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Abstract

In this paper we may use piece wise constant functions for the special type of system of second kind integro
differential equation of the first order. The main problem is reduced to linear system of algebraic equations. Some
numerical examples are dedicated for showing efficiency and validity of the method.
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Introduction

Many different basis functions are used for approximating the
solution of integro differential equations like Haar wavelets, lagrange
functions, Taylor polynomials, Chebyshev polynomials, sine-cosine
wavelets, Tau method, Adomian decomposition method, hybrid
Legendre and Block Pulse functions and so on [1-8]. In this study, we
use Block Pulse functions (BPfs) for solving system of Volterra integro
differential equation of the form.

W@+ Ak x 0Y(0) de = g,(x)

V() +A[ ke, D3(0) dt = g,(x) )

() + A, (x, 03, (0) dt = g,,(x)

where, k €[0,1),g,€[0,1) for i=1,...m are known functions and y(x) is

the unknown function and »,(0)=y, ,»,(0)=y, ,...,(0)=y, . we set
F(x)= jo k. (x, £)y!(x)dt for  i=12,...m @)
so (1) becomes
Y (%) + AF (x) = g,(x)
yz(x)"'ﬂ'Pvz(x):gz(x) 3)
Vo (X)+AF, (x) =g, (x)
by collocating (3) at the points x5 1,2,.. ..k we get
n(x)+AF(x)=g/(x)
yz(x[)"'ﬂ’Fz(xi) = g2('xi)
: )

ym(xi)—‘rﬂ’Fm(xi) = gm(xi)

At first, we define a k-set of BPfs for every row of (4) as:

1 i <t< L
B(t)= k k
0 elsewhere

, for all i=12,....k

The functions B (t) are disjoint and orthogonal. That is,

0 i#j

B.()B.(t)=

(OB, (1) {Bi(t) im (5)
0 i#j

(B(NB;(1) =11 . (6)
P

Since the BPfs is not continuous so the derivatives don’t exist at
these points of discontinuity therefore we can’t apply the BPfs in a
direct manner to solve differential equations. Therefore we may expand

Y(x), y;(x),..., ¥, (x) into the BPfs series and y, (x), ,(x),....y, (x) will

be obtain through integration:
W(x) =2y, B(x)
i=1

$x) =2y, B 7)

V()= Zy B

where,

¥y, = k3,0, B,(x) = k[ 3,(x) B, (x)dx

Yy =, (00, B(x)) = k[ y,(x) B, (x)dx

¥, =k, (), B,(x)) = k[ 3, (x)B,(x)dx
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In practice, only the first k-term of (7) are considered, that is,
k

yi(x)=Dy B(x)
i=1

H@ =2, B

@ =Y, B

with matrix form

yi(x)=B' ()]
¥, (x)=B'(0)Y,
: ®)

y,(x)=B'(0Y,

i '

Wlth Yl:[yll’ywz"”ylk]I’YZ:[yu’yzz""yzk] """ Ym:[yml’ymz’”'ymk]
and B(x)=[B,(x),B,(x),...B,(x)] .

Also the integration of BPfs is expandable into BPfs series:

[BG)=PB) ©)

0

the k-square matrix P is called the operational matrix of integration
of the transform and is defined as follows:

12 2 ... 2

. 01 2 ... 2 (10)
Tasgl0 0 1 2
00 0 ... 1

Integrating (8) over the interval [0, x] and using (9) yields
7@ =y +([B(x) dv) ¥,
0
=y, +B'(x)P'Y,

»() =y, +([B'(x) do) 1,

(11)
=y, +B (0P,
)=y, +([B() do) 7,
0
=y, +B' (x)P'Y,
Similarly, ,(x,t) e I7[0,1)* ,¥i=1,2,...,m may be approximated as:
k,(x,t) = B' (x)K,B(x)

k,(x,t) = B'(x)K,B(x) (12)

km (x’t) = B’(X)KMB(X)
Where K1 =[Ki,]|g,jsk ’Kz :[K']lgi,jsk ""’Km = [Ki/]lg,,jsk and

7

K., =k*(B,(x),(k,(x,0), B,(x))) for s=1,2,...,m.Now using (5) leads to

B (x) 0

. Bz (x)

BB (x) = _ )
0 B, (x)

=diag[ B, (x), B,(x),..., B, (x)]
Now we choose
i,
x,=—,i=12,...,k
k

so for evaluating F,(x,) ,Vj=1,2,...,m by substituting the matrix form
of functions k,(x,1) ,¥j=1,2,...,m and »/(t) ,»;(?) ,...,(*) . and using the
fact that B(x) where e, is the i-th column of the identity matrix of order
k, we may proceed as follows:

F(x)=B'(x)kK, j;’ B(t) B'(t) dt Y,

—e,’K,Udiag[l,o,...,O]dx+...+j* diag0,...,0,1,...,0,...,0] dt} Y,

-1

=eK, {diag[%,o,...,0]+...+diag[0,...,0,%,...,0,...,0]} Y,
Lok ay, (14)
k
F(x)= ek d'Y,
Fm(x‘):%e[Km d'y,
where d' is the kxk diagonal matrix defined as follows:
) 1 =q=12,...,i
| = P=d=hsnl for i=1,2,....k.
0 p=q=i+l,....k
Now by substituting (11) and (14) into (4) we obtain:
A i i
N +;eiK1 d' Y =gx)
+ﬂ’e'K dY,=g,(x)
% o e £ for i=1,2,...,k (15)
A ;
ym +;eiKm d Y:n :gm(xi)
AY =g (x)-»
AY, =g,(x,)-
R (16)
AmY:n :gm(xi)_ym

where,
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A, =eP +iefK1 d'
k

i A i
Ay=abrekad gk (17)

A, =eP +%eme d'

Solving the linear system of algebraic equations (16) gives column
vectors Y,Y,,....,Ym and we can approximate y,(x), y,(x),....,y, (x) by
(11) at every points x; €[1,0].

Illustrative Example

Consider system of second kind volterra integro differential

equation with initial conditions
x _ ’ — 2_
¥, (x)+j0 cos(x—1)y!(t) dt = x> —2cos(x)+2, {yl(o) 0

yz(x)+ﬂj0xxty;(t) dt=x+%x3, »(0)=0

the exact solution of system is
y(x)=x*
N (x)=x

Table 1 show the computed error for the example with k=16 and
table 2 show the computed error for the example with k=32.

t Exact Y,(x) Y,(X)
¥,(x) Yo%)

0.1 0.01 0.1 0.0135 0.1257
0.2 0.04 0.2 0.0463 0.2498
0.3 0.09 0.3 0.0994 0.3452
0.4 0.16 0.4 0.1727 0.4285
0.5 0.25 0.5 0.2648 0.5262
0.6 0.36 0.6 0.3786 0.6365
0.7 0.49 0.7 0.5111 0.7386
0.8 0.64 0.8 0.6638 0.8389
0.9 0.81 0.9 0.8367 0.9400

Table 1: Approximate and exact solution of system for k=16.

¢ Exact Y.(x) ¥,(X)
¥,(x) Yo%)
0.1 0.01 0.1 0.0115 0.1249
0.2 0.04 0.2 0.0432 0.2128
0.3 0.09 0.3 0.0947 0.3153
0.4 0.16 0.4 0.166 0.4189
0.5 0.25 0.5 0.2575 0.5160
0.6 0.36 0.6 0.3691 0.6182
0.7 0.49 0.7 0.5006 0.7186
0.8 0.64 0.8 0.6519 0.8193
0.9 0.81 0.9 0.8231 0.9199

Table 2: Approximate and exact solution of system for k=32.

Conclusions

In this paper, Block Pulse functions were used to solve special
type of system of the second kind volterra integro differential equation
which convert the main problem to solve linear system of algebraic
equations. For showing validity and efficiency, the method is applied for
test problem with two different values of the parameter k which states
approximations may be more accurate using larger k. The benefit of the
method is simplicity for execution and using sparse matrices which
make the method cheap as computational costs.
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