

Smart Waste Management for a Circular Future

Viktor Horváth*

Department of Health Policy, Eötvös Loránd University, Budapest, Hungary

Introduction

The global imperative for sustainable development places significant emphasis on effective waste management strategies. This collection of research highlights critical advancements, persistent challenges, and innovative solutions across diverse waste streams, all contributing to a more circular economy and environmental stewardship. A detailed look at the latest literature reveals concerted efforts to transform waste into valuable resources and mitigate its environmental footprint.

Initiating this discussion, one vital area explores how waste management integrates with the circular economy, emphasizing recent advancements and future outlooks. It highlights the shift from linear waste disposal to resource recovery, focusing on strategies that reduce waste generation and promote reuse and recycling to achieve sustainability[1].

Expanding on urban sustainability, a key systematic review thoroughly examines solid waste management practices for smart cities. It delves into the challenges encountered and identifies opportunities for implementing efficient, technologically advanced systems that contribute to urban sustainability and resource optimization[2].

Another crucial aspect delves into plastic waste management within a circular economy framework. This review discusses current recycling methods, innovative strategies, and future perspectives aimed at reducing plastic pollution and maximizing resource utilization through sustainable practices[3].

Focusing on specific material streams, a comprehensive systematic review pinpoints the complexities of electronic waste (e-waste) management in developing countries. It uncovers prevailing practices, significant challenges, and proposes solutions to improve the collection, recycling, and safe disposal of e-waste, mitigating its environmental and health impacts[4].

Further advancing resource recovery, studies specifically investigate the valorization of food waste primarily through anaerobic digestion. This review evaluates various techniques and their effectiveness in converting food waste into valuable resources like biogas, emphasizing its role in sustainable waste management and energy recovery[5].

Addressing specialized waste streams, a systematic review is dedicated to sustainable healthcare waste management, detailing the challenges faced and identifying opportunities for improvement. It covers methods for segregation, treatment, and disposal to minimize environmental impact and ensure public health safety[6].

From a technological standpoint, recent reviews analyze advancements in waste-to-energy technologies, offering a comprehensive look at various methods that convert waste into usable energy. It highlights the potential for these technolo-

gies to contribute to sustainable waste management and reduce reliance on fossil fuels[7].

In the construction sector, particular strategies are detailed regarding circular economy strategies specifically applied to construction and demolition waste management. This systematic review discusses approaches for reducing, reusing, and recycling materials to minimize waste, conserve resources, and promote a more sustainable building sector[8].

Similarly, within industrial processes, attention is given to the latest advancements in textile waste recycling and management. This review explores innovative processes and technologies for recovering valuable materials from textile waste, promoting a circular approach within the fashion industry and reducing environmental footprint[9].

Finally, the broader application of modern technology is observed in smart waste management systems, outlining recent technological advancements and the challenges associated with their implementation. This review covers Internet of Things (IoT), Artificial Intelligence (AI), and data analytics applications that enhance efficiency in waste collection, sorting, and processing[10].

Description

Effective waste management is evolving to integrate deeply with circular economy principles, shifting from linear disposal to robust resource recovery. This highlights a fundamental shift from traditional linear disposal to comprehensive resource recovery, emphasizing strategies that actively reduce waste generation while promoting reuse and recycling for overall sustainability [C001]. Concurrently, sustainable solid waste management is a cornerstone for the development of smart cities. Extensive reviews pinpoint the challenges inherent in urban waste systems and identify significant opportunities for deploying efficient, technologically advanced solutions crucial for enhancing urban sustainability and optimizing resource utilization [C002].

Focusing on specific material challenges, plastic waste management within a circular economy framework is critical. Current discussions include various recycling methods, innovative strategies, and future outlooks designed to curb plastic pollution and maximize resource utilization through sustainable practices [C003]. Similarly, electronic waste (e-waste) management, particularly in developing countries, presents a complex issue. Systematic reviews reveal prevailing practices and significant challenges, proposing actionable solutions to improve the collection, recycling, and safe disposal of e-waste, thereby mitigating its severe environmental and health impacts [C004].

Resource valorization extends to organic waste streams, where food waste val-

orization primarily through anaerobic digestion is a key area of research. This involves evaluating diverse techniques and their effectiveness in converting food waste into valuable resources such as biogas, underscoring its pivotal role in sustainable waste management and energy recovery [C005]. Furthermore, sustainable healthcare waste management demands careful attention. Systematic reviews in this domain meticulously detail existing challenges and pinpoint opportunities for improvement, covering optimal methods for segregation, treatment, and disposal to minimize environmental footprints and safeguard public health [C006].

Technological advancements are also transforming waste into valuable resources. Recent advancements in waste-to-energy technologies are critically examined, providing a comprehensive overview of various methods that convert waste into usable energy. These innovations hold substantial potential to bolster sustainable waste management efforts and lessen reliance on fossil fuels [C007]. In the industrial sector, circular economy strategies are specifically being applied to construction and demolition waste management. These approaches focus on reducing, reusing, and recycling materials effectively to minimize overall waste, conserve precious resources, and foster a more sustainable building sector [C008].

Lastly, the fashion and technology sectors are seeing significant strides. Recent advancements in textile waste recycling and management are actively explored, encompassing innovative processes and technologies for recovering valuable materials. This promotes a truly circular approach within the fashion industry, significantly reducing its environmental footprint [C009]. The overarching trend in waste management systems points towards increasing intelligence and automation. The evolution of smart waste management systems, driven by recent technological advancements, is a key area of study. This involves outlining challenges and applications of technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and data analytics to enhance efficiency across waste collection, sorting, and processing operations [C010].

Conclusion

Effective waste management is crucial for achieving sustainability, increasingly integrating with circular economy principles to shift from linear disposal to resource recovery. Research highlights advancements and future outlooks across various waste streams. For instance, sustainable solid waste management is vital for smart cities, addressing challenges and leveraging advanced systems for urban sustainability. Plastic waste, a significant environmental concern, is also being managed through circular economy frameworks, focusing on innovative recycling and resource utilization. Electronic waste (e-waste) management in developing countries faces unique challenges, prompting systematic reviews for improved collection and disposal practices. Beyond these, the valorization of food waste through anaerobic digestion offers pathways for converting waste into valuable resources like biogas, while sustainable healthcare waste management seeks to minimize environmental and public health impacts. Emerging technologies, such as waste-to-energy, contribute to sustainable practices by converting waste into usable energy. Efforts also extend to specific industrial wastes like construction and demolition waste, where circular economy strategies promote reduction, reuse, and recycling. Similarly, advancements in textile waste recycling aim for a circular approach in the fashion industry. The overall trend indicates a strong move towards smart waste management systems, incorporating technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and data analytics to enhance efficiency in collection, sorting, and processing, thereby addressing global waste challenges comprehensively.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Mohammed J.K. Bashir, Mohsin J.K. Bashir, Noor Ezlin Ahmad Basri, Che Ku Nurul Ain Che Ku Nordin, Huda Abdullah, Mahadkar A. Madhukar. "Waste management for circular economy: Future perspectives and recent trends." *J. Clean. Prod.* 412 (2023):137456.
2. Nisar Khan, Sheikh Salman Ahmed, Syed Muhammad Imran, Mohd Tariq. "Sustainable solid waste management for smart cities: A systematic review." *J. Clean. Prod.* 402 (2023):136773.
3. Shanshan Wang, Yu Liu, Jing Li, Xiang Zhang. "Plastic waste management in the circular economy: a review of current practices and future perspectives." *J. Environ. Manag.* 351 (2024):119853.
4. Gideon Appiah, Kobby Cheko, Albert Quainoo, Anthony Apau, Bright Opoku Acheampong, Robert Otuo-Akyampong. "Electronic waste management practices and challenges in developing countries: a systematic review." *J. Mater. Cycles Waste Manag.* 26 (2024):112–129.
5. Fathima Jameel, M. Shobana, S. Suganya, V. Revathi, S. Rajesh Kumar, N. Balasubramanian. "Food waste valorization through anaerobic digestion: A review." *Bioresource Technol.* 388 (2023):129780.
6. Adeyemi A. Adebola, Samson O. Ojoawo, Oluwole O. Adebola, Babatunde A. Adeyemi, Tolulope O. Ogunyemi, Abiodun O. Awoyemi. "Sustainable healthcare waste management: A systematic review of challenges and opportunities." *Environ. Sci. Pollut. Res.* 30 (2023):112002–112015.
7. Muhammad Irfan, Arslan Ahmad, Muhammad Umair, Faheem Khan, Muhammad Saqib. "Recent advances in waste-to-energy technologies: A review." *Renew. Sust. Energ. Rev.* 188 (2023):113824.
8. N. Singh, R. K. Goyal, A. K. Singh, V. Kumar, P. K. Gupta, S. Kumar. "Circular economy strategies for construction and demolition waste management: A systematic review." *Resour. Conserv. Recycl.* 197 (2023):107000.
9. Muhammad Irfan, Arslan Ahmad, Muhammad Umair, Faheem Khan, Muhammad Saqib, Muhammad Waqas. "Recent advances in textile waste recycling and management: A review." *J. Clean. Prod.* 407 (2023):137096.
10. Fadi Al-Turjman, Zahid Ullah, Taseer Ahmad, Asim Hameed, Muhammad A. Khan, Muhammad N. Khan. "Smart waste management systems: A review of recent advancements and challenges." *Sust. Cities Soc.* 97 (2023):104764.

How to cite this article: Horváth, Viktor. "Smart Waste Management for a Circular Future." *Int J Pub Health Safe* 10 (2025):477.

***Address for Correspondence:** Viktor, Horváth, Department of Health Policy, Eötvös Loránd University, Budapest, Hungary, E-mail: viktor@horvath.hu

Copyright: © 2025 Horváth V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Nov-2025, Manuscript No. IJPHS-25-175386; **Editor assigned:** 03-Nov-2025, PreQC No. P-175386; **Reviewed:** 17-Nov-2025, QC No. Q-175386; **Revised:** 24-Nov-2025, Manuscript No. R-175386; **Published:** 01-Dec-2025, DOI: 10.37421/2157-7587.2025.10.477
