
Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Research Article Open Access

Balasubramanian and Irfan Ahmed, Global J Technol Optim 2015, 6:2
DOI: 10.4172/2229-8711.1000178

Research Article Open Access

Software Dependency Estimation in the Code Repositories for the
Requirement Evolution
Karthikeyan Balasubramanian* and Irfan Ahmed MS
1Bharathiar University, Tamilnadu, India

*Corresponding author: Karthikeyan Balasubramanian, Bharathiar University,
Tamilnadu, India, Tel: 020-30213250; E-mail: bkarthikeya@gmail.com

Received May 07, 2014; Accepted February 27, 2015; Published March 07, 2015

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency
Estimation in the Code Repositories for the Requirement Evolution. Global J
Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Copyright: © 2015 Balasubramanian K, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

Abstract
Dependency is the only means to ensure that the source code of a system is consistent with its requirements.

During software maintenance and evolution, requirement dependency links become obsolete because dependency
model is been not trained properly to updating them. Yet, recovering these dependency links later is a daunting
and costly task for building the model for unsupervised enhancements. Consequently, the literature has proposed
methods, techniques, and tools to recover these dependency links semi-automatically or automatically. Among the
proposed techniques, the literature showed that information retrieval (IR) techniques can automatically recover
traceability links between free-text requirements and source code through classification techniques to the Software
repositories. However, IR techniques lack accuracy (precision and recall) in terms of Text and concept based mining
also leads to code sense disambiguation. In this paper, we show that Semantic mining of software repositories
and combining mined results with IR can improve the accuracy (precision and recall) of IR techniques. We apply
Dependency Estimation on to compare the accuracy of its dependency links with those recovered using state-of-
the-art IR techniques from Vector Space model and Concept based mining. We thus show that mining software
repositories and combining the mined data with existing results from IR techniques improves the precision and recall
of requirement dependency links.

Keywords: Dependency; Source code; Repository; Code mining;
Requirement traceability

Introduction
The amount of information that is accessible to an fresh engineers

or even to experienced staff seems to be today is mind-boggling. While
a few centuries ago people were struggling to access information, today
many are struggling to eliminate the irrelevant information that reaches
them through various channels like news feeds and Database servers.
Since concepts are abstract entities, representing them is another
problem. In part of this research, we establish a Data Warehouse or
Code Repository as knowledge base. It contains lot of codes related to
different concepts in different databases used to many domains (set
of codes representing the same concept) and their relationships with
other codes collection. In this work, we present two alternate ways
for requirement dependency, one is based on identifying relation to
the requirement through Principle component analysis process and
the other one is based on representing concepts through neighboring
words using domain specific corpus.. The organization of the paper is
as follows: Section 2 gives detailed related work about concept-based
indexing such as concept representation methods, several Semantic
based techniques and building knowledge repositories. Section
3 presents our approach to achieve Semantic -based access using
evidence combination of several WSD techniques and query expansion
with related concepts. Section 4 describes the evaluation process of our
approach. Section 5 discusses the results of WSD and concept-based
indexing experiments [1].

Related Work
A literature survey shows that ontologies have been employed

to achieve better precision and recall in text retrieval systems. Query
expansion has improved the effectiveness of ranked retrieval by
automatically adding additional terms to a query. Guarino et al. [2] has
attempted to perform query expansion through the use of semantically
related terms and the use of conceptual similarity measures to find
document similarity.

Concept representation approaches

I mention two approaches here due to space constraints:

Principle component analysis of codebase: The concepts are
represented by concept nodes in the graph. A concept node is a
component structure that has slots that contain information about that
concept such as its triggering word, patterns for extracting concept
from text as in Riloff and Lehnert [3].

Conceptual graphs: The conceptual graph is a technique that is
developed by Sowa [4,5], to represent knowledge. A conceptual graph
g is a bipartite graph that has two kinds of nodes called, concepts
and conceptual relations [6-8]. This graphical notation of conceptual
relations is for human readability. This notation can be transformed
into Knowledge Interchange Format (KIF) or predicate calculus
notation for processing them in computers [9-11].

Latent semantic analysis

Latent Semantic Analysis (LSA) is proposed in order to overcome
the polysemy and synonym problems of traditional keyword based
retrieval [12]. The main goal of this technique is to reveal the underlying
semantic structure of the documents by representing them in high
dimensional space. LSA uses singular value decomposition in order to
reduce the number of dimensions in the term-by-documents matrix
and tested the performance of latent semantic indexing in two test
corpus: MED and CISI. The results show that LSA improves average

Global Journal of
Technology & OptimizationGlo

ba
l J

ou
rn

al
of Technology and Optim

ization

ISSN: 2229-8711

Page 2 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

precision of traditional term matching by 13% in MED collection.
However, they couldn’t achieve any improvement in CISI experiments
over classical approach [13].

Proposed System
The new framework based Software Dependency estimation which

represents a Semantic mining for extracting the code from the code
repository. Semantic mining is a description (like a formal specification
of a program) of the concepts and relationships that can exist for an
agent or a community of agents. By proposing a semantic network
representation as in directed labelled graph [14]. It is a simplified
conceptual graph. I represent conceptual relationships as edges
between nodes in the graph rather than representing them as nodes
like in conceptual graphs (Figure 1).

WSD based on different domains

Concept Identification: Codebase is been used to associate with
data warehouse or Repository to sense distinctions as predefined set
of code [15]. Our technique is based on evidence combination of
supervised and unsupervised methods using semantic mechanism [16].
Secondly, technique has to be presented to identify the concepts in a
domain with its related words.

The relatedness of two concepts is identified using similarity of
their content neighbouring concept with description using Latent
Semantic Analysis technique [17].

Contextual weights of semantics related abstract query: This
is an unsupervised Semantic approach that is similar to the method
presented in [14]. It uses semantic relationships among codes
(concepts) in Codebase for different domain. The method has the
following steps:

Evidence combination of WSD techniques for extraction: We
apply different techniques to combine result of Semantic mining
methods such as using uncertainty values, Count based measures based
with uncertainty and using sense rankings. Each will be explained
below:

Evidence combination based on dependency with uncertainty:
In this case, we use the simple voting principle to do the evidence
combination in the first phase. That means each WSD method gives
its choice for the sense of the Model or Code. Then the sense that has
maximum vote is chosen as the sense of the code. If there is a tie in the
first phase, then we compare the uncertainty values of WSD sources
and choose the sense with minimum uncertainty value (Figure 2).

Evidence combination based on sense rankings: This evidence
combination technique considers the sense rankings given by each
Semantic Mining method. Instead of using only first senses given by
each method like in the Dependency case, this technique takes other
probable senses into account.

Concept-based Search with Knowledge Repository
Concept-based IR as-based indexing

We used Semantic based mining model for establishing the
software dependency to process dependability to the drift of software
evolution. Since system doesn’t do disambiguation of all content codes,
system been modelled using word based indexing for the terms through
convergence of the context to predict the dependency link to derive the
result (Figure 3).

For Example Simple Mobile Phonebook is a small application
running on mobile devices. A user can edit the details of his contacts. A
contact has a name, a phone number and an address. For every contact
there can be a voice file recorded as an alternative mean to identify the

Figure 1: Representation of Software Dependency modelling to the Evolution.

Page 3 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Figure 2: FlowBased Programs 1 and 2.

Figure 3: Code Dependency for ATM.

Page 4 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

contact (Figure 4). A user can make a call by entering the name of a
contact or by voice lookup. To call a contact identified by voice file, he
presses a special button on the screen; the device records his voice and
compares it to the voice files for the contacts. If none of the voice files
matches with a high enough score a list with the best matches will be
presented from which the user can select the contact. After successful
selection of a contact the call is initiated.

Concept-based IR using latent semantic analysis and query
expansion

Considering the difficulty of WSD techniques and state-of art
results as around 70% precision and system decided to utilize concept
based mining code retrieval with less accuracy. To assume that only a
single sense of a word is relevant to a domain. There are some senses
of words that are domain independent in the sense that it can be
used in many domains but since they don’t contribute much to the
general meaning of the document as domain specific words do, we
don’t consider them at this point. A corpus input and produces word-
word similarity measures. It constructs a model that is called CODE-
SPACE” that represents each word using the content bearing co-
occurring words. Each content-bearing word represents a dimension
in workspace or Data warehouse. A variant of Latent Semantic Analysis

is used to reduce the number of dimensions in data vectors. Then it
computes the similarity of two terms based on cosine similarity of these
co-occurrence vectors. At the end, it gives related terms of a word with
normalized similarity measures. So we can use these related concepts
for query expansion in order to retrieve documents. Addition of related
concepts to the query eliminates the documents that use a different
sense of the concept and retrieves codes that do not contain the main
concept but related concepts in it.

Automated code review software checks source code for compliance
with a predefined set of rules or best practices. The use of analytical
methods to inspect and review source code to detect bugs has been a
standard development practice. This process can be accomplished both
manually and in an automated fashion. With automation, software tools
provide assistance with the code review and inspection process. The
review program or tool typically displays a list of warnings (violations
of programming standards). A review program can also provide an
automated or a programmer-assisted way to correct the issues found.

Experimental Results
Dataset

Dataset used in this section contains all metadata about all software

Figure 4: Use Case Diagram for the Simple Mobile Phonebook.

Page 5 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

codes. Codebase is been used to associate with data warehouse or
Repository to sense distinctions as predefined set of code with huge
concept and process evolution.

Software failure proneness through concept based mining in
code retrieval

Software failure proneness in concept based mining to the code base
updating is challenging due to the software dependency links mining
and link management during the software evolution. Considering the
difficulty of Concept based techniques and state-of art results as around
70% precision, in this work, by identify concepts in a several codes. We
assume that only a single sense of a word is relevant to a domain. There
are some senses of words that are domain independent in the sense
that it can be used in many domains but since they don’t contribute
much to the general meaning of the document as domain specific
words don’t consider them at this point been utilized by training,
validation and testing data for classification of results using historical
prediction models identify the results set estimation efficiently and
effectively in large codebase. The performances of the classification are
experimented and presented in terms of relative speed, computational
time as properties measure of performance using the large codebase
(Table 1).

Query frequency estimation and temporal probability
estimation

The temporal prediction states observed from the large codebase
are as follows: supervised code, unsupervised code and semi-supervised
code (Table 2).

Feature extraction through user query modeling: Feature
Extraction is employed in large dataset with code drifting and
information retrieval with estimating various factors in the query
analysis to the large codebase.

Feature extraction: The data in the big data is evolved with several
feature classification with novel features estimation in each sample
such as, y1, y2, y3, y4 and y5, are extracted by the equation as follows:

yk =
()

5

1
max

=i

i

k

c

c 					 (9)

Where k=1, 2,. . ., 5,

ck – Absolute feature data per one sample.

(1)	 The absolute information is calculated for different samples
given by,

Y6=log10 







=

5

1
max

m

mc 				 (26)

Result Analysis
The proposed framework is implemented and tested using

different types of codebase using domain specific modeling and multi
correlation estimation using Word sense disambiguation. An extensive
experimental study was conducted to evaluate the efficiency and
effectiveness of the proposed methodology on various parameters of
benchmark instances and the prediction states of the dependency link.

The following parameters are utilized to estimate the performance
of the big data classification and prediction of data for user queries
(Figure 5).

Minimize average diameter of clusters results

This factor estimates the performance of proposed framework in
the classifying the data with concept drift. Proposed framework by
latent analysis and sematic miming proves the accuracy results set with
precision and recall in the cluster achieved for software dependency
link establishment for evolution and updating in the software

Maximum likelihood of Software process evolution
monitoring through latent Semantic analysis

 It is process to determine the latent semantic analysis of maximum
likelihood of the software updating and software under enhancement.
The software dependency is estimating the parameters of a statistical
model with semantic mining. When applied to a code base and given
a statistical model, maximum-likelihood estimation provides estimates
for the model’s parameters. We have proved the performance of system
in WSN through semantic mining of abstract query based on the
several factors included in the in the domain and knowledge base to
determine the performance factors with better results.

Easy Adaptability in Programming
If application software is designed in such a way that its

programmers are able to easily adapt the interface layer that deals with
the OS, window manager or desktop environment to new or changing
standards, then the programmers would only have to monitor
notifications from the environment creators or component library
designers and quickly adjust their software with updates for their
users, all with minimal effort and a lack of costly and time-consuming
redesign. This method would encourage programmers to pressure
those upon whom they depend to maintain a reasonable notification
process that is not onerous to anyone involved.

Software appliances

Parameters Notations used Values
Learning rate Λ 0.01
Scaling factor Σ 1

Table 1: Parameters of classification and Prediction of code analysis.

Parameters Notations used Values
Number of iteration I 15000

Order of the polynomial Order 3
Scaling factor Σ 1

Table 2: Performance parameters of estimating for code Extraction and its analysis.

Figure 5: Estimation of the proposed framework against concept based mining.

Page 6 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

Another approach to avoiding dependency issues is to deploy
applications as a software appliance. A software appliance encapsulates
dependencies in a pre-integrated self-contained unit such that users no
longer have to worry about resolving software dependencies. Instead
the burden is shifted to developers of the software appliance.

Portable applications

An application (or version of an existing conventional application)
that is completely self-contained requires nothing to be altered. It is
coded to have all necessary components included, or is designed to
keep all necessary files within its own directory, and will not create
a dependency problem. These are often able to run independently
of the system to which they are connected. Applications in RISC OS
and the ROX Desktop for Linux use application directories, which
work in much the same way: programs and their dependencies are
self-contained in their own directories (folders) [8]. This method of
distribution has also proven useful when porting applications designed
for Unix-like platforms to Windows, the most noticeable drawback
being multiple installations of the same shared library. For example,
Windows installers for gedit, GIMP, and XChat all include identical
copies of the GTK+ toolkit, which these programs use to render
widgets.8.5, Optimizing with the Maven Dependency Plugin.

On larger projects, additional dependencies often tend to creep into
a POM as the numbers of dependencies grow. As dependencies change,
you are often left with dependencies that are not being used, and just
as often, you may forget to declare explicit dependencies for libraries
you require. Because Maven 2.x includes transitive dependencies in the
compile scope, your project may compile properly but fail to run in
production. Consider a case where a project uses classes from a widely
used project such as Jakarta Commons BeanUtils. Instead of declaring
an explicit dependency on BeanUtils, your project simply relies on
a project like Hibernate that references BeanUtils as a transitive
dependency. Your project may compile successfully and run just fine,
but if you upgrade to a new version of Hibernate that doesn’t depend
on BeanUtils, you’ll start to get compile and runtime errors, and it
won’t be immediately obvious why your project stopped compiling.
Also, because you haven’t explicitly listed a dependency version,
Maven cannot resolve any version conflicts that may arise. A good rule
of thumb in Maven is to always declare explicit dependencies for classes
referenced in your code. If you are going to be importing Commons
BeanUtils classes, you should also be declaring a direct dependency on
Commons BeanUtils. Fortunately, via byte code analysis, the Maven
Dependency plugin is able to assist you in uncovering direct references
to dependencies. Using the updated POMs we previously optimized,
let’s look to see if any errors pop up:

$ mvndependency:analyze

[INFO] Scanning for projects...

[INFO] Reactor builds order:

[INFO] Chapter 8 Simple Parent Project

[INFO] Chapter 8 Simple Object Model

[INFO] Chapter 8 Simple Weather API

[INFO] Chapter 8 Simple Persistence API

[INFO] Chapter 8 Simple Command Line Tool

[INFO] Chapter 8 Simple Web Application

[INFO] Chapter 8 Parent Project

[INFO] Searching repository for plugin with prefix: ‘dependency’.

[INFO] ---

[INFO] Building Chapter 8 Simple Object Model

[INFO]task-segment: [dependency: analyze]

[INFO] ---

[INFO] Preparing dependency: analyze

[INFO] [resources: resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler: compile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [resources: testResources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [Compiler: testCompile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [dependency: analyze]

[WARNING] Used undeclared dependencies found:

[WARNING] javax.persistence: persistence-api: jar:1.0:compile

[WARNING] Unused declared dependencies found:

[WARNING] org. hibernate: hibernate-annotations :jar :3.3.0.ga : compile

[WARNING]org.hibernate:hibernate:jar:3.2.5.ga:compile

[WARNING]junit:junit:jar:3.8.1:test

[INFO] ---

[INFO] Building Chapter 8 Simple Web Application

[INFO]task-segment: [dependency:analyze]

[INFO] ---

[INFO] Preparing dependency:analyze

[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:compile]

[INFO] Nothing to compile - all classes are up to date

[INFO] [resources:testResources]

[INFO] Using default encoding to copy filtered resources.

[INFO] [compiler:testCompile]

[INFO] No sources to compile

[INFO] [dependency:analyze]

[WARNING] Used undeclared dependencies found:

[WARNING]org.sonatype.mavenbook.optimize:simple-model :
jar: 1.0:compile

[WARNING] Unused declared dependencies found:

[WARNING]org.apache.velocity:velocity:jar:1.5:compile

Page 7 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

[WARNING]javax.servlet:jstl:jar:1.1.2:compile

[WARNING]taglibs:standard:jar:1.1.2:compile

[WARNING]junit:junit:jar:3.8.1:test

In the truncated output just shown, you can see the output of the
dependency:analyze goal. This goal analyzes the project to see whether
there are any indirect dependencies, or dependencies that are being
referenced but are not directly declared. In the simple-model project,
the Dependency plugin indicates a “used undeclared dependency”
on javax.persistence:persistence-api. To investigate further, go to
thesimple-model directory and run the dependency:tree goal, which
will list all of the project’s direct and transitive dependencies:

$ mvndependency:tree

[INFO] Scanning for projects...

[INFO] Searching repository for plugin with prefix: ‘dependency’.

[INFO] ---

[INFO] Building Chapter 8 Simple Object Model

[INFO]task-segment: [dependency:tree]

[INFO] ---

[INFO] [dependency:tree]

[INFO] org.sonatype.mavenbook.optimize:simple-model:jar:1.0

[INFO] +- org.hibernate:hibernate-annotations:jar:3.3.0.ga:compile

[INFO] | \- javax.persistence:persistence-api:jar:1.0:compile

[INFO] +- org.hibernate:hibernate:jar:3.2.5.ga:compile

[INFO] | +- net.sf.ehcache:ehcache:jar:1.2.3:compile

[INFO] | +- commons-logging:commons-logging:jar:1.0.4:compile

[INFO] | +- asm:asm-attrs:jar:1.5.3:compile

[INFO] | +- dom4j:dom4j:jar:1.6.1:compile

[INFO] | +- antlr:antlr:jar:2.7.6:compile

[INFO] | +- cglib:cglib:jar:2.1_3:compile

[INFO] | +- asm:asm:jar:1.5.3:compile

[INFO] | \- commons-collections:commons-
collections:jar:2.1.1:compile

[INFO] \- junit:junit:jar:3.8.1:test

[INFO] ---

[INFO] BUILD SUCCESSFUL

[INFO] ---

From this output, we can see that the persistence-api dependency
is coming from hibernate. A cursory scan of the source in this module
will reveal many javax. Persistence import statements confirming that
we are, indeed, directly referencing this dependency. The simple fix is
to add a direct reference to the dependency. In this example, we put
the dependency version in simple-parent’s dependency Management
section because the dependency is linked to Hibernate, and the
Hibernate version is declared here. Eventually you are going to want
to upgrade your project’s version of Hibernate. Listing the persistence-
api dependency version near the Hibernate dependency version will

make it more obvious later when your team modifies the parent POM
to upgrade the Hibernate version.

Caching Implicit Dependencies
Scanning each file for #includes lines does take some extra

processing time. When we are doing a full build of a large system, the
scanning time is usually a very small percentage of the overall time
spent on the build. We are most likely to notice the scanning time,
however, when build all or part of a large system were: SCons will likely
take some extra time to “think about” what must be built before it
issues the first build command (or decides that everything is up to date
and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the
amount of potential time lost to tracking down subtle problems
introduced by incorrect dependencies. Nevertheless, the “waiting time”
while SCons scans files can annoy individual developers waiting for
their builds to finish. Consequently, SCons lets us to cache the implicit
dependencies that its scanners find, for use by later builds. We can do
this by specifying the --implicit-cache option on the command line:

 % scons -Q --implicit-cache hello

 cc -o hello.o -c hello.c

 cc -o hello hello.o

 % scons -Q hello

scons: `hello’ is up to date.

If we don’t want to specify --implicit-cache on the command line
each time, you can make it the default behavior for your build by setting
the implicit_cache option in anSConscript file:

SetOption (‘implicit_cache’, 1)

SCons does not cache implicit dependencies like this by default
because the --implicit-cache causes SCons to simply use the implicit
dependencies stored during the last run, without any checking for
whether or not those dependencies are still correct. Specifically, this
means --implicit-cache instructs SCons to not rebuild “correctly” in
the following cases:

•	 When --implicit-cache is used, SCons will ignore any changes
that may have been made to search paths (like $CPPPATH or
$LIBPATH,). This can lead to SCons not rebuilding a file if a
change to $CPPPATH would normally cause a different, same-
named file from a different directory to be used.

•	 When --implicit-cache is used, SCons will not detect if a same-
named file has been added to a directory that is earlier in the
search path than the directory in which the file was found last
time.

The --implicit-deps-changed option

When using cached implicit dependencies, sometimes we want to
“start fresh” and have SCons re-scan the files for which it previously
cached the dependencies. For example, if we have recently installed a
new version of external code that you use for compilation, the external
header files will have changed and the previously-cached implicit
dependencies will be out of date. You can update them by running
SCons with the --implicit-deps-changed option:

 % scons -Q --implicit-deps-changed hello

Page 8 of 8

Citation: Balasubramanian K, Irfan Ahmed MS (2015) Software Dependency Estimation in the Code Repositories for the Requirement Evolution.
Global J Technol Optim 6: 178. doi:10.4172/2229-8711.1000178

Volume 6 • Issue 2 • 1000178
Global J Technol Optim
ISSN: 2229-8711 GJTO, an open access journal

 cc -o hello.o -c hello.c

 cc -o hello hello.o

 % scons -Q hello

scons: `hello’ is up to date.

In this case, SCons will re-scan all of the implicit dependencies and
cache updated copies of the information.

The --implicit-deps-unchanged option

By default when caching dependencies, SCons notices when a
file has been modified and re-scans the file for any updated implicit
dependency information. Sometimes, however, you may want to force
SCons to use the cached implicit dependencies, even if the source files
changed. This can speed up a build for example, when we changeour
source files but haven’t changed any #include lines. In this case, we can
use the --implicit-deps-unchanged option:

 % scons -Q --implicit-deps-unchanged hello

 cc -o hello.o -c hello.c

 cc -o hello hello.o

 % scons -Q hello

scons: `hello’ is up to date.

In this case, SCons will assume that the cached implicit
dependencies are correct and will not bother to re-scan changed files.
For typical builds after small, incremental changes to source files, the
savings may not be very big, but sometimes every bit of improved
performance counts.

Conclusion
We implemented the Semantic mining of software repositories and

combining mined results with IR can improve the accuracy (precision
and recall) of IR techniques. We apply Dependency Estimation on to
compare the accuracy of its dependency links with those recovered
using state-of-the-art IR techniques from Vector Space model and
Concept based mining. We thus show that mining software repositories
and combining the mined data with existing results from IR techniques
improves the precision and recall of requirement dependency links.
Also result outperforms in the convergence ratio in terms of software
evolution and task evolution in dependency mapping.

References

1. Clark P, Thompson J, Holmback H, Duncan L (2000) Exploiting a Thesaurus-
Based Semantic Net for Knowledge-Based Search. In Proceeding 12th
Conference on Innovative Applications of AI (AAAI/IAAI’2000) 988-995.

2. Baldwin CY, Clark KB (2000) Design Rules: The Power of Modularity. MIT
Press.

3. Basili VR, Perricone BT (1984) Software Errors and Complexity: An Empirical
Investigation. Comm. of the ACM 12: 42-52.

4. Briand LC, Wust J, Daly JW, Porter DV (2000) Exploring the Relationships
between Design Measures and Software Quality in Object- Oriented Systems.
The Journal of Systems and Software 51: 245-273.

5.	 Burt RS (1992) Structural Holes: The Social Structure of Competition. Harvard
University Press.

6.	 Cataldo M, Wagstrom P, Herbsleb JD, Carley KM (2006) Identification of
Coordination Requirements: Implications for the Design of Collaboration and
Awareness Tools. In Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW’06) 353-362.

7.	 Cataldo M (2007) Dependencies in Geographically Distributed Software
Development: Overcoming the Limits of Modularity. Ph.D. dissertation, Institute
for Software Research, School of Computer Sciences, Carnegie Mellon
University.

8.	 Cataldo M, Bass M, Herbsleb JD, Bass L (2007) On Coordination Mechanism in
Global Software Development. In Proceedings of the International Conference
on Global Software Engineering (ICGSE ’07) 71-80.

9.	 Montoyo A, Suarez A, Palomar M (2002) Combining supervised-unsupervised
methods for Word Sense Disambiguation. Presented at International conference
on Intelligent Text Processing and Computational Linguistics -CICLing-2002.
Lecture Notes in Computer Science 2276: 156-164.

10.	Roberto N, Stefano F, Aitor S, Oier deL, Eneko A (2011) Two birds with one
stone: Learning semantic models for text categorization and Word Sense
Disambiguation. In Proceedings of the 20th ACM Conference on Information
and Knowledge Management, CIKM 2011, UK 2317–2320.

11. Curtis B, Kransner H, Iscoe NA (1988) field study of software design process
for large systems. Comm. of ACM 31: 1268-1287.

12.	de Souza CRB (2005) On the Relationship between Software Dependencies
and Coordination: Field Studies and Tool Support. Ph.D. dissertation, Donald
Bren School of Information and Computer Sciences, University of California,
Irvine.

13.	de Souza CRB, Redmiles D, Cheng L, Millen D, Patterson J (2004) How a
Good Software Practice Thwarts Collaboration – The multiple roles of APIs in
Software Development. In Proceedings of the Conference on Foundations of
Software Engineering (FSE ’04) 221-230.

14.	Eaddy M, Zimmermannn T, Sherwood KD, Garg V, Murphy GC, Nagappan
N, Aho AV (2008) Do Crosscutting Concerns Cause Defects? IEEE Trans. on
Soft. Eng. 34: 497-515.

15.	Eick SG, Graves TL, Karr AF, Mockus A, Schuster P (2002) Visualizing
Software Changes. IEEE Trans. on Soft. Eng. 28: 396-412.

16.	Eppinger SD, Whitney DE, Smith RP, Gebala DA (1994) A Model-Based
Method for Organizing Tasks in Product Development. Research in Eng.
Design 6: 1-13.

17.	Johnston M, Hanna JRP, Millar RJ (2004) Advances in dataflow programming
languages 36: 1-34.

http://www.cs.utexas.edu/users/pclark/papers/iaai00.pdf
http://www.cs.utexas.edu/users/pclark/papers/iaai00.pdf
http://www.cs.utexas.edu/users/pclark/papers/iaai00.pdf
http://www.amazon.com/Design-Rules-Vol-Power-Modularity/dp/0262024667
http://www.amazon.com/Design-Rules-Vol-Power-Modularity/dp/0262024667
http://www.lsmod.de/~bernhard/cvs/text/dipl/papers/p42-basili.pdf
http://www.lsmod.de/~bernhard/cvs/text/dipl/papers/p42-basili.pdf
http://www.sdmetrics.com/down/bwdp00.pdf
http://www.sdmetrics.com/down/bwdp00.pdf
http://www.sdmetrics.com/down/bwdp00.pdf
http://www.amazon.in/Structural-Holes-Social-Structure-Competition/dp/0674843711
http://www.amazon.in/Structural-Holes-Social-Structure-Competition/dp/0674843711
http://sydney.edu.au/engineering/it/~nets4047/papers/cataldo-id_of_coord_reqmt.pdf
http://sydney.edu.au/engineering/it/~nets4047/papers/cataldo-id_of_coord_reqmt.pdf
http://sydney.edu.au/engineering/it/~nets4047/papers/cataldo-id_of_coord_reqmt.pdf
http://sydney.edu.au/engineering/it/~nets4047/papers/cataldo-id_of_coord_reqmt.pdf
http://www.casos.cs.cmu.edu/publications/papers/Dissertation_final.pdf
http://www.casos.cs.cmu.edu/publications/papers/Dissertation_final.pdf
http://www.casos.cs.cmu.edu/publications/papers/Dissertation_final.pdf
http://www.casos.cs.cmu.edu/publications/papers/Dissertation_final.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4299841&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4299841
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4299841&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4299841
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4299841&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4299841
http://link.springer.com/article/10.1023/A%3A1002486301447#page-1
http://link.springer.com/article/10.1023/A%3A1002486301447#page-1
http://link.springer.com/article/10.1023/A%3A1002486301447#page-1
http://link.springer.com/article/10.1023/A%3A1002486301447#page-1
http://wwwusers.di.uniroma1.it/~navigli/pubs/CIKM_2011_Navigli_etal.pdf
http://wwwusers.di.uniroma1.it/~navigli/pubs/CIKM_2011_Navigli_etal.pdf
http://wwwusers.di.uniroma1.it/~navigli/pubs/CIKM_2011_Navigli_etal.pdf
http://wwwusers.di.uniroma1.it/~navigli/pubs/CIKM_2011_Navigli_etal.pdf
http://www-public.int-evry.fr/~gibson/Teaching/CSC7003/ReadingMaterial/CurtisKrasnerIscoe88.pdf
http://www-public.int-evry.fr/~gibson/Teaching/CSC7003/ReadingMaterial/CurtisKrasnerIscoe88.pdf
http://dl.acm.org/citation.cfm?id=1168771
http://dl.acm.org/citation.cfm?id=1168771
http://dl.acm.org/citation.cfm?id=1168771
http://dl.acm.org/citation.cfm?id=1168771
http://www.ics.uci.edu/~redmiles/publications/C054-deSRC+04.pdf
http://www.ics.uci.edu/~redmiles/publications/C054-deSRC+04.pdf
http://www.ics.uci.edu/~redmiles/publications/C054-deSRC+04.pdf
http://www.ics.uci.edu/~redmiles/publications/C054-deSRC+04.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4527257&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F4359463%2F04527257.pdf%3Farnumber%3D4527257
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4527257&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F4359463%2F04527257.pdf%3Farnumber%3D4527257
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4527257&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F4359463%2F04527257.pdf%3Farnumber%3D4527257
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=995435&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F21473%2F00995435.pdf%3Farnumber%3D995435
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=995435&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F32%2F21473%2F00995435.pdf%3Farnumber%3D995435
http://link.springer.com/article/10.1007%2FBF01588087#page-1
http://link.springer.com/article/10.1007%2FBF01588087#page-1
http://link.springer.com/article/10.1007%2FBF01588087#page-1
http://dl.acm.org/citation.cfm?id=1013209
http://dl.acm.org/citation.cfm?id=1013209

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	Concept representation approaches
	Latent semantic analysis

	Proposed System
	WSD based on different domains

	Concept-based Search with Knowledge Repository
	Concept-based IR as-based indexing
	Concept-based IR using latent semantic analysis and query expansion

	Experimental Results
	Dataset
	Software failure proneness through concept based mining in code retrieval
	Query frequency estimation and temporal probability estimation

	Result analysis
	Minimize average diameter of clusters results
	Maximum likelihood of Software process evolution monitoring through latent Semantic analysis

	Easy Adaptability in Programming
	Software appliances
	Portable applications

	Caching Implicit Dependencies
	The --implicit-deps-changed option
	The --implicit-deps-unchanged option

	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	Table 2
	References

