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 Abstract

Combinatorial optimization problems appear in many real life applications as timetabling, planning and scheduling. 
However, they are often NP-hard. This means that there is no general and effi cient algorithm for solving them. Modern 
approaches for tackling combinatorial and optimization problems divide the task into two major tasks: modeling and 
solving. 

Modelling means fi nding a proper formulation of the problem while solving means fi nding the solution of the problem. 
The most well-known modeling tools are: constraint programming languages, constraint libraries, (mathematical) 
modelling languages and specifi cation languages. Modelling languages provide the most high-level practical level of 
modelling for modellers.

There are some known solving techniques to tackle such problems of which the most popular ones are: mathematical 
methods, constraint programming and local search. Each technique has its own advantages and disadvantages and for 

a given problem it is unclear at the beginning which technique gives us the best result.

Current modeling languages are tied to a specifi c solving technique. In this paper, we show how the modeling 

language Zinc can automatically map a conceptual model into corresponding low level model suitable for one of the 

aforementioned solving techniques.
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There are many application areas in which combinatorial 

optimization problems appear: routing, placement, investment and 

DNA sequencing, to give a few examples. The main issue with this 

class of problems is the growth of their search space (i.e. the number 

of possible choices) exponentially with the number of the variables.

There are two major approaches to tackle combinatorial 

problems: developing a conceptual model of the problem which 

specifies the problem without consideration as to how to actually 

solve it and solving the problem by mapping the conceptual model 

into an executable program called the design model.

There are three main techniques for the solving step: Mathematical 

Methods (MM), Constraint Programming (CP) and Local Search 

(LS). Mathematical techniques (including Linear Programming (LP), 

Integer Programming (IP) and Mixed Integer Programming (MIP)) are 

efficient, but, finding a linear formulation of a problem is sometimes 

difficult. The aim of CP techniques is reducing the search time by 

pruning the search space. These techniques are more flexible than 

mathematical techniques, but might require a considerable amount 

of time for solving some real problems. Furthermore, they are not 

suitable for optimization problems. LS techniques avoid exploring 

the search space completely in the hope of reducing the solving time. 

On the negative side, there is no guarantee to find a solution. Even if 

they find a solution it is unclear how worse that solution is than the 

optimal one.

The most popular tools for modeling are: constraint programming 

languages, constraint programming libraries and (mathematical) 

modelling languages. 

Constraint programming languages such as ECLiPSe (Apt and 

Wallace, 2007) are generic programming languages which support 

solving techniques. They allow users to state their search strategies 

and define their own application specific constraints. Unfortunately, 

using constraint programming languages is difficult for non-

programmers. 

Constraint programming libraries, such as Localizer++ (Michel 

and Hentenryck, 2001), are libraries within some (often object 

oriented) programming languages, which have some facilities for 

modelling. Their advantages are that users can integrate them 

in larger applications and do not need to learn a new language. 

However, these modeling tools cannot support high-level modelling 

either. Moreover, these libraries impose some additional restrictions, 

which are inherited from the underlying languages.

Modelling languages such as AMPL (Van Hentenryck et al., 

1999), OPL (Fourer et al., 2002) and Localizer (Michel and Van 

Hentenryck, 1997) support a very high-level formalism with a syntax 

close to mathematical notation. Such syntax makes these languages 

accessible to users who are not computer scientists. However, 

since mathematical modelling languages are not general purpose 

programming languages, their expressiveness is limited.

 Specification languages such as ESSENCE (Frisch et al., 2007), 

aim at focusing on the problem without considering implementation 

details. While such languages provide the highest level of modelling, 

generic specification languages are usually impractical for constraint 
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solving because of the large gap between their conceptual models 
and equivalent design models.

From the above discussion, it is clear that the most high-level 
practical modelling is provided by modelling languages. This is 
because, on the one hand, modelling languages do not require 
modellers to be skilled programmers (opposed to constraint 
programming languages and libraries) and on the other hand, they 
are implementable (as opposed to generic specification languages). 
However, existing modelling languages cannot support all three 
solving techniques: MM, CP and LS. This is unfortunate since each 
solving technique has its own advantages and disadvantages and 
it is unclear for a given model or application which technique or 
combination of techniques yields the best result. Therefore, modelers 
wish their models to be automatically mapped into different design 
models, thus allowing them to try different solving techniques for 
solving their models (Frisch et al., 2005).

Zinc (Marriott et al., 2008), is the first modeling language which 
in the one hand provides high-level formalism for modelers and on 
the other hand maps automatically a conceptual model to design 
models suitable for each solving technique. Zinc supports any (new) 
solver if the solver supports the required interface. In this paper, we 
explain how solver-independence has been achieved in Zinc. 

Mapping Conceptual Models into Design Models

The huge gap between high-level Zinc models and low-level 
conceptual models is the main issue in achieving the aim of solver-
independence in Zinc. To bridge this gap, we decided to use an 
intermediate modelling language, called Flattened Zinc. Flattened 
Zinc is a subset of Zinc designed to be simple and low-level enough to 
be significantly close to the design models, yet sufficiently high-level 
to specify suitable intermediate models for all solvers. It allows only 
simple constraints and data types. The advantage of first producing 
a flattened Zinc model (FZM) is that it allows us to perform mapping 
tasks that are common to all solving techniques, thus reducing the 
burden when developing mappings to new solvers and techniques.

The translation process from a conceptual model to different 

design models proceeds as follows. The first step takes a Zinc model 
and performs syntax and semantic analysis including type and model 

checking which includes inserting the required explicit coercions. 
The second step adds to the compiled Zinc model the information 

contained in the associated data file(s) (if any) and performs syntax 
and semantic checking (instance checking). The third step takes 

the model and data file(s) and generates the Solver-Independent 
Flattened Zinc Model (SI-FZM) instance. The fourth step uses solver-
dependent rewrite rules to translate the SI-FZM into a Solver-

Dependent Flattened Zinc Model (SD-FZM). As the name suggests, 
the rewrite rules used in this process depend on the target design 
model and the rewriting produces a Flattened Zinc model which is 
very close to the final design model. The final step takes the SD-
FZM model and performs the minor syntactic rewriting required to 

generate the design model for a particular solving platform.

Our first implementation allowed a Zinc model to be mapped 

into one of the three design models, all of which are implemented 
in ECLiPSe. The first design model uses the standard constraint 
programming approach of a complete tree search with propagation 
based finite domain and set solvers. The second model is also 
complete but uses mathematical techniques, i.e. a MIP solver, while 

the third design model performs an incomplete search using local 
search methods. Importantly, users can execute the same Zinc 

model with each of these different solving techniques and so readily 
determine which technique is most appropriate for their particular 
problem.

Mapping to Flattened Zinc

As it was discussed previously, when flattening a Zinc model, we 
remove all high-level features which make Zinc user-friendly. More 
precisely, the only features of Zinc that are supported in the Flattened 
version are as the following (see (Rafeh et al., 2007) for more details):

 Types: Boolean, string, int, oat, set (only integer sets), list and
tuple. Each type can be used with type-inst par or var (if applicable). 
Lists and tuples can be defined over other types.

 Expressions: Standard mathematical operations, function calls and 
standard Boolean operations.

 Items: Simple (reified) constraints, variable declarations, solve and
output items.

As a result, any array, record, variant record, set over arbitrary
types, enumerated and constrained type appearing in the Zinc model 
will be removed during the mapping to Flattened Zinc. Also, any 
negations, comprehension, function, predicate and propositional 
combination of constraints is removed during the mapping to 
Flattened Zinc.

Let us clarify this by means of an example. Figure 1 shows a Zinc 
model for the N-queens problem, which tries to place n queens on 
an n × n chess board in such a way that no two queens can attack 
each other. 

Variable n is defined as an integer parameter. Domain is a new 
type for the range 1..n and q is an array of n finite domain decision 
variables (indicated by the keyword var) over that range. For our 

int: n; 
type Domain = 1..n; 
array[Domain] of var Domain :q; 
predicate noattack(Domain: i,j, var Domain: qi,qj) = 
qi != qj /\ qi + i != qj + j /\ qi - i != qj - j; 
constraint forall(i,j in Domain where i<j) 
noattack(i,j,q[i],q[j]); 
solve satisfy; 
output(q); 

Figure 1: A Zinc model for the N-queens problem.

Figure 2: The FZM model for the N-queens problem (n=4).

var 1..4 : Q1, Q2, Q3, Q4 ; 
constraint Q1 != Q2 ; 
constraint Q1 + 1 != Q2 + 2; 
constraint Q1 - 1 != Q2 - 2; 
constraint Q1 != Q3 ; 
constraint Q1 + 1 != Q3 + 3; 
constraint Q1 - 1 != Q3 - 3; 
constraint Q1 != Q4 ; 
constraint Q1 + 1 != Q4 + 4; 
constraint Q1 - 1 != Q4 - 4; 
constraint Q2 != Q3 ; 
constraint Q2 + 2 != Q3 + 3; 
constraint Q2 - 2 != Q3 - 3; 
constraint Q2 != Q4 ; 
constraint Q2 + 2 != Q4 + 4; 
constraint Q2 - 2 != Q4 - 4; 
constraint Q3 != Q4 ; 
constraint Q3 + 3 != Q4 + 4; 
constraint Q3 - 3 != Q4 - 4; 
solve satisfy; 
output ([Q1,Q2,Q3,Q4]); 
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purposes, the most interesting feature of Zinc is that it allows the 
user to define new predicates and functions. In the above example, 
the noattack predicate is defined, which succeeds if queens qi and 
qj of rows i and j respectively, cannot take each other (^ is used for 
conjunction). By using the forall expression, the constraint applies 
the noattack predicate on each pair of queens to ensue they cannot 
attack each other. The last line declares the model to be a satisfaction 
problem. If the solve item has no annotation for search (like in this 
model), Zinc uses the default search to solve the model. Finally, the 
output items prints the elements of array q.

This model includes some high-level features as arrays and 
predicates which must be simplified in the final FZM. Figure 2 depicts 
the equivalent FZM of the model. As it can be seen from the model, 
parameter n has been replaced with its value (4). Array q has been 
replace with 4 variables (Q1, Q2,Q3, Q4). Also, calls to predicates 
forall and notattack have been replaced with their bodies.

Conclusion

In this paper, we briefly discussed the idea behind developing 
the modeling language Zinc whose main aim was achieving solver-
independence. In its first implementation, Zinc maps a conceptual 
model into design models that utilize different solving techniques 
such as local search, tree-search with propagation based solvers, or 
MIP techniques. The most crucial decision in implementing Zinc was 
using an intermediate language called Flattened Zinc which made the 
mapping simpler. 

For the first implementation, we map Zinc models into low-level 
design models in ECLiPSe (Apt and Wallace 2006). One reason to 
choose ECLiPSe was its support of all solving techniques. To evaluate 
our mapping, we have compared a number of standard benchmarks 
written in Zinc and written in ECLiPSe. The ECLiPSe model 
automatically generated from Zinc (via FZM) has similar performance 

to an equivalent program written in ECLiPSe, using the same search 

method. This allows Zinc modellers to readily experiment with 

different solving techniques. 
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