
Volume 8 • Issue 1 • 1000210Global J Technol Optim, an open access journal
ISSN: 2229-8711

Research Article

Deepmala et al., Global J Technol Optim 2017, 8:1
DOI: 10.4172/2229-8711.1000210

 Research Article Open Access

Solution of Voltra-Fredholm Integro-Differential Equations using Chebyshev 
Collocation Method
Deepmala1, Vishnu Narayan Mishra2*, HR Marasi3, H Shabanian4 and M Nosrati Sahlan4

1Mathematics Discipline, PDPM Indian Institute of  Information Technology, Design and Manufacturing, Jabalpur-482005, India
2Applied Mathematics and Humanities Department, S.V. National Institute of Technology, Surat-395007, Gujarat, India
3Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
4Department of Mathematics, Faculty of Sciences, University of Bonab, Bonab, Iran

*Corresponding author: Vishnu Narayan Mishra, Applied Mathematics and
Humanities Department, S.V. National Institute of Technology, Surat-395007, Gujarat, 
India, Tel: +91 99133 87604; E-mail: vishnunarayanmishra@gmail.com

Received February 23, 2017; Accepted April 20, 2017; Published April 26, 2017

Citation: Deepmala, Mishra VN, Marasi H, Shabanian H, Nosrati Sahlan M (2017) 
Solution of Voltra-Fredholm Integro-Differential Equations using Chebyshev 
Collocation Method. Global J Technol Optim 8: 210. doi: 10.4172/2229-
8711.1000210

Copyright: © 2017  Deepmala, et al. This is an open-access article distributedunder 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Abstract
In this paper, we use chebyshev polynomial basis functions to solve the Fredholm and Volterra integro-differential 

equations. We directly calculate integrals and other terms are calculated by approximating the functions with the 
Chebyshev polynomials. This method affects the computational aspect of the numerical calculations. Application of 
the method on some examples show its accuracy and efficiency. 

Keywords: Integro-differential equation; Chebyshev polynomial;
Collocation method

Introduction
 We consider the integro-differential equations of Fredholm, 

Volterra and Fredholm-Volterra types in the forms 
1

1
( ) = ( ) ( , ) ( ) ,λ

−
+ ∫Dy x f x k x t y t dt 		   (1)

1
( ) = ( ) ( , ) ( ) ,λ

−
+ ∫

x
Dy x f x k x t y t dt 	 (2)

and 
1

1 1 2 21 1
( ) = ( ) ( , ) ( ) ( , ) ( ) ,λ λ

− −
+ +∫ ∫

x
Dy x f x k x t y t dt k x t y t dt       (3)

where λ, λ1, and λ2 are real parameters. The functions f(x), k(x,t), 
k1(x,t) and k2(x,t) are known, y(x) is the unknown function to be 
determined and D is a linear differential operator. We suppose, 
without loss of generality, that the interval of integration is [-1,1]. 
Many problems in engineering and mechanics can be transformed into 
integral equations. For example it is usually required to solve Fredholm 
integral equations(FIE) in the calculations of plasma physics [1]. The 
numerical solution of these equations is a well-studied problem and a 
large variety of numerical methods have been developed to rapidly and 
accurately obtain approximations to y(x). Overviews and references 
to the literature for many existing methods are available in [2,3]. 
Collocation methods [2-6], Sinc methods [7], global spectral methods 
[8], methods for convolution equations [9], Newton-Gregory methods 
[10], Runge-Kutta methods [11,12], qualocation methods [13] and 
Galerkin methods [14] are several of the many approaches that have 
previously been considered. In this paper the aim is to obtain the 
solution as a truncated Chebyshev series defined by 

( )
=0

( ) = ( ),≈ ∑
N

N j j
j

y x y x a T x 			   (4)

where Tj(x) denotes the Chebyshev polynomials of the frist kind, 
aj are unknown Chebyshev coefficients and N is any chosen positive 
integer. The Chebyshev collocation points are defined by 

= cos( ), = 0,1,...,π
i

ix i N
N

                  (5)

The paper is organized as follows: In Section Approximations 
we describe numerical approximations for differential operator and 
functions of integro-differential equation. The numerical results are 
presented in Section Numerical examples. 

Methods and Approximations
 Let D be a linear differential operator of order v with polynomial 

coefficients defined by 

=0
:= ( )∑

rv

r
r r

dD p x
dx

                   (6)

We shall write for pr (x) 

( )
=0

= ,
α

∑
r

j
r rj

j
p x p x   (7)

Where αr is the degree of pr (x).

Let y(x) be the exact solution of the integro-differential equation 

( ) ( ) ( ) ( )= , , [ , ],λ+ ∈∫
b

a
Dy x f x K x t y t dt x a b                   (8)

with 

(1) ( 1) (2) ( 1)

=1
( ) ( ) = , = 1,..., ,− − + ∑

v
k k

jk jk j
k

c y a c y b d j v    (9)

Where f(x) and k(x,t) are given continuous functions and λ, a, b, 
(1)
jkc , (2)

jkc  and dj some given constants.

Matrix representation for Dy(x) 

Let 0 1:= { ( ), ( ),...}V v x v x be a polynomial basis given by 

=V V X  where 2= (1, , ,...)TX x x  and V is a non-singular lower 
triangular matrix with degree (vi (x)) ≤ i for i=0,1,2,…. According 
to [17] the effect of differentiation, shifting and integration on the 
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coefficients vector 0 1= ( , ,..., ,0,0,...)   n na a a a  of a polynomial 

( ) = n nu x a X  is the same as that of post-multiplication of na  by the 
matrices η, rµ and l respectively, 
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We recall now the following theorem given by Oritez and Samara [15]. 

Theorem 4.1.1 For any linear differential operator D defined by Eq. 
(6) and any series

0 1 2 0 1 2( ) := , := [ , , ,...], = [ , , ,...]   y x AT A a a a A a a a
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we have
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Function approximation

The solution of Eqs. (1), (2) and (3) can be expressed as a truncated 
Chebyshev series. Therefore, the approximate solution (4) can be 
written in the matrix from 

( ) = ( ) ,Ty x T x A 	                                                                     (10)

where

[ ] [ ]0 1 0 1( ) = ( ), ( ),..., ( ) = , ,...,T T
N NT x T x T x T x A a a a

.
Consequently, using Theorem 2.1 and substituting Eq. (10) in Eq. 

(1), we get 

( ) ( )
1

1
( ) = , [ ( ) ]λ

−
+ ∫T TA ZT x f x K x t T t A dt 	               (11)

Now using the chebyshev collocation points (5) in Eq. (11) we 
obtain the following new system of algebraic equations 

( ) ( )
1

1
( ) = , [ ( ) ] ,

= cos( ), = 0,1,2,..., ,

T T
i i i

i

A ZT x f x K x t T t A dt

ix i N
N

λ

π
−

+ ∫
              (12)

 and so, unknown coefficients ja  are found. 

Definition 4.2.1 The polynomial ( ) = = ( )n Ny x A T T T x , 

will be called an approximate solustion of Eqs. (8) and (9), if the vector 

0 1= [ , ,..., ]N NA a a a  is the solution of the system of liner algebraic 
equations (12). 

Similarly we can develop the method for the problem defined in 
the domain [0, 1]

1
( ) = ( ) ( , ) ( )λ+ ∫Dy x f x k x t y t dt

In this case we obtain the solution in terms of shifted Chebyshev 

polynomials * ( )jT x  in the form 

* *

=0
( ) = ( ),0 1,≤ ≤∑

N

j j
j

y x a T x x

where * ( ) = (2 1)−j jT x T x  Similar to the previous procedure and 
using the collocation points defined by 

1= (1 cos( )), = 0,1,2,..., ,
2

π
+i

ix i N
N

		                (13)

one can get the following system of algebraic equations 

( ) ( )
1* * *

0
( ) = , ( ) ,

= 0,1,2,..., ,

λ+ ∫T T
i i iA Z T x f x K x t AT t dt

i N
		                (14)

where * * * *
0 1( ) = ( ), ( ),..., ( )  NT x T x T x T x and ( ** * * 1 * *= ( ) = =−Z T QT T x T T X ) .

Solving the nonlinear system, unknown coefficients aj are 
found. Similarly, we obtain the fundamental equation for Volterra 
and Fredholm-Volterra integral equation. In this study, instead of 
approximating integral terms, we directly calculate integrals. Examples 
show that this method affects the computational aspect of the numerical 
calculations. 

Results and Numerical Examples
The results obtained in previous sections are used to introduce 

a direct efficient and simple method to solve integro-differential 
equations of Volterra and Fredholm type. 

Example 5.1 We consider the following Fredholm integro-
differential equation of the second kind 

1

0

4( ) = ( ) 1 ( ) ,
3

(0) = 0

y x y x x xty t dt

y

′ + − + ∫

The exact solution is y(x) =cx. We assume the solution of y(x) as a 
truncated Chebyshev series 

( ) * *
0 0 1 1= ( ) ( ), 0 1.+y x a T x a T x x  	                               (15)

 Here, we have 

( ) 4= 1 , ( , ) = , = 1, = 1
3

f x x k x t xt Nλ−

( ) = ( ) ( ), = 1Dy x y x y x v′ −
The fundamental equation of the problem is defined by 
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The system yields the solution 

0 1
1 1= , =
2 2

a a

Substituting these values in (15), we get the exact solution of the 
problem 

1 1( ) = (2 1) =
2 2
+ −y x x x

Example 5.2 We consider the following Fredholm-Volterra integro-
differential equation 

2 1

1

0 0

( ) = 2sin( ) sin(2 ) 2 cos(2 ) 2sin(2 ) 2 5 2

cos( ) ( ) ( ) ,

x x

x x t

y x x x x x x x e e x

x t y t dt e y t dt

−

−

′ − − − + − + +

+ + +∫ ∫
(0) = 0y

The exact solution is 2( ) =y x x . Let us suppose that ( )y x  is 
approximated by Chebyshev series 

3
*

=0
( ) = ( ), 0 1∑ j j

j
y x a T x x 

Using the procedure in section Approximations, we obtain the 
approximate solution of the problem.

In Table 1, we compare the numerical results of the problem by 
the proposed method of N=3 with the method discussed in an earlier 
study [16]. 

Example 5.3 We consider the following Fredholm integro-differential 
equation of the second kind 

1 39 2

0
( ) ( ) = 1/ 20 ( ) 2 2521/ 688800,′′ − − − − +∫y x y x t y t dt x x

(0) (0) = 0
(1) (1) = 9

y y
y y

′−
 ′−
The exact solution is 2( ) = 2 2+ +y x x x . Talking = 2,4,N  

the approximate solutions are obtained by this method. Results are 
compared with those of the methods in literature [17]as shown in 
Table 2.

Example 5.4 We consider the following Volterra integro-differential 
equation of the second kind 

( ) ( )
1

1
( ) ( ) = 2sin( ) sin( ) , 1 1

(0) = 1, (0) = 1

x ty x xy x xy x e x x e y t dt x

y y

−

−
′′ ′+ − − + − ≤ ≤

′
∫

The exact solution is ( ) = xy x e . See Table 3 for the numerical results. 
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