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Introduction
Finite light beams are subject to diffraction unless the latter is 

balanced by additional linear or nonlinear effects, e.g. by spatial 
dispersion or self-focusing or gain guiding [1- 4]. In optically nonlinear 
media for which the refractive index increases with light excitation, two-
dimensional self-trapped beams take the form of spatial solitons and, in 
the presence of additional effects such as saturation or nonlocality or 
multiphoton absorption, can be stable and robust [5- 8]. In the past 
fifteen years, optical spatial solitons in reorientational nonlocal media 
such as nematic liquid crystals have been among the most studied, 
both experimentally and theoretically/numerically [9,10]. The nonlocal 
index perturbation which supports the diffractionless propagation of a 
spatial soliton is, in fact, a graded index waveguide able to guide light 
even of other wavelengths. The excitation, formation and control of 
nonlocal spatial solitons therefore links to the realization of versatile and 
readdressable guided wave optical interconnects of potential impact in 
future generations of all-optical signal processors. More recently, beams 
with a complex phase and amplitude structure, such as vortices, have 
gained interest for particle manipulation and signal processing [11-
15]. Linear vortices, however, naturally diffract and eventually loose 
their internal structure. Furthermore, intense vortex beams are subject 

to an azimuthal instability by which they tend to break up into two 
(or more) bright beams [16,17]. Therefore, the ability to stabilise and 
redirect vortex beams has become an important issue in beam optics, 
both in the linear and nonlinear regimes, particularly in nonlocal 
media. In the present work, with specific reference to nematic liquid 
crystals, but without loss of generality, we address the stabilization and 
guidance of vortex beams by means of nonlocal bright spatial solitons, 
using modulation theory for and numerical solutions of the equations 
governing the nonlinear, nonlocal response of reorientational media. At 
variance with ``sombrero’’ refractive potentials, such as in antiguides 
[18], a bright soliton induces a dielectric waveguide and can, in some 
cases, confine and route a complex wavepacket such as a vortex. In 
this Paper we investigate collinear soliton-vortex pairs interacting 
with a dielectric interface and undergoing angular deviation by either 
refraction or total internal reflection. With the aid of a few specific 
numerical experiments for various wavepackets and a straight interface, 
we illustrate how a vortex can be soliton guided and deflected by the 
dielectric barrier, following the overall trajectory of the bright beam.

Geometry and Governing Equations
We consider a planar cell of finite uniform thickness filled with 

Nematic Liquid Crystals (NLC) into which two beams of copolarised 
light are injected and evolve in the midplane, parallel to the confining 
walls and without interacting with them. We take the propagation 
direction to be in (y,z) and the input polarisation direction of the light 
to be y, with x completing the coordinate triad. For NLC aligned (by 
suitable anchoring at the interfaces) with the optic axis (molecular 
director n) in the plane (y,z), this launch geometry corresponds to 
light exciting the extraordinary eigenwaves in the uniaxial medium. 
At large enough light intensities, the optic axis can rotate in the (y,z) 
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Figure 1:  (Color online) Left: Sketch of the nematic liquid crystal planar cell 
considered in this work, with dielectric regions 1 and 2 separated by a planar 
(y-invariant) graded-index interface. Bell-shaped and vortex wavepackets are 
colaunched with collinear wavevectors at a finite angle of incidence to the 
interface. Right: refraction and total internal reflection of the beams reaching 
the interface from region 1.
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plane and thus increase the extraordinary refractive index, provided the 
electric field E and the director n  are not mutually orthogonal, i.e. a 
torque can counteract the elastic intermolecular forces and minimize 
the system energy by rotating the light-induced dipoles towards the 
field vector [19]. When E⊥n, an external voltage bias can be applied 
across y to overcome the so-called Freédericksz threshold and set a 
finite initial angle θ0 of the elongated molecules to the E direction [9, 
20, 21]. When E and n are coplanar at a finite non-zero angle <π/2, i.e. 
when the wavevector forms an angle 0< θ0 <π/2 with the optic axis, 
milliwatt light beams can rotate the NLC molecules by an extra amount 
θ, with |θ|=θ0, so that the total angle of the optic axis to z  is θ0+θ  and 
the refractive index for the extraordinarily polarized light increases 
accordingly and yields self-focusing [20]. Since this reorientational 
response is nonresonant, refractive index changes can also be produced 
by voltage(s) applied across the NLC or by finite light beams travelling 
along y  orthogonally to the solitary beam. Localized variations of the 
refractive index, in either one (interface) or two (defect) dimensions, 
can cause the beams propagating within the cell to refract, reflect, 
bend [9,22-31]. In the paraxial slowly varying envelope approximation, 
neglecting birefringent walkoff, the non-dimensional equations 
governing the evolution of extraordinarily polarised light beams of 
amplitudes u and v  through the NLC are nonlinear Schrödinger (NLS)-
type 

 21 2 ( , ) 2 = 0,
2

θ∂
+ ∇ + +

∂
ui u F x z u u
z

                                (1)

 21 2 ( , ) 2 = 0,
2

θ∂
+ ∇ + +

∂
vi v F x z v v
z

               (2)

for the wavepackets, and the elliptic equation 
2 2 22 = 2 | | 2 | |q u vΓ∇ − − −θ θ                                                             (3)

for the reorientational response [32]. Here u and v are the complex 
envelopes of the electric fields of the soliton (nematicon [9]) and 
vortex beams, respectively; F(x,z) indicates a y- uniform refractive 
index variation across the cell; the parameter Γ measures the elastic 
response of the medium and in the usual experimental regimes is large, 
0(100) [9,33,34]; the parameter q is proportional to the magnitude of 
the external pre-tilting voltage (bias). In the present work the v  beam 
carries an optical vortex, i.e. a finite two-dimensional wavepacket with 
a phase singularity (integer topological charge modulus 2π) on axis 
where its amplitude vanishes.

The equations (1)-(3) are studied hereby in the context of optical 
beams in reorientational nematic liquid crystals. This system of 
equations, however, is generic and applies to a wide range of physical 
situations, including nonlinear, nonlocal media for which the 
response to a beam involves some sort of diffusive mechanism [35], 
for instance thermo-optic media [36] such as lead glasses [37-39] and 
photorefractive crystals [40]. A similar system of equations also arises 
in the so-called α models of turbulence [41,42]. Moreover, while the 
system (1)-(3) is (2+1) dimensional as the z coordinate is time-like, the 
Schrödinger-Newton equations of quantum gravitation are of the same 
form, but three space dimensional [43].

In a planar NLC cell as described above we also consider a one-
dimensional refractive index barrier corresponding to a graded index 
dielectric interface 

 0 1( , ) = 1 tanh ,
2

µ µ− − −  
D x zAF x z

W
                                                (4)

 as sketched in Figure 1 (left). This interface lies along the plane 
x=µ0z + µ1 and can yield an angular deviation of the wavepackets due 

to momentum (wavevector) conservation, i.e. upon refraction or Total 
Internal Reflection (TIR) as they travel from region 1  to region 2  (see 
Figure 1, right). In this expression, AD  is the size of the index change 
across the interface and W is the width of the interface. The interface 
had to be smoothed from a discontinuous jump for the numerical 
solutions in order to prevent spurious, non-physical numerical effects 
such as beam splitting. The angular deviation of a nonlocal spatial 
soliton encountering an interface in NLC has been studied before, 
both experimentally and numerically [9, 24, 44- 48]. Here we focus on 
the propagation of a vortex beam which, colaunched with the soliton, 
is essentially guided by the latter and undergoes the same deflection 
without losing its complex phase and amplitude character.

We investigate the evolution of nematicon-vortex wavepackets 
upon refraction/TIR using both numerical solutions of the governing 
equations (1)-(3) and approximate evolution equations derived from 
modulation theory [49]. The latter is based on a Lagrangian formulation 
of the governing equations. The Lagrangian for Eqs. (1)-(3) is 

 ( ) ( ) ( )* * * * 2 2 2 2= | | | | 4 | | | |θ− + − − ∇ − ∇ + +z z z zL i u u uu i v v vv u v u v

               ( )2 2 2 2| | 2 4 | | | | ,q F u v−Γ ∇ − + +θ θ                                    (5)

where the superscript * denotes the complex conjugate.

Modulation theory is based on assuming appropriate trial functions 
for the evolving nematicon and vortex beams. Suitable trial functions 
are [10,50] 

 
( ) 2 2= , = ( ) ,s

σ ξψ ψ ξ+ − 
+ − + 

 

i iV xu u u
u u u

u

u a ig e x yech w
       (6)

 / ( )= .σ ξ φ− + − + + 
r w iV x iv v v v

v vv a re ig e                                    (7)

Here (r,ϕ) are polar coordinates centred at (ξv,0) 
These functions consist of two parts: the first terms in each are a varying 
nematicon and a varying vortex, respectively; the second terms result 
from the low-wavenumber diffractive radiation which accumulates 
under the wavepackets as they evolve due to its low group velocity [51]. 
The parameters gu and gv measure the height of this shelf and do not 
depend on x and y. Since the radiation cannot remain indefinitely flat, 
gu  is non-zero in the disc 2 2 2( )ξ− + ≤u ux y R  centred on the nematicon 
[50] and gv is non-zero in the annulus 2 2 2 2( )ξ≤ − + ≤min v maxr x y r , 

, = / 2min max v vr w R  located symmetrically about the peak of the vortex 
[52]. The flat radiation shelves under the beams then match to shed 
radiation propagating away from them, enabling the beams to reach a 
steady state [33,51,53]. The expressions for Ru and Rv=wv can be found 
in references [50] and [52], respectively.

The trial function for the molecular director deformation due to the 
light beams is more complicated. The director equation (3) is linear, so 
its solution can be broken up into the response due to the bright soliton 
and that due to the vortex. A suitable trial function for the director 
response to the soliton is [50] 

 2s= .u echα
ψθ
β

                                                                         (8)

While the vortex has zero amplitude at its core, the director 
distribution does not due to the nonlocality of NLC. A suitable trial 
function for the NLC response due to a vortex can be found by solving 
the director equation (3) in the limit of large nonlocality v [52,54] and is 
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The nonlocality produces an increase in θ (and extraordinary 
index) even in the vortex core (where the light amplitude vanishes), 
a phenomenon able to stabilise a nonlinear vortex in nematic liquid 
crystals [52,54]. The trial function for the molecular director is then 
θu + θv. All the parameters in the functions (6)-(9) depend on the 
evolution variable z.

The functions (6)-(9) are now substituted into the Lagrangian (5), 
which is then averaged by integrating in x and y from -∞  to ∞, resulting 
in the averaged Lagrangian [49] 
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The effects of the localised refractive index perturbation on the 
bright soliton and vortex beams are determined by 

 2
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1( , ) = 1 ( ) ,e
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respectively, where 
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The various integrals Ii  and Iij  in the averaged Lagrangian are 
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where C is the Catalan constant C=0.915965594… [55]. The terms 

 2 2
1 2

1 ˆ= , = , = ln 3
2

Λ Λ Λu vR w                                  (14)

arise due to the contributions of the shelves of diffractive radiation 
under the wavepackets [50,52]. The superscript ^ denotes a steady state 
value.

Taking variations of the averaged Lagrangian (10) with respect 
to the nematicon and vortex parameters results in the variational, or 
modulation [49], equations 
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for the spatial soliton and 
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for the vortex beam. The distribution of the molecular director is 
governed by the algebraic equations 
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2 2 2 2 2

2
42 4 2 2 2 22 2 = ,u u
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Eliminating the director amplitude α between these equations gives 
the explicit solution 

 
( ) ( )1 1/22 2 2 2 2 4 4 2 2 2
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−  + + Γ  

β         (29)

for the width of the NLC response to the soliton.
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The variational equations (15)-(26) have been augmented by the 
inclusion of losses due to shed diffractive radiation. These loss terms 
are those with the parameter δ. This radiative loss has been calculated 
elsewhere [50,53]. In the variational equations (15)-(26) the loss 
coefficient ( , )δ κΛ  [53] is 

 
22 2

0

2 1 3( , ) = ( ) ln(( ) / ) ln(( ) / )
2 2 4

π πδ κ πκ
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                                        (30)

Finally, 
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κ                                       (32)

where 

 ( ) ( )2 1
1/2 1/2

1= 7 , = 1/ 2s2
β β β −Λ u u u u ech                 (33)

and 

 1 1= 5 .Λ Λ                                                                       (34)

In expressions (31) and (32) for κu and κv, the superscript ^ denotes 
fixed point values [56]. There are not enough conservation laws to 
determine these steady state values from the initial beams; hence, they 
are estimated using the modulation equations (19) and (25) to obtain 
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Figure 2: (Color online) Total internal reflection of a nematicon and a charge 1 linear vortex for the initial values au = 0.3, av = 0.15, wu = 7.0, wv = 8.0, Vu = Vv = 
1.5, ξu =ξv = 0, AD= -0.2, Г= 200, q=2, μ0 = 2.0, μ1 = -25, W = 2.0 and m = 1. (a) evolution of nematicon |u| in (x, z) plane, white line: interface, (b) evolution of linear 
vortex |v| in (x, z) plane, white line: interface, (c) nematicon |u| at z = 100, (d) linear vortex |v| at z = 100, (e) trajectories of nematicon (red, solid line) and vortex 
(green dot-dash line). Interface: blue dotted line.
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the fixed point relations between the amplitude au and width wu  of the 
nematicon and amplitude av and width wv of the vortex as 
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2 4 2 4
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1= 2 ,
2

αβ

β

 ∂
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Given values of  wu  and wv  at z, these relations and the algebraic 
equations (27) and (29) are used to obtain 

local approximations to âu, ŵu,  âv,  and ŵv, yielding loss in good 

agreement with numerical solutions [56].

Results

Numerical solutions of the equations (1) and (2) were obtained 
using the pseudo-spectral method of Fornberg and Whitham [57] with 
the stepping forward in z  performed in Fourier space using the 4th 

order Runge-Kutta method, rather than the leap-frog method in real 
space of Fornberg and Whitham. The elliptic director equation (3) was 
solved using a Fourier based method for elliptic equations [58]. The 
numerical x position of the vortex was estimated by its centre of mass 
position 
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Figure 3:  (Color online) Refraction of a nematicon and a charge 1 linear vortex for the initial values au = 0.3, av = 0.15, wu = 7.0, wv = 8.0, Vu = Vv = 0.75, ξu =ξv = 
0, AD= -0.2, Γ= 200, q=2, μ0 = 2.0, μ1 = -25, W = 2.0 and m = 1. (a) evolution of nematicon |u| in (x, z) plane, white line: interface, (b) evolution of linear vortex |v| in 
(x, z) plane, white line: interface, (c) nematicon |u| at z = 60, (d) linear vortex |v| at z = 60, (e) trajectories of nematicon (red, solid line) and vortex (green dot-dash 
line). Interface: blue dotted line.
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as it moves in the (x,z) plane.

Refraction/TIR of a linear vortex
We consider the refraction of soliton guided vortices from a more 

to a less optically dense region, as this can potentially yield total internal 
reflection back to the region of incidence, as well as refraction. Vortex 
refraction from a rarer to a denser medium has been reported earlier 
[59].

Let us first study the interaction of a nematicon with a linear vortex 
beam of the form of a Laguerre-Gauss mode with zero radial mode 
number, so that the initial wavepackets are 

2 2( ) / ( )= , = ,s
ξ ξ φψ − − − +iV x r w iV x immu u v v v

u v
u

u a e v a r e eech w        (38)

 where 

 2 2= ( )ψ ξ− +ux y                                                    (39)

 and (r, ϕ) are plane polar coordinates centred at (ξv,0). The vortex 
charge m is a positive integer and quantifies the orbital angular 
momentum carried per photon in units of ħ. Here au and wu are the 
amplitude and width of the nematicon, av is related to the amplitude 
of the vortex and wv is its width. The nematicon is centred at (ξu,0) and 
has velocity Vu and the vortex has its singularity (centre) at (ξv,0) and 
velocity Vv. As the vortex is linear and does not affect the medium, the 
equations governing its interaction with the soliton are the electric field 
equations (1) and (2) and the director equation (3) with the |v|2  term 
neglected.

When travelling through an interface, a linear vortex beam can be 
refracted in a stable manner when guided by a nonlocal spatial soliton 
as the latter forms a potential well (waveguide) in which the vortex 
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Figure 4: (Color online) Total internal reflection of a nematicon and a charge 2 linear vortex for the initial values au = 0.25, av = 0.02, wu = 8.0, wv = 9.0, Vu = Vv = 1.5, 
ξu =ξv = 0, AD= -0.2, Γ= 200, q=2, μ0 = 2.0, μ1 = -25, W = 2.0 and m = 2. (a) evolution of nematicon |u| in (x, z) plane, white line: interface, (b) evolution of linear vortex 
|v| in (x, z) plane,white line: interface, (c) nematicon |u| at z = 100, (d) linear vortex |v| at z = 100, (e) trajectories of nematicon (red, solid line) and vortex (green dot-
dash line). Interface: blue dotted line.
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propagates [59]. Nonlinear vortices in nematic liquid crystals can 
undergo stable refraction when propagating from a higher to a lower 
optical density region [60,61]. The TIR of a linear vortex guided by a 
soliton has not been investigated to date. Figure 2 shows an example 
of a linear vortex confined by a nonlocal soliton and reflected at an 
interface. Both the vortex and the nematicon were chosen to have low 
amplitude and large width, as a vortex becomes more stable as its width 
increases [52]. It can be seen that the vortex is stable and is trapped 
within the potential well created by the soliton. Figure 2a and Figure 
2b display the evolution of the nematicon and the vortex, respectively, 
in the (x,z) plane. The two wavepackets are somewhat distorted when 
in the vicinity of the interface, but reform as they propagate away from 

it. This distortion and re-formation is confirmed by the solutions at 
z=100 shown in Figure 2c - Figure 2d. The nematicon has been totally 
restored at z=100, but the vortex has shed a portion on interaction with 
the interface as it partially entered the region of lower refractive index 
upon TIR; this shedding can be seen in Figure 2b when the vortex is 
near the interface. The trajectories of the nematicon, as given by the 
location of its maximum, and the vortex, as given by its centre of 
mass position (37), are plotted in Figure 2e. The rapid jumps in the 
nematicon position are due to its distortion by the interface. Figure 2a 
shows that the nematicon develops two peaks in the proximity of the 
interface; since their amplitudes oscillate, sudden changes appear in the 
location of the maximum.

 Figure 3 displays the refraction of a guided linear vortex into the 
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NLC region with lower index. In particular, Figure 3(d) shows that the 
linear vortex is completely stable upon refraction when guided by the 
nematicon, with the latter undergoing some distortion on interacting 
with the interface, which is most clearly seen from its maximum 
position in Figure 3e. The refraction of the two wavepackets illustrated 
in Figure 3a - Figure 3b resembles the refraction of a linear plane wave 
at a sharp index barrier, as governed by Snell’s Law.

In contrast to the stable total internal reflection of a charge 1 linear 
vortex, the stable TIR of a charge 2  vortex was not achieved, with the 
vortex breaking up into two charge 1 vortices, as illustrated in Figure 4. 
It can be seen from Figure 4c that the nematicon has undergone stable 
TIR; in contrast, Figure 4d shows that the vortex has become unstable. 
As well as the splitting off of a portion of the vortex due to crossing the 
interface, as visible for the charge 1 vortex in Figure 2d, the charge 2 

vortex has broken up into two charge 1 vortices, as indicated by the two 
nodes within the vortex in Figure 4d. The trajectories of the nematicon 
and vortex in Figure 4e indicate that both the soliton and the vortex 
beam have undergone TIR, even though in the process the charge 2 
vortex has broken up into two charge 1 vortices.

Refraction/TIR of a nonlinear vortex

Let us now consider the refraction and total internal reflection of a 
nonlinear optical vortex collinear with a nematicon. This evolution is 
governed by the full equations (1)-(3) and the modulation equations of 
Section 2, in particular (15)-(28).

  Figure 5 is an example of the refraction of a nonlinear vortex at 
the interface. The latter was defined by a jump -0.1 in refractive index, 
reduced from the value (-0.2) used for the linear vortices in order to 
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avoid the vortex splitting due to the azimuthal mode 2 instability [16,52]. 
The evolution of the nematicon and the vortex in the  (x,z) plane, visible 
in Figure 5a and Figure 5b, respectively, is similar to that for the linear 
vortex, displayed in Figure 2a and  Figure 2b. The main difference is 
that the amplitudes of the soliton and vortex have increased by a much 
larger amount upon refraction. This is due to the coupling between 
the nematicon and the nonlinear vortex, displayed in the modulation 
equations (15)-(28), particularly the coupling of their amplitudes au  
and av which can support bound states, i.e. nematicon-vortex vector 
solitons [54]. The nematicon and vortex at z=60 are illustrated in Figure 
5(c) and Figure 5(d). In particular, it can be seen that the vortex is 
stable upon refraction, due to the lower value of AD. Finally, Figure 5(e) 
shows excellent agreement between the trajectories of the nematicon 
and vortex as given by the full numerical and modulation solutions. 
The nematicon trajectories are in perfect agreement, with the vortex 
velocity as given by modulation theory slightly greater than that given 
by the numerical solution.

The increased nonlinear coupling between the nematicon and the  
nonlinear vortex, not withstanding their binding into a vector soliton 
and the accompanying amplitude enhancement upon refraction has 
major consequences for the total internal reflection of the guided 
vortex, as illustrated in Figure 6. Figures 6(a) and Figures 6(b) show 
the evolution of the nematicon and the vortex in the (x,z) plane, 
respectively. It can be seen from the evolution in Figure 6(b) that 
the vortex amplitude has more than doubled upon interaction with 
the interface, with a resulting decrease in width and the excitation of 
the mode 2 instability [52]; the nonlinear vortex breaks up into two 
nematicons, as seen from Figure 6(d) displaying the solution for the 
vortex at z=100. In contrast, the soliton solution in Figure 6(c) shows 
that the nematicon is stable upon TIR. This instability and breakup of 
a guided nonlinear vortex upon TIR is similar to that of a non-guided 
nonlinear vortex [60, 61]. Since the modulation theory of Section 2 was 
based on the fixed beam profiles (6)-(9), as the vortex breaks up into 
two nematicons, good agreement is no longer expected between the 
numerical and modulation solutions in this unstable case. However, 
the trajectory comparisons of Figure 6e show that the nematicon 
trajectories as given by the numerical and modulation solutions are 
in excellent agreement. The vortex trajectories are in good agreement, 
unexpectedly; this is because the numerical vortex trajectory is given by 
the centre of mass position (37), and the agreement is due to total linear 
momentum being conserved by the vortex governed by Eq. (2).

Conclusions
It was found that an optical solitary wave in nematic liquid crystals, 

a nematicon, can act as a waveguide for co-propagating linear or 
nonlinear optical vortices. This transverse confinement can stably guide 
linear and nonlinear vortices upon refraction at a dielectric interface. 
Despite stable trapping, however, total internal reflection of linear 
and nonlinear vortices travelling from an optically denser towards a 
rarer region is more involved. A linear vortex can undergo stable total 
internal reflection when guided by a nematicon. In contrast, we could 
not obtain the stable TIR of a nonlinear vortex as it exhibits the usual 
mode 2 instability [16] and breaks up into two bright solitons. This is 
due to a strong coupling between the nematicon and the nonlinear 
vortex which enhances its amplitude, resulting in instability.

Numerical experiments showed that a nematicon can guide a 
charge 1 linear vortex in a stable fashion upon both refraction and total 
internal reflection, but stable refraction and total internal reflection of 
a charge 2 vortex (or higher charge) was not achieved. While charge 
1  vortices can be stabilised by the medium nonlocality, this response 

does not seem to stabilise higher charge vortices [16]. Vortex beams 
do not possess the inherent stability and robustness of optical solitary 
waves, so these results show the utility of using nonlocal solitons to 
guide them along curved trajectories and provide guidelines for future 
experimental demonstrations of these phenomena in suitable media.
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grant IE111560. GA thanks Prof. T. Marchant and Prof. J. Xi for his 
fruitful visit at the University of Wollongong.
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