 2520MW, the parameters for MVMOS are 
set as follows: itermax=30000, n_var(generators)=13, np=5, archive 
size=5, indep.runs (m)=300, n_randomly=8, n_randomly_min=4

*
_ini 0.95=sf , *

_ final 3=sf , 1id = , ini
0 0.4∆ =d , final

0 0.02∆ =d  , Dmin=0.

The results of MVMOS for 1800 MW and 2520 MW load demands 
are compared to the other methods as presented in Table 4. In case 
of the 1800 MW load demand, the total cost obtained by MVMOS is 
less than HS, GA and BGA. The computational time of MVMOS is less 
than HS, GA and slower than BGA. There is no computer processor 
reported for HS, GA and BGA. In case of the 2520 MW load demand, 
the total cost obtained by MVMOS is less than-Iteration, GA and SQP 
and same result as ALHN. The computational time of MVMOS is 
slower than these methods. The computational times for-Iteration, GA, 
SQP and ALHN methods were from a Petium M 1.5 GHz PC. Table 3 
shows that the power output obtained by the MVMOS is always satisfy 
the constraints

Case 3: 20 unit-system: The test system includes 20 generators with 
the system load demand of 2500MW. The data of this system is from 
[28]. The power transmission loss is ignored in this case. The obtained 
results by the MVMOS is shown in Table 5. 

The MVMOS is run 50 independent trials. The parameters for 
MVMOS are set as follows: itermax=70000, n_var(generators)=5, np=5, 
archive size=4, indep. runs(m)=400, n_randomly=7, n_randomly_

min=6, *
_ini 0.95=sf , *

_ final 3=sf  , 1id =  , ini
0 0.4∆ =d , final

0 0.02∆ =d , Dmin=0.

Table 6 shows the comparison of results obtained and 
computational time by MVMOS and the other methods. In this case, 
the results of MVMOS is less-Iteration, GA and SQP and the same as 
ALHN. The computation time of MVMOS is less than GA and slower 
than other methods. The computational times for-Iteration, GA, SQP 
and ALHN methods were from a Petium M 1.5 GHz PC. Table 5 shows 
that the power output obtained by the MVMOS is always satisfy the 
constraints. Although the parameters for two load demands is different, 
the MVMOS guarantees the convergence to the global solution for the 
13-unit test system.

Case 4: large-scale system 140 unit: The Korean power system 
consists of 140 thermal generating units is the test system for this case. 
Here, the system load demand is 49342 MW. The data of the system is 
given in [31]. The power transmission loss is also ignored in this case. 

The parameters for MVMOS are set as follows: itermax=80000, 
n_var(generators)=140, np=5, archive size=4, indep. runs (m)=800, 
n_randomly=20, n_randomly_min=10, *

_ini 0.95=sf , *
_ final 3sf = , 1id = ,

ini
0 0.4d∆ = , final

0 0.02d∆ = , D min=0

The obtained results and computational time by the MVMOS are 
given in Table 7. As seen in Table 7, the power output obtained by the 
MVMOS is always satisfy the constraints.

Table 8 shows the comparison of results and computational time 
obtained by MVMOS and the other methods. In this case, the results 
of MVMOS is less than CTPSO, CSPSO, COPSO, CCPSO and KVMO. 
The computation time of MVMOS is slower than these methods. The 
computational times for CTPSO, CSPSO, COPSO and CCPSO were 
from Pentium IV 2.0-GHz computer.

Robustness analysis

The convergence of heuristic methods may not obtain exactly same 
solution because these methods initialize variables randomly at each 
run. Hence, their performances could not be judged by the results 
of a single run. Many trials should be carry out to reach a impartial 
conclusion about the performance of the algorithm. Therefore, in this 
study, 50 independent trials were carried out. The mean cost, max cost, 
average cost and standard deviation obtained by the proposed method 
to evaluate the robustness characteristic of the proposed method for 
ED problem. The robustness analysis of four cases test are presented in 
(Tables 9 and 10).

Tables 9 and 10 clearly show that the performance the proposed 
MVMOS is very robust.

Results and Discussions
A solution of optimization techniques needs concern with two 

elements:

• Computation time: time to get the best solution is the shortest one.

Method 1800 (MW) 2520 (MW)
Cost ($/h) CPU(s) Cost ($/h) CPU(s)

HS [27] 18274.0065 16.135 - -

GA [27] 18194.9507 5.8 - -

BGA [27] 17971.5503 1.98 - -

λ -Iteration [28] - - 24058.27 0.85

GA [28] - - 25087.45 1.76
SQP [28] - - 24058.29 4.57
ALHN [28] - - 24050.14 0.044

MVMOS 17932.4741 2.97 24050.14 16.29

Table 4: Comparison of results and CPU time by MVMO and other techniques for 
13-unit system.

Unit Power outputs Pi (MW) Unit Power outputs Pi 
(MW)

1 600.0002 11 286.9466
2 131.1723 12 432.7209
3 50.0000 13 124.1584
4 50.0000 14 73.3046
5 92.9882 15 94.8873
6 20.0000 16 36.2083
7 125.0000 17 30.0000
8 50.0000 18 37.5181
9 111.7012 19 77.8376
10 45.5563 20 30.0000

Total power (MW) 2500.0000
Min Cost ($/h) 60152.5509

Average CPU time (s) 31.45

Table 5: Power output of 20-unit system for load demand of 2500MW by MVMOS.

Method Total CostPD=2500MW CPU(s)

λ -Iteration [27] 60245.67 0.32

GA [27] 61107 61.17
SQP [27] 60693.14 1.28

ALHN [27] 60152.55 0.076
MVMOS 60152.55 31.45

Table 6: Comparison of results and CPU time by MVMO and other techniques for 
20-unit system.
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• Quality of solution: the quality of solution need robustness, near 
or better the global solutions of the other techniques.

In addition, it takes note the large-scale system problem. The 
computation time of technique on the large-scale system may be take 

more time but the quality of solution need optimum.

Based on the numerical results and robustness analysis of the 
proposed method, it indicates that the MVMOS obtained the global 
solution with high probability, especially for large-scale system due 
to the global search capability is enhanced. Besides its ability, the 
proposed MVMOS is also easy to be implemented for ED problem. 
Unlike other swarm-based optimization techniques, MVMOS does 
not strictly require many particles to progess. In this study, number 
of particles is set to 5 for all cases. The MVMOS showed the good 
performance. However, the computation time is relatively high for 
large-scale system. Similar to original MVMO, the number of iterations 
in MVMOS is equivalent to the number of offspring fitness evaluations 
which is in practical applications usually comsume more time than the 
optimization algorithm itself.

In future, the MVMOS is proposed for solving the non-convex ED 
problems with complicated objective function.

Conclusions
In this paper the proposed MVMOS has been tested for the ED 

problem with quadratic cost function efficiently and effectively.The 
numerical results show that the MVMOS exhibits a robust performance 
and also provides the good solutions for all test systems, expecially for 
lagre-scale system. The proposed method has merits as follows: easy 
implementation, good solutions, robustness of algorithm; applicable 
to large-scale system. Therefore, the proposed MVMOS could be 
favorable for solving other ED problems. 
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