
J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(4): 086-088 (2010) - 086

Journal of Computer Science & Systems Biology - Open Access
Research Article

OPEN ACCESS Freely available online

doi:10.4172/jcsb.1000063

JCSB/Vol.3 Issue 4

Solver Independent Modelling of Combinatorial and
Optimization Problems
Reza Rafeh

Department of Computer Engineering, Islamic Azad University, Malayer Branch, Malayer, Iran

 Corresponding author: Reza Rafeh, Department of Computer Engineering,
Islamic Azad University, Malayer Branch, Malayer, Iran, E-mail: reza_rafeh@

yahoo.com

Received October 24, 2010; Accepted November 09, 2010; Published November

11, 2010

Citation: Rafeh R (2010) Solver Independent Modelling of Combinatorial
and Optimization Problems. J Comput Sci Syst Biol 3: 086-088. doi:10.4172/

jcsb.1000063

Copyright: © 2010 Rafeh R. This is an open-access article distributed under the

terms of the Creative Commons Attribution License,which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and

source are credited.

 Abstract

Combinatorial optimization problems appear in many real life applications as timetabling, planning and scheduling.
However, they are often NP-hard. This means that there is no general and effi cient algorithm for solving them. Modern
approaches for tackling combinatorial and optimization problems divide the task into two major tasks: modeling and
solving.

Modelling means fi nding a proper formulation of the problem while solving means fi nding the solution of the problem.
The most well-known modeling tools are: constraint programming languages, constraint libraries, (mathematical)
modelling languages and specifi cation languages. Modelling languages provide the most high-level practical level of
modelling for modellers.

There are some known solving techniques to tackle such problems of which the most popular ones are: mathematical
methods, constraint programming and local search. Each technique has its own advantages and disadvantages and for

a given problem it is unclear at the beginning which technique gives us the best result.

Current modeling languages are tied to a specifi c solving technique. In this paper, we show how the modeling

language Zinc can automatically map a conceptual model into corresponding low level model suitable for one of the

aforementioned solving techniques.

Keywords: Combinatorial optimization problems; Zinc modelling
language; Solver-Independence

There are many application areas in which combinatorial

optimization problems appear: routing, placement, investment and

DNA sequencing, to give a few examples. The main issue with this

class of problems is the growth of their search space (i.e. the number

of possible choices) exponentially with the number of the variables.

There are two major approaches to tackle combinatorial

problems: developing a conceptual model of the problem which

specifies the problem without consideration as to how to actually

solve it and solving the problem by mapping the conceptual model

into an executable program called the design model.

There are three main techniques for the solving step: Mathematical

Methods (MM), Constraint Programming (CP) and Local Search

(LS). Mathematical techniques (including Linear Programming (LP),

Integer Programming (IP) and Mixed Integer Programming (MIP)) are

efficient, but, finding a linear formulation of a problem is sometimes

difficult. The aim of CP techniques is reducing the search time by

pruning the search space. These techniques are more flexible than

mathematical techniques, but might require a considerable amount

of time for solving some real problems. Furthermore, they are not

suitable for optimization problems. LS techniques avoid exploring

the search space completely in the hope of reducing the solving time.

On the negative side, there is no guarantee to find a solution. Even if

they find a solution it is unclear how worse that solution is than the

optimal one.

The most popular tools for modeling are: constraint programming

languages, constraint programming libraries and (mathematical)

modelling languages.

Constraint programming languages such as ECLiPSe (Apt and

Wallace, 2007) are generic programming languages which support

solving techniques. They allow users to state their search strategies

and define their own application specific constraints. Unfortunately,

using constraint programming languages is difficult for non-

programmers.

Constraint programming libraries, such as Localizer++ (Michel

and Hentenryck, 2001), are libraries within some (often object

oriented) programming languages, which have some facilities for

modelling. Their advantages are that users can integrate them

in larger applications and do not need to learn a new language.

However, these modeling tools cannot support high-level modelling

either. Moreover, these libraries impose some additional restrictions,

which are inherited from the underlying languages.

Modelling languages such as AMPL (Van Hentenryck et al.,

1999), OPL (Fourer et al., 2002) and Localizer (Michel and Van

Hentenryck, 1997) support a very high-level formalism with a syntax

close to mathematical notation. Such syntax makes these languages

accessible to users who are not computer scientists. However,

since mathematical modelling languages are not general purpose

programming languages, their expressiveness is limited.

 Specification languages such as ESSENCE (Frisch et al., 2007),

aim at focusing on the problem without considering implementation

details. While such languages provide the highest level of modelling,

generic specification languages are usually impractical for constraint

http://dx.doi.org/10.4172/jcsb.1000063

Citation: Rafeh R (2010) Solver Independent Modelling of Combinatorial and Optimization Problems. J Comput Sci Syst Biol 3: 086-088. doi:10.4172/
jcsb.1000063

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(4): 086-088 (2010) - 087

solving because of the large gap between their conceptual models
and equivalent design models.

From the above discussion, it is clear that the most high-level
practical modelling is provided by modelling languages. This is
because, on the one hand, modelling languages do not require
modellers to be skilled programmers (opposed to constraint
programming languages and libraries) and on the other hand, they
are implementable (as opposed to generic specification languages).
However, existing modelling languages cannot support all three
solving techniques: MM, CP and LS. This is unfortunate since each
solving technique has its own advantages and disadvantages and
it is unclear for a given model or application which technique or
combination of techniques yields the best result. Therefore, modelers
wish their models to be automatically mapped into different design
models, thus allowing them to try different solving techniques for
solving their models (Frisch et al., 2005).

Zinc (Marriott et al., 2008), is the first modeling language which
in the one hand provides high-level formalism for modelers and on
the other hand maps automatically a conceptual model to design
models suitable for each solving technique. Zinc supports any (new)
solver if the solver supports the required interface. In this paper, we
explain how solver-independence has been achieved in Zinc.

Mapping Conceptual Models into Design Models

The huge gap between high-level Zinc models and low-level
conceptual models is the main issue in achieving the aim of solver-
independence in Zinc. To bridge this gap, we decided to use an
intermediate modelling language, called Flattened Zinc. Flattened
Zinc is a subset of Zinc designed to be simple and low-level enough to
be significantly close to the design models, yet sufficiently high-level
to specify suitable intermediate models for all solvers. It allows only
simple constraints and data types. The advantage of first producing
a flattened Zinc model (FZM) is that it allows us to perform mapping
tasks that are common to all solving techniques, thus reducing the
burden when developing mappings to new solvers and techniques.

The translation process from a conceptual model to different

design models proceeds as follows. The first step takes a Zinc model
and performs syntax and semantic analysis including type and model

checking which includes inserting the required explicit coercions.
The second step adds to the compiled Zinc model the information

contained in the associated data file(s) (if any) and performs syntax
and semantic checking (instance checking). The third step takes

the model and data file(s) and generates the Solver-Independent
Flattened Zinc Model (SI-FZM) instance. The fourth step uses solver-
dependent rewrite rules to translate the SI-FZM into a Solver-

Dependent Flattened Zinc Model (SD-FZM). As the name suggests,
the rewrite rules used in this process depend on the target design
model and the rewriting produces a Flattened Zinc model which is
very close to the final design model. The final step takes the SD-
FZM model and performs the minor syntactic rewriting required to

generate the design model for a particular solving platform.

Our first implementation allowed a Zinc model to be mapped

into one of the three design models, all of which are implemented
in ECLiPSe. The first design model uses the standard constraint
programming approach of a complete tree search with propagation
based finite domain and set solvers. The second model is also
complete but uses mathematical techniques, i.e. a MIP solver, while

the third design model performs an incomplete search using local
search methods. Importantly, users can execute the same Zinc

model with each of these different solving techniques and so readily
determine which technique is most appropriate for their particular
problem.

Mapping to Flattened Zinc

As it was discussed previously, when flattening a Zinc model, we
remove all high-level features which make Zinc user-friendly. More
precisely, the only features of Zinc that are supported in the Flattened
version are as the following (see (Rafeh et al., 2007) for more details):

 Types: Boolean, string, int, oat, set (only integer sets), list and
tuple. Each type can be used with type-inst par or var (if applicable).
Lists and tuples can be defined over other types.

 Expressions: Standard mathematical operations, function calls and
standard Boolean operations.

 Items: Simple (reified) constraints, variable declarations, solve and
output items.

As a result, any array, record, variant record, set over arbitrary
types, enumerated and constrained type appearing in the Zinc model
will be removed during the mapping to Flattened Zinc. Also, any
negations, comprehension, function, predicate and propositional
combination of constraints is removed during the mapping to
Flattened Zinc.

Let us clarify this by means of an example. Figure 1 shows a Zinc
model for the N-queens problem, which tries to place n queens on
an n × n chess board in such a way that no two queens can attack
each other.

Variable n is defined as an integer parameter. Domain is a new
type for the range 1..n and q is an array of n finite domain decision
variables (indicated by the keyword var) over that range. For our

int: n;
type Domain = 1..n;
array[Domain] of var Domain :q;
predicate noattack(Domain: i,j, var Domain: qi,qj) =
qi != qj /\ qi + i != qj + j /\ qi - i != qj - j;
constraint forall(i,j in Domain where i<j)
noattack(i,j,q[i],q[j]);
solve satisfy;
output(q);

Figure 1: A Zinc model for the N-queens problem.

Figure 2: The FZM model for the N-queens problem (n=4).

var 1..4 : Q1, Q2, Q3, Q4 ;
constraint Q1 != Q2 ;
constraint Q1 + 1 != Q2 + 2;
constraint Q1 - 1 != Q2 - 2;
constraint Q1 != Q3 ;
constraint Q1 + 1 != Q3 + 3;
constraint Q1 - 1 != Q3 - 3;
constraint Q1 != Q4 ;
constraint Q1 + 1 != Q4 + 4;
constraint Q1 - 1 != Q4 - 4;
constraint Q2 != Q3 ;
constraint Q2 + 2 != Q3 + 3;
constraint Q2 - 2 != Q3 - 3;
constraint Q2 != Q4 ;
constraint Q2 + 2 != Q4 + 4;
constraint Q2 - 2 != Q4 - 4;
constraint Q3 != Q4 ;
constraint Q3 + 3 != Q4 + 4;
constraint Q3 - 3 != Q4 - 4;
solve satisfy;
output ([Q1,Q2,Q3,Q4]);

http://dx.doi.org/10.4172/jcsb.1000063

J Comput Sci Syst Biol
ISSN:0974-7230 JCSB, an open access journal

Volume 3(4): 086-088 (2010) - 088

Journal of Computer Science & Systems Biology - Open Access Research Article

OPEN ACCESS Freely available online

doi:10.4172/jcsb.1000063

JCSB/Vol.3 Issue 4

purposes, the most interesting feature of Zinc is that it allows the
user to define new predicates and functions. In the above example,
the noattack predicate is defined, which succeeds if queens qi and
qj of rows i and j respectively, cannot take each other (^ is used for
conjunction). By using the forall expression, the constraint applies
the noattack predicate on each pair of queens to ensue they cannot
attack each other. The last line declares the model to be a satisfaction
problem. If the solve item has no annotation for search (like in this
model), Zinc uses the default search to solve the model. Finally, the
output items prints the elements of array q.

This model includes some high-level features as arrays and
predicates which must be simplified in the final FZM. Figure 2 depicts
the equivalent FZM of the model. As it can be seen from the model,
parameter n has been replaced with its value (4). Array q has been
replace with 4 variables (Q1, Q2,Q3, Q4). Also, calls to predicates
forall and notattack have been replaced with their bodies.

Conclusion

In this paper, we briefly discussed the idea behind developing
the modeling language Zinc whose main aim was achieving solver-
independence. In its first implementation, Zinc maps a conceptual
model into design models that utilize different solving techniques
such as local search, tree-search with propagation based solvers, or
MIP techniques. The most crucial decision in implementing Zinc was
using an intermediate language called Flattened Zinc which made the
mapping simpler.

For the first implementation, we map Zinc models into low-level
design models in ECLiPSe (Apt and Wallace 2006). One reason to
choose ECLiPSe was its support of all solving techniques. To evaluate
our mapping, we have compared a number of standard benchmarks
written in Zinc and written in ECLiPSe. The ECLiPSe model
automatically generated from Zinc (via FZM) has similar performance

to an equivalent program written in ECLiPSe, using the same search

method. This allows Zinc modellers to readily experiment with

different solving techniques.

Acknowledgements

We thank Islamic Azad University, Malayer Branch for fi nancial support of this

project.

References

1. Apt K, Wallace M (2006) Constraint Logic Programming Using ECLiPSe.

Cambridge University Press.

2. Apt K, Wallace M (2007) Constraint Logic programming Using ECLiPSe.

Cambridge University Press.

3. Fourer R, Gay DM, Kernighan BW (2002) AMPL: A Modeling Language for

Mathematical Programming. Duxbury Press.

4. Frisch AM, Jefferson C, Martinez-Hernandez B, Miguel I (2005) The rules of

constraint modelling. In Proc 19th IJCAI 109-116.

5. Frisch AM, Grum M, Jefferson C, Martinez Hernandez B, Miguel I (2007)

The design of ESSENCE: A constraint language for specifying combinatorial

problems. In Proc. of the 20th International Joint Conference on Artifi cial

Intelligence IJCAI.

6. Marriott K, Nethercote N, Rafeh R, Stuckey PJ, de la Banda MG (2008) The

design of the Zinc modelling language. Constraints 13.

7. Michel L, Hentenryck PV (2001) Localizer++: An open library for local search.

In Proc CS: 01-02.

8. Michel L, Van Hentenryck P (1997) Localizer: A modeling language for local

search. In Proc Principles and Practice of Constraint Programming CP97: 237-

251.

9. Rafeh R,Garcia de la Banda M,Marriott K,Wallace M (2007) From Zinc to

Design Model. pages 215229. Number 4354 in LNCS. Springer, 2007. Proc.

PADL 2007.

10. Van Hentenryck P, Lustig I, Michel LA, Puget JF (1999) The OPL Optimization

Program-ming Language. MIT Press.

http://books.google.co.in/books?hl=en&lr=&id=yyrf6H86_ukC&oi=fnd&pg=PR9&dq=Constraint+Logic+Programming+Using+ECLiPSe&ots=HP_1Cvq4N0&sig=phpnf7IoQ4FunWgce7Fj2Pu-BjI#v=onepage&q&f=false
http://books.google.co.in/books?hl=en&lr=&id=yyrf6H86_ukC&oi=fnd&pg=PR9&dq=Constraint+Logic+programming+Using+ECLiPSe&ots=HP_1CuxaNZ&sig=fxnhlWc5CdQgrw3o_kTZGofFeao#v=onepage&q&f=false
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.9115&rep=rep1&type=pdf
http://www.springerlink.com/content/kl4115172552m110/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.9425
http://www.springerlink.com/content/d07248j13245760j/
http://www.springerlink.com/content/5158u4280305v123/

	Title
	Corresponding author
	Abstract
	Keywords
	Mapping Conceptual Models into Design Models
	Mapping to Flattened Zinc
	Conclusion
	Acknowledgements
	Figure 1
	Figure 2
	References

