

Soft Robotics: Advancing Design, Control, Applications

Samuel Harrington*

Department of Soft Robotics, Queensland Robotics Institute, Brisbane, Australia

Introduction

The field of soft robotics is undergoing rapid advancements, significantly impacting areas like minimally invasive surgery. These devices inherently possess flexibility and compliance, which are crucial for navigating complex anatomical structures safely, offering distinct benefits over conventional rigid instruments. Current research focuses on detailing specific surgical applications and addressing challenges in advanced sensing, control, and biocompatibility essential for clinical deployment [1].

Building on these foundations, innovative designs for soft robotic actuators are emerging, capable of complex motions. This is achieved through a strategic combination of hybrid material compositions and structured geometries. The core concept here involves engineering materials and physical structures to intrinsically generate intricate movements, thereby minimizing the need for sophisticated external control systems. This approach marks a significant stride toward creating more versatile and resilient soft robots suitable for a wide array of applications [2].

Further expanding the capabilities of soft robotics, a notable breakthrough involves the development of untethered millimeter-scale soft robots that exhibit multimodal locomotion. These biologically inspired robots can perform distinct gaits, such as walking, swimming, and climbing, without reliance on external tethers, primarily through magnetic actuation. This innovation paves the way for highly maneuverable micro-robots, particularly valuable for navigating constricted spaces within biomedical applications [3].

A fundamental shift in soft robot design centers on a material-driven paradigm, where the material itself dictates the robotic function. This involves meticulously engineering hydrogel-based composites to demonstrate how their intrinsic material properties can autonomously produce complex movements, eliminating the necessity for rigid components or external power sources. This work pushes the boundaries of bio-inspired robotics, emphasizing the intelligence embedded within the material structure [4].

For practical applications, new design principles are being established for soft, compliant robots specifically tailored for dynamic grasping and manipulation tasks. This includes the creation of multi-material soft grippers that adapt their shape and stiffness, allowing them to effectively handle a diverse range of objects, including those that are delicate or irregularly shaped. This advancement significantly enhances the utility of soft robotics in areas like industrial automation and human-robot interaction by prioritizing adaptability and gentle interaction [5].

The integration of intelligence into soft robotic systems relies heavily on advanced sensing techniques. Research in this area focuses on developing compliant sensors that can deform seamlessly alongside the soft robot while precisely measuring

various physical parameters, such as strain, pressure, and touch. These insights are critical for enabling effective closed-loop control and fostering autonomous decision-making capabilities in highly deformable robotic platforms [6].

In the domain of untethered soft robotics, comprehensive reviews highlight significant advancements, especially concerning mechanisms for self-propulsion and integrated energy sources. Discussions revolve around various actuation methods, including chemical reactions, light-based systems, and magnetic fields, which enable soft robots to operate autonomously without requiring rigid external power connections. This work is pivotal for broadening the application scope of soft robots into remote, hazardous, or otherwise inaccessible environments [7].

The convergence of soft robotics and wearable technology marks another important frontier, exploring how compliant robotic devices can be seamlessly integrated into garments for assistance and rehabilitation purposes. A key outcome of this research is the development of lightweight, flexible exosuits designed to augment human motion or provide therapeutic support. This demonstrates the profound potential of soft robotics to create more comfortable, effective, and intuitive human-machine interfaces [8].

Further specialized advancements are evident in soft robotic grippers engineered for delicate handling across various applications, notably in food processing and medical fields. These grippers utilize pneumatic artificial muscles and advanced material composites, allowing them to conform precisely to irregular shapes and exert minimal force. This design reduces the risk of damage to fragile objects, placing a strong emphasis on precision and safety during manipulation tasks [9].

Finally, an insightful review delves into the emerging field of biohybrid soft robotics, which involves integrating living biological components with synthetic soft materials. This area investigates the unique design principles, fabrication techniques, and prospective applications of robots that harness the distinct functionalities of biological systems, such as self-healing or adaptive behaviors. Such integration promises unprecedented levels of autonomy and adaptability in robotic systems [10].

Description

Soft robotics is revolutionizing various domains, offering significant advantages over traditional rigid systems. In minimally invasive surgery, for example, soft robotic devices leverage their inherent flexibility and compliance to enable safer navigation through intricate anatomical structures. This provides notable benefits, particularly in addressing challenges related to advanced sensing, precise control, and ensuring long-term biocompatibility for diverse clinical applications [1]. Extending these capabilities, research also focuses on new principles for designing

soft, compliant robots specifically for dynamic grasping and manipulation. This includes developing multi-material soft grippers that can adapt their shape and stiffness to effectively handle a wide array of objects, including those with delicate or irregular forms. This work marks a significant step forward in industrial automation and human-robot interaction by prioritizing adaptability and gentle contact [5].

Further innovations explore the fundamental mechanisms of soft robot movement and autonomy. A novel design approach for soft robotic actuators achieves complex motions through a strategic combination of hybrid material designs and structured geometries. The central idea here is to engineer material properties and physical structures to intrinsically produce intricate movements, which in turn reduces the need for complex control systems and contributes to more versatile and robust soft robots [2]. Concurrently, significant progress has been made in untethered soft robots. One breakthrough involves millimeter-scale, biologically inspired robots capable of multimodal locomotion, such as walking, swimming, and climbing. These robots achieve this without external tethers by leveraging magnetic actuation, thereby opening new possibilities for highly maneuverable micro-robots in constricted spaces, especially within biomedical applications [3]. More broadly, a comprehensive review of untethered soft robotics highlights advancements in self-propulsion and integrated energy sources, discussing actuation methods like chemical reactions, light, and magnetic fields. Such developments are critical for enabling soft robots to operate autonomously in remote or inaccessible environments, expanding their practical application scope significantly [7].

The intelligence and functionality of soft robots are also being driven by material science and advanced sensing. A new paradigm for creating soft robots focuses on material-driven design, where the material itself dictates the robotic function. By carefully engineering hydrogel-based composites, researchers are demonstrating how intrinsic material properties can lead to complex, autonomous movements without any rigid components or external power. This approach represents a push towards bio-inspired robotics that harness material intelligence directly [4]. Complementing this, research explores advanced sensing techniques vital for integrating intelligence into these systems. The focus is on developing compliant sensors that can seamlessly deform with the soft robot while accurately measuring crucial physical parameters like strain, pressure, and touch. These insights are pivotal for achieving closed-loop control and autonomous decision-making in highly deformable robotic platforms [6].

Specialized applications highlight the practical impact of these advancements. For instance, soft robotic grippers are being developed for delicate handling in sensitive applications like food processing and medical fields. These grippers utilize pneumatic artificial muscles and advanced material composites, allowing them to conform to irregular shapes and apply minimal force, thereby preventing damage to fragile objects and emphasizing precision and safety in manipulation [9]. Another crucial area is the intersection of soft robotics with wearable technology. Here, compliant robotic devices are integrated into garments for assistance and rehabilitation. The development of lightweight, flexible exosuits that augment human motion or provide therapeutic support showcases the immense potential for soft robotics to create more comfortable and effective human-machine interfaces [8].

Looking to the future, the emerging field of biohybrid soft robotics presents fascinating possibilities. This area integrates living biological components with synthetic soft materials, exploring novel design principles, fabrication techniques, and potential applications. Robots leveraging unique biological functionalities, such as self-healing or adaptive behaviors, promise unprecedented levels of autonomy and adaptability, pushing the boundaries of what soft robots can achieve [10].

The field of soft robotics is rapidly advancing, moving beyond traditional rigid systems to offer new capabilities in various applications. Researchers are developing soft robotic devices for minimally invasive surgery, leveraging their flexibility and compliance for safer navigation through delicate anatomical structures. Here, a focus is on addressing challenges in sensing, control, and biocompatibility. Innovations include novel designs for soft robotic actuators that achieve complex motions using hybrid materials and structured geometries, intrinsically producing intricate movements without requiring complex control systems. Untethered millimeter-scale soft robots, inspired by biology, are being developed, capable of multimodal locomotion like walking, swimming, and climbing via magnetic actuation. This opens pathways for highly maneuverable micro-robots, especially in biomedical fields. Further progress involves material-driven design, where hydrogel-based composites are engineered so their intrinsic properties dictate robotic function, enabling autonomous movements without external power. Soft grippers are seeing advancements for dynamic grasping and manipulation, employing multi-material designs and pneumatic artificial muscles for delicate handling in industrial, food processing, and medical sectors. The emphasis is on adaptability, precision, and safety. Integrating intelligence into these systems relies on advanced compliant sensors that deform with the robot, measuring parameters like strain, pressure, and touch for closed-loop control. Reviews also highlight untethered soft robotics, exploring self-propulsion mechanisms and integrated energy sources through chemical, light, and magnetic actuation for remote operations. The intersection with wearable technology is leading to lightweight exosuits for assistance and rehabilitation. The emerging area of biohybrid soft robotics integrates living biological components with synthetic materials, promising robots with self-healing and adaptive behaviors.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Giovanni Pittiglio, Leonardo D'Angelo, Paolo Cifariello. "Soft robotic devices for minimally invasive surgery: Recent advances and challenges." *Surg Endosc* 36 (2022):8697-8717.
2. Yizhou Zhang, Zichen Zhang, Jianing Li. "Soft robotic actuators with complex motion via hybrid material designs and structured geometries." *Sci Adv* 9 (2023):eadf9144.
3. Wen-Jie Li, Zhi-Yi Wang, Zhi-Jun Li. "Untethered millimeter-scale soft robots for multimodal locomotion." *Sci Robot* 5 (2020):eabc1392.
4. Linyu Li, Hao Zhao, Yuyang Chen. "Material-driven soft robots by design." *Nature* 608 (2022):292-298.
5. Alireza R. Zolfagharian, Hadi Sadeghian, Hamid R. Jamshidi. "A review on design principles of soft robots for grasping and manipulation." *Soft Robot* 8 (2021):1-20.
6. Yubing Li, Haipeng Liu, Changlin Yu. "Soft sensors for intelligent soft robots: A review." *Adv Intell Syst* 3 (2021):2000282.
7. Sheng-Yi Jiang, Sheng-Wen Fu, Bo Sun. "Untethered Soft Robots: A Review." *Adv Mater Technol* 7 (2022):2101036.

Conclusion

8. Ye Li, Hongwu Ma, Bo Li. "Wearable soft robots for assistance and rehabilitation: A review." *Robot Auton Syst* 162 (2023):104353.
9. Hao Tian, Pengfei Li, Jinhui Pang. "Recent progress in soft grippers with pneumatic artificial muscles." *J Adv Res* 34 (2021):111-125.
10. Zhi-Yong Li, Shu-Hao Sun, Kai-Wen Li. "Biohybrid soft robotics: A review." *Adv Intell Syst* 4 (2022):2100223.

How to cite this article: Harrington, Samuel. "Soft Robotics: Advancing Design, Control, Applications." *Adv Robot Autom* 14 (2025):336.

***Address for Correspondence:** Samuel, Harrington, Department of Soft Robotics, Queensland Robotics Institute, Brisbane, Australia, E-mail: sharrington@qri.au

Copyright: © 2025 Harrington S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. ara-25-175595; **Editor assigned:** 03-Sep-2025, PreQC No. P-175595; **Reviewed:** 17-Sep-2025, QC No. Q-175595; **Revised:** 22-Sep-2025, Manuscript No. R-175595; **Published:** 29-Sep-2025, DOI: 10.37421/2168-9695.2025.14.336
