Socio-Economic Determinants of Sweet Melon Production in Balanga Local Government Area of Gombe State, Nigeria

Omorogbe I*, Aina OS, Yakubu SA and Hassan AA

Department of Agricultural Extension and Management, Federal College of Horticulture, Dadin-kowa, Gombe State, Nigeria.

Abstract

The potentials of the horticulture sub-sector in solving the prevailing food crisis in Nigeria remain largely untapped because of inefficient use of production resources. The study examined socio-economic determinant of sweet melon production in Balanga local government area of Gombe state. A two stage sampling procedure was used in drawing a sample size of sixty sweet melon farmers from three communities. Data collected were analyzed using both descriptive and multiple regression models. The result revealed that the majority of the farmers were male, married, and literate, with small holding. A coefficient of multiple determinants, R^2 of 0.765 indicated a high relevance of the input in explaining the observed variation in melon production. The regression co-efficient of experiences, farm size and house hold size were significant at 5% level of probability, therefore, making the three factors important determinant of output from sweet melon production. Based on findings from the study, it is recommended that government should provide credit facilities with less bureaucracy and low interest rate to producers; this will enable farmers to increase their farm size and in turn increase output.

Keywords: Socio-economic; Determinant; Sweet melon; Production; Balanga

Introduction

Sweet Melon (Cucumis melo L.) is a warm, long season horticultural crop that is adapted to all climatic zones. Annual world production of melon has increased from 9 million (700,000 ha) in 1992 to 22 million (1.2 million ha) in 2002. Major producing countries are China with 400,000 ha, West Asia (Turkey, Iran, Iraq) 200,000 ha, the America (United State, Mexico, Central and South American countries) 165,000 ha, Northern African (Egypt, Morocco, Tunisia 110,000 ha. Southern Asia (India, Pakistan, Bangladesh 100, 000 ha). European Union (Spain, Italy, France Greece, Portugal) 95,000 ha, Romania 50,000 ha Japan 13,000 ha and Korean republic 11,000 ha FAO [1]. Each country has its own specific melon cultivars of the crop which are sold in local markets. In Africa, it is an economic crop for urban markets, grown in drier region and non-high lands. Statistics on production and marketing in Africa are not available for most countries except Cameroon (3500 ha) and Sudan (1200 ha), Senegal and surrounding countries are exporting the melon during the winter to Europe FAO [1]. Mature fruits of sweet melon cultivars are usually consumed fresh for the sweet and juicy pulp. The pulp is also mixed with water and sugar or sometimes with milk, and served as a refreshing drink or made into ice cream. Immature fruits of non-sweet types, including snake melon are used as a fresh cooked or pickled vegetable. They can also be stuffed with meat, rice and spice, and fried in oil. Sweet melon is often confused with cucumber and often used as such. The seeds are eaten after roasting they contain edible oil. The Hausa people in Nigeria grind the kernels to a paste and make it into fermented cakes. The young leaves are occasionally consumed as a pot herb and in soups. The leafy stem and also the fruit provide good forage for all livestock. In reunion and Mauritius a decoction of seeds and roots is used as a diuretic and vermifuge [2].

Sugar content and aroma are important factors determining the quality of sweet melon. Esters derived from amino acids are important components of the characteristics flavour, sulphur containing compound also play a role. Several C-9 alcohol and aldehydes, including Z-non 6-Enal, are characteristics of the melon aroma. To get the best aroma fruits should be harvested only 2-3 days before they are fully ripe. The edible seed kernel contains approximately 46% of yellow oil and 36% protein [3].

Given the increasing popularity and importance of sweet melon as a desert to many households in Nigeria, it is imperative to understand the problems facing the producers of sweet melon. Olukosi and Isitor [4] identified several possible factors that are constraints to production of fruit and vegetables. These include low farm gate price, high cost of labor input, inadequate supply of improve inputs and inefficient marketing system. Due to the increasing demand and importance of sweet melon, venturing in to its enterprise holds promising potentials. However, there is little or no attention given to sweet melon production technology while only a few is done on its marketing as well. Thus, there is need for further investigation into socio-economic determinants of sweet melon production in Balanga local government area of Gombe state and also determine the factors influence sweet melon production in the study area.

Problems of sweet melon production

According to Adamu et al. [5], in his studies of profitability of sweet melon production and marketing in Keffi Local Government Area; Bauchi State shows that majority (87.5%) of the producers and marketers face the problem of transportation due to poor feeder roads, similarly (50%) and (62.5%) of the producers and marketers experienced inadequate capital to improve their productivity and farming business...
respectively. Moreover, 75% and 37.5% of the producers and marketers complained of glut (on-season problem) respectively.

It is noteworthy that about 31.3%, 56.3% and 81.3% of all the producers complained of inadequate improved seeds, labor, disease attack as well as low farm gate price respectively. This indicated that watermelon producers in the study area undergo the watermelon business under unpredictable situation as was also reported by Singh [6], for vegetable and tomato producers in the semi-arid regions and Yamaltu Deba Local Government Areas of Gombe State, Nigeria. Similarly, other authors reported many problems that are limiting the fruit production as, Dieter [7], shows that in his report, fluctuation in the price of fruit also contributes a major problem in its business. Agricultural production has been increasing at (2%) two percent per year while demand has been increasing at slightly less rapid rates. This means that agricultural prices income have to be low. Similarly Adegeye and Dittoh [8], reported that prices of fruits and other agricultural produce are often manipulated by speculators with adverse effects on the producers and the consumers there is too much seasonal variation in price due mainly to lack of storage facilities and insufficient supply. Also according to the Abbott [9], shows that most fruit do not have adequate storage or warehousing facilities. The existing infrastructure facilities such as access roads, transport, market storage and processing are far from being adequate Singh [6]. Food processing plants are virtually non-existing. These pose a serious problem for effectively processing of agricultural producers.

Hence, affect the effective production of fruit and other agricultural produce. In the same studies carried by Adegeye and Dittoh [8], also reported that some marketing problems can be traced to lack of information about production, for example sellers may not be able to identify source of supply of commodities, while producers may curtail their production as a result of poor sales. Therefore, there must be an information system where buyer and seller can be aware of each other problems. Also according to them, the problem of transport in marketing of fruit and vegetables has many dimension, in some cases there are insufficient vehicles to carry goods from farm (purchase place) to markets (serving places) and from rural market to the towns. In other cases, transport accounts for a large proportion of production costs. In some instances there are no roads where they exist they might be seasonal. Feeder roads are usually few and in most cases have to be constructed and maintained by communal efforts.

Adegeye and Dittoh [8] reported that all effort has geared towards producing more without thinking about how to market them. There is need to know about new technologies in food storage preservation and marketing. Thus, there is need for research on consumers demand and preferences, handling and packaging to reduce lose in fruit and vegetable as well as in other agricultural produce marketing.

Some of these problems reported by Singh [6] include:

- Problems of price variability.
- Inadequate processing and storage facilities.
- Lack of information about production and marketing.
- Lack of transport facilities.
- Lack of uniform weight and measures.
- Inadequate research on fruit market, etc.

Methodology

Area of the study

Gombe state was created on 1st October, 1996 by the military Government headed by General Sani Abacha, the commander-in-chief of Armed forces of the federation. It was formally under Bauchi state. The state has eleven local government councils with its administrative headquarters in Gombe.

Gombe state shares common boundary with Borno state in the east, Bauchi state by the west, Yobe state by the north and Adamawa state by the south. It is located in latitude 10°15’ north and longitude 11° east. Her population is estimated of 1.5 million covering the area land mass of about 20,265 square kilometer [10].

The area of the study was Balanga Local Government and it has covered three distinct areas in the local government namely, Maidara, Daban Magarya and Bakasi. The study area is located in co-ordinates 9°58’N 11°41’E. Balanga is a local government area in the south east of Gombe State, Nigeria bordering Adamawa State. It’s headquarters Talasse. It has an area of 1,626 Km² and a population of 212,549 at the 2006 census. The climate condition of the local government area is characterized by two distinct seasons, dry and wet. The hottest months are March and April which recorded up to a temperature of about 40-42°C while the coldest months are December to February with a minimum temperature of about 20-22°C and the area received the mean annual rainfall of 321.4 mm/annum [11].

Sample procedure and sample size

The data for this study were generated through the use of structured questionnaire complemented with oral interviews. The data were collected from sixty sweet melon producers in Balanga local government area of Gombe state. Purposive sampling technique was used to select three villages and proportional sampling was used in selecting twenty respondents from each village. Twenty questionnaires each were administered to sweet melon producers in Maidara, Daban Magarya and Bakasi. The data were collected by the researcher with help of two well trained personnel’s within the period of eight weeks, beginning from June-July 2015.

Method of data analysis

The statistical tools employed in this study include descriptive statistics analysis, such as frequency distribution, percentage and mean were used for the analysis of socio-economic characteristics of sweet melon producers. The relationship between the socio-economic characteristics and production of sweet melon was determined using multiple regressions model. The model was specified as:

\[Y = f(X_1, X_2, X_3, X_4, X_5, X_6, X_7, u) \]

Where,

- \(Y \) = Output in Pyramid/Bill (Kg)
- \(X_1 \) = Age (Years)
- \(X_2 \) = Years of Experience (Years)
- \(X_3 \) = Farm Size (Ha)
- \(X_4 \) = Household Size (No. of Person)
- \(X_5 \) = Level of Education (Years)
- \(X_6 \) = Marital Status (1=Married, others=0)

ISSN: 2332-2543 Volume 5 • Issue 1 • 1000180
log and double-log. The functional form which gives the best fit in term
forms. The functional forms tried include the linear, exponential, semi-

Results and Discussion
Socio-economic characteristics of sweet melon producers

Table 1 shows that majority (98.3) of the sweet melon producers
in the study area were male. This implies that the participation of
female in sweet melon production in the study area is very low.
This agrees with the finding of Adamu et al., [5] who reported that
males dominated the farming aspect of water melon in Kirfi Local
Government Area of Bauchi State Nigeria. This is because most of
the people in the study area are Muslims and “Purdah” is practice for
female and house wives (not allowed in to farming) as enshrined in
the culture of northern Nigeria. On marital status of the respondents,
the results revealed that 95% of the sweet melon producers in the
study area were married while only 5% were single in the study area.
This is in line with study made by Atman et al., [12] which revealed that
(98.99%) of vegetable marketers in Yamaltu Deba Local Government
Area of Gombe State, Nigeria were married. This is because majority of
the producers in the area were Muslims and their religion permits them
to marry at early ages. It is clear from the table that majority of the
respondents were in the age category of 31-45 years representing
61.7% followed by those within the range of 16-30 years with 20%,
those within the range of 46-60 years represents 18.3%, none of the
respondent fall within the age of 61-75 years. The result further shows
that a minimum of 19 and maximum of 53 years was recorded with
a mean ages of the producers as 39 years, standard error of the mean
was found to be 1 year with the maximum of 6 years. The mean years of
experience of respondents was found to be 3.1 years, standard error of
the mean value of 0.12 and the co-efficient of the variability of 28.7%.

households, representing 21.7% each. Household size of 1-5 and 6-10
persons also had 20%. The mean households’ size of the respondents
was found to be 13 persons with standard error of the mean of 0.25,
and co-efficient of variability of 23.7%. The result clearly indicated that,
the minimum number of persons in a household was found to be one
with a maximum of 27 persons in the study area. The low variability among
the household size of 1-5 and 6-10 persons has 20% and 21.7% repented
21.7% each. Household size of 1-5 and 6-10 persons also had 20%.
The mean households’ size of the respondents was found to be 13 persons
with standard error of the mean of 0.25, and co-efficient of variability of
23.7%. The result clearly indicated that, the minimum number of persons in
a household was found to be one with a maximum of 27 persons in the
study area. The low variability among the household size of 1-5 and
6-10 persons is 20% and 21.7% respectively. Household size of 1-5
and 6-10 persons also had 20%. The mean households’ size of the
respondents was found to be 13 persons with standard error of the mean
of 0.25, and co-efficient of variability of 23.7%. The result clearly indicated
that, the minimum number of persons in a household was found to be
one with a maximum of 27 persons in the study area. The low variability
among the household size of 1-5 and 6-10 persons is 20% and 21.7%
respectively. Household size of 1-5 and 6-10 persons also had 20%.

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming alone</td>
<td>26</td>
<td>43.3</td>
</tr>
<tr>
<td>Farming and Trading</td>
<td>20</td>
<td>33.3</td>
</tr>
<tr>
<td>Farming and Livestock</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>Farming and Civil Services</td>
<td>45</td>
<td>8.3</td>
</tr>
<tr>
<td>Farming and Artisanship</td>
<td>4</td>
<td>6.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Farm Size</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-1</td>
<td>29</td>
<td>48.3</td>
</tr>
<tr>
<td>1.5-3</td>
<td>31</td>
<td>51.7</td>
</tr>
</tbody>
</table>

Source of Finance

<table>
<thead>
<tr>
<th>Source of Finance</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family and Friend</td>
<td>53</td>
<td>88.3</td>
</tr>
<tr>
<td>Bank Loan</td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td>Cooperative Societies</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Cropping Pattern

<table>
<thead>
<tr>
<th>Cropping Pattern</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercropping</td>
<td>26</td>
<td>48.3</td>
</tr>
<tr>
<td>Sole Cropping</td>
<td>20</td>
<td>33.3</td>
</tr>
<tr>
<td>Both</td>
<td>14</td>
<td>23.4</td>
</tr>
</tbody>
</table>
stayed long in the business because the fruit production was newly
introduced to the area. The result indicated that majority (51.7%) of
the respondents had a farm size category of 1.5-3.0 hectares following
by those in the category of 0.5-1.0 hectare representing 48.3%. The result
further shows that a minimum of 0.5 and maximum of 3 hectares was
recorded with mean hectares of 1.5, standard error (SEX) of 0.008 and
efficient of variability (CV) was found to be 1.19%. This implies that
the farmers have small-scale managed farms.

Majority (88.3%) of the respondents sourced their initial capital
through family and friends, 6.7% obtained their capital from bank
loan while, only 5% obtained financial support from co-operative
societies. This indicated, the only means of financing their business was
through family and friends. This agrees with the findings of Atman et
al. [12] who reported that, tomato producers and marketers were only
financing their business through informal means that is through own
savings, money lenders, family and friends), as none of the respondent’s
claimed to have obtained money for financing his business from
government. The result indicated that majority (43.33%) of the sweet
melon producers engaged in intercropping pattern while 33.33% of
the respondents were engaged in sole cropping and only 23.33% were
engaged in both sole and inter cropping. This is in line with the study
by Yusuf et al., [14] which stated that the higher the number of crops
in the mixture the less the profitability. Also Yusuf [15], discovered
in his research on Egusi melon that the more the number of crops in
the mixture the less the yield and the less the profitability, which he
attributed to the competitive effects of the various crop in the mixture
(Table 1).

Regression results for the socio-economic determinants of
sweet melon production

Multiple regression analysis was used to determine the socio-
economic factors influencing the sweet melon production in the study
area. In order to compare and assess in detail the necessary
parameters, four functional forms viz: linear, double-log, semi log, and
exponential function were fitted to the data. The result presented
in Table 2 shows the estimated impacts of socio-economic factor of
respondent on production output (age, experience, farm size, house
hold size, education attainment, married status). Double-log function
was found to have the best fit and therefore chosen as the best lead
equation. The R² of the double-log function was found to be 0.768. This
implies that about 76.8% of the variation in output of the respondent
was accounted for by joint action of the six independents factor while
the rest 23.2% of the variation was due to error. The overall regression
result was significant with F-statistic value of 35.717 at 5% level of
probability. The regression co-efficient of experiences, farm size and
house hold size were significant at 5% level of probability, therefore,
making the three factors important determinant of output from sweet
melon production. The other three factors age, education attainment
and marital status were not significant and therefore, constituted weak
determinants of production output. Farmers with high experience are
more likely to produce more sweet melon than their counterparts with
low experience, and also farmers with large farm size are more likely to
produce more melon with their counterparts with small farm sizes and
the farmers with large house hold size are more likely to produce more
sweet melon than their counterparts with small household size which
are similar to Ugwumba [16].

Conclusion

The study was conducted in Balanga Local Government Area,
Gombe State. The main objective of the study is to obtained information
on socio-economic determinant of the respondents, in achieving these
objectives; three villages (Maidara, Daban Magarry and Bakasi Areas)
were purposively selected. Sixty respondents were randomly selected
from the list frame of the sweet melon farmers. The respondents
were issued with questionnaires, which were filled with the help of
well trained enumerators and the researcher. Statistical tools such as
descriptive statistics and multiple regression analysis were used in data
analysis. The major findings of this study revealed that the majority of
the sweet melon producers were male, married and were within the
age bracket of 31-45 years with mean age of 39 years. The result further
showed that the respondent had one form of education or the other
with Qur’anic education as the highest up to 50%, and had 1-5 years
experience with the mean 3.1 years of experience. Moreover, the result
also showed that 43.3% of the respondents engage in farming alone and
mainly sources their initial capital for the business through family and
friends been (88.3%). The regression analysis of the socio-economic
factors show that double-log regression was chosen as the lead
equation based on the values of R² of 0.768 with a standardized co-efficient of 0.256. The regression co-efficient of experiences, farm
size and the house hold size were significant at 5% level of probability,
therefore, making the three factors important determinant of output from sweet melon production.

Recommendation

Based on the findings the following recommendations were made:

1. Socio-economic characteristic of sweet melon farmers should
be taken into consideration when formulating policies and also
when introducing new technologies to rural farmers.

2. Provision of credit facilities with less bureaucracy and low
interest rate to producers. This will enable farmers to increase
their farm size and in turn increase their output.

3. Extension agent should be mobilized in the area to enhance
the level of agronomic practices of melon farmers. Access to
extension agents enhances the chances of having access to better
crop production techniques, improved inputs as well as other
production incentives and in turn leads to increase in output.
References

