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Introduction
This paper is devoted to the analysis of the following coupled ultra-

relativistic Euler system: 
2 2

2 2

( (3 4 )) (4 1 ) = 0,

(4 1 ) ( (1 4 )) = 0,

t x

t x

p u pu u

pu u p u

+ + +

+ + +

  (1)

Where p>0 and u∈, [1-8].

Consider x=x(t) is a shock-discontinuity of the weak solution of (1) 
with speed = ( )s x t , (p_,u_)the state lower to the shock and (p+, u+) 
the state upper to the shock with p± >0, respectively. Then the Rankine-
Hugoniot jump (RHj) conditions are 
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The entropy inequality at singular points is 

[ ] [ ] > 0,s h ϕ+ 					    (3)

where 
3 3

24 4( , ) = 1 ,  ( , ) = ,h p u p u p u p uϕ+
which is equivalent to u_ >u+, [2].

We can rewrite the 2×2 system for p and u in (1) in the quasilinear 
form 
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The eigenvalues of that system (1) are 
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The characteristic velocities λ1 and λ3 are corresponding to the 1 

and 3 family of waves, respectively. The decoupled equation 
2( 1 ) ( ) = 0t xn u nu+ + 				                   (6)

for the particle density n > 0 gives rise for contact discontinuities with 

the eigenvalue 2 2
=

1
u

u
λ

+
, [2].

Lemma 1.1 Suppose that (p_,u_)=(p_,0) and (p+, u+)= (p, u(p)) 
satisfy condition (2). Then the shock curves satisfy [2] 

3( )( ) = .
4

p pu p
pp

−

−

−
±              (7)

The +ve sign in (7) with p < p_ gives a 3-shock. These 3-shocks 
satisfy both the RHj conditions (2) and the entropy condition (3), or in 
a similar way u_> u+.

The -ve sign in (7) with p_ < p gives a 1-shock. These 1-shocks 
satisfy both the RHj conditions (2) and the entropy condition (3), or 

in a similar way u_> u+ . Furthermore  < 0du
dp

 on shock curves S1 and 

 > 0du
dp

 on shock waves S3, where

1 3= {( , ( ))   |  > }      = {( , ( ))   |  < }.S p u p p p and S p u p p p+ +
− −∈ × ∈ ×     (8)

we studied the Riemann invariants for the ultra-relativistic Euler 
system. In fact we show that the Riemann invariants have interesting 
relations with the representations of nonlinear elementary waves 
(shocks and rarefaction waves). Namely, we points out the relation 
between Riemann invariants and nonlinear elementary waves. This 
turns out to be the basic ingredient of our paper [9]. One of the main 
applications of the Riemann invariants is to derive the diagonal form 
of system (1). We hope that these formula will be useful in various 
studies of the ultra-relativistic Euler system, for example, in developing 
numerical methods, [10]. We show that the Riemann invariants, play 
a pivotal role in the solution of the ultra-relativistic Euler system (1).
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Abstract
In this paper we introduce a new technique for constructing solutions of the ultra-relativistic Euler equations. The 

Riemann invariants are formulated. We also give some applications of the Riemann invariants. We firstly study the 
geometric properties of the solution in Riemann invariants coordinates. The other application of Riemann invariants, 
representing the ultra-relativistic Euler equations in diagonal form, which admits the existence of global smooth 
solution for the ultra-relativistic Euler equations.
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Using (11), we have
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The two equations are dependent since

1( ) = 0.Det JW JFλ− +

So we have

( ) ( )2 2 2 2 2 23 1 6 1 4 3 (1 ) 4 4 1 3(1 2 ) = 0.u u u u u p p u u u uξ ξ+ + + + + + + + +

Thus we obtain the following differential equation, 

( ) ( )2 2 2 2 2 23 1 6 1 4 3 (1 ) 4 4 1 3(1 2 ) = 0,u u u u u dp p u u u du+ + + + + + + + +

which has the solution 

2 3ln( 1 ) ln( ) = .
4

u u p constant+ + +

This is the 1-rarefaction curve. Similarly, we can determine the 
3-rarefaction as follows

2 3ln( 1 ) ln( ) = .
4

u u p constant+ + −

Since Riemann invariants are functions, which are constant along 
rarefaction waves, we can define 

2 3= ln( 1 ) ln( )
4

w u u p+ + + 			                 (14)

and 

2 3= ln( 1 ) ln( )
4

z u u p+ + − 			                  (15)

are the 1 and 3-Riemann invariant for system (1), respectively.

Remark 2.1 The function w=w (p,u) is constant across 1-rarefaction 
waves and z=z (p,u) is constant across 3-rarefaction waves. 

Lemma 2.1 The mapping (p,u)(w,z) is one-to-one with nonsingular 
Jacobian for p > 0 u∈. [9]

Applications of Riemann Invariants
In this section we will show how Riemann invariants can be used to 

solve various problems related to the system (1).

Geometry of the shock waves

Here we study the geometry of the shock waves of the ultra-
relativistic Euler system (1) in the Riemann invariants coordinates 
(w,z). We first derive the new parametrization of the ultra-relativistic 
Euler system (1) in Lemma 3.1. In fact this representation turns out 
to be very valuable in order to study the geometric properties of the 
solution in a unified way. 

Lemma 3.1 Assume that (p_,u_) and (p+, u+) ≡ (p, u) satisfy the 
jump condition (2). Then the following relations hold: 
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where 
2
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1:= ,   :=
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α β
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+ −

+ −
. The -ve sign in (16) and p _< p 

In other words, in this paper we pose the following questions: 

 1. What are the Riemann invariants. 

 2. For what purpose they are useful. 

The rest of this paper is given as follows : In Section 2, we derive 
the Riemann invariants for the ultra-relativistic Euler equations (1). 
In fact this topic plays a useful role in studying the ultra-relativistic 
Euler system (1) in a completely unified way. In Section 3 we give some 
applications of the Riemann invariants for the system (1). The first 
one, we study the geometric properties of the solution in the Riemann 
invariants coordinates. we give a new parametrization of the system 
(1), namely Lemma 3.1. This parametrization plays an important role 
in order to study these properties in useful way. The second one, is to 
give the diagonal form of the ultra-relativistic Euler system (1). Finally, 
in Section 4 we give the conclusions.

Riemann Invariants
We derive the Riemann invariants for the system (1), which plays 

a main role in this paper. 

We consider our rarefaction waves. If we assume = x
t
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and 
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 is an eigenvector of JW-1JF for the 

eigenvalue ξ. Since JW-1JF has two distinct real eigenvalues, λ1<λ3, 
there are two families of rarefaction waves, 1-rarefaction waves and 
3-rarefaction waves. 

We first consider 1-rarefaction waves. The eigenvector 
p
u
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From (10) we get
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gives a 1-shock curve S1 given in (8). The +ve sign in (16) and p < p_ 
gives a 3-shock curve S3 given in (8).

Proof. Using the RHj conditions (2) and eliminating the shock 
speed S give 

( ) ( )( )
2

2 2 2 2 2 24 1 4 1 = (3 4 ) (3 4 ) (1 4 ) (1 4 ) .p u u p u u p u p u p u p u+ + + − − − + + − − + + − −+ − + + − + + − +

Now multiplying out gives 
2 2 2 2 2 2 2 23 3 6 16 ( 2 2 1 1 ) = 0,p p pp pp u u u u u u u u− − − − − − −+ − − + + − + +

that is, 

( )
2

2 2 2 2 2 23 16 2 2 1 1 6 3 = 0.p p u u u u u u u u
p p − − − −
− −

 
− + + − + + + + 

 

After a straight but tedious computation, we get the result explained 
in Figure 1 

 The following lemma shows that the differences Z - Z_ and w - 
w_ through a shock curve depend only on the parameters α, and thus 
the geometric aspect of the shock wave in the zw-plane is independent 
of the base point. To give this lemma in a useful way we define the 
functions, KS: + 

 + by 

1 3 3 3( 1)( ) := ,
4SK α α αα

α
+ + + − 		                (17)

and KR: + 
 + by 

3
4( ) := ,RK α α 					                   (18)

for :=  > 0p
p

α +

−

.

Lemma 3.2 Let z=z(p+, u+) w=w(p+, u+). Then the representation of 
1-shock curve S1 for the system (1) based at (z_w_) with respect to the 

parameter = p
p

α +

−

 [9] is given as follows: 

1 1 1 1= ln ln ,    = ln ln .S R S Rz z K K w w K K
α α α α− −
       − + − −       
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 While the 3-shock curves S3 based at (z_w_) has the parametrization 

= ln ( ) ln ( ),    = ln ( ) ln ( ).S R S Rz z K K w w K Kα α α α− −− − − +

Lemma 3.3 The 3-shock wave based at an arbitrary point (w_, z_) 
is the reflection in the wz-plane of the 1-shock wave based at the same 
point, where the axis of reflection is the line passing through (w_, z_), 
parallel to the line w=z. 

Proof. Using (16), then the result follows immediately from the 
following: 

4 2 2 4 2 4 2 2 4 2

2 2

2 2( 1) 1 2 2( 1) 1( ). ( ) = . = 1.
3 3

f f β β β β β β β β β β
β β

β β− +

− + − − + + − + + − + +

The following lemma presents further important features of the 
shock wave.

Lemma 3.4 For shock curves of system (1) we have[9] 

0 <  < 1dw
dz

					                  (19)

along a 1-shock curves S1 and 

0 <  < 1dz
dw

					                 (20)

a along a 3-shock curves S3 . 

Therefore we can use either the pu-plane or the zw-plane to study 
our model, see Figure 1. Thus we conclude that the shock waves are 
independent of the base point (z_w_).

Diagonalization of the ultra-relativistic Euler equations

Here we present the ultra-relativistic Euler system (1) in 
diagonalized form. This form enables us to develop numerical methods 
to study the ultra-relativistic Euler system (1), [10]. This will be 
presented in a forthcoming paper.

Definition 3.1 System (4) is said to be diagonalizable, if there exists 
a smooth transformationR=(w,z)T with non-vanishing Jacobian such 
that (4) can be rewritten as follows 

2

=1
( ) = 0,   = 1,2,i i

i i
i

R RR i
t x

λ∂ ∂
+

∂ ∂∑ 			                (21)

Where λi(Ri) are smooth function of Riemann invariants R. 

The diagonal system (21) is so important possessing so interesting 
properties. For example, it is easier to find exact solutions and study 
uniqueness of solutions, [11,12]. In fact, not all quasilinear systems 
can represent in diagonal form. Hence, it is so interesting to study this 
problem.

Proposition 3.1 The diagonalized system for system (1) is 

1

3

( , ) = 0,

( , ) = 0,

w ww z
t x

z zw z
t x

λ

λ

∂ ∂
+

∂ ∂

∂ ∂
+

∂ ∂

				                   (22)

where 

1 3
2 3 2 3( , ) =         ( , ) =
2 3 2 3

w z w z

w z w z

e ew z and w z
e e

λ λ
+ +

+ +

− − − +
+ + + −

illustrated in Figure 2. 

Proof. We first start with the first equation of (22), namely with 
λ1(w,z) One can follows with λ3(w,z) similarly. From (5), we get Figure 1: The plane of Riemann invariants.
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 Hence we have

2 1
2

1

( 3 1)( 1)1 = .
2 1

u u λ

λ

+ +
+ +

−
               (23)

Another equivalent form of the same relation, using (14) and (15) is 

2 21 = ,
w z

u u e
+

+ + 				               (24)

From (23) and (24) and after a straight but tedious computation, 
we obtain 

1
2 3( , ) = ,
2 3

w z

w z

ew z
e

λ
+

+

− −
+ +

hence the proof of the proposition is completed. 

Remark 3.1 In fact the diagonal formula is very useful in developing 
numerical methods, see [9]. 

Remark 3.2 Based on the results given in, Theorem 2.4, Lemma 3.1], 
in order to prove the existence of the global smooth solution on 0t ≥  for 
system (1), it is sufïcient to prove that [12] 

1 2 1 1 2 20,  0,  0,  0.z w z w z wλ λ λ λ λ λ≥ ≥ + ≥ + ≥

One can easily check the following:

1 2

(4 2 3)= > 0,
( 2 3)

w z

z w z

e
e

λ
+

+

+
+ +

3 2

(4 2 3)= > 0.
( 2 3)

w z

w w z

e
e

λ
+

+

−
+ −

We also have λ1w=λ1z and λ3w=λ3z hence 

1 1 3 3> 0      > 0,w z w zandλ λ λ λ+ +

which completes the statement. 

Conclusions
In this work, we presented the Riemann invariants method for the 

ultra-relativistic Euler equations. We have shown that the shock curves 
have good geometry in Riemann invariant coordinates. The diagonal 
form of the ultra-relativistic Euler system has been introduced, which 
admits the existence of global smooth solution.
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