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Abstract

Bedside monitoring of patients often involves measuring pulse, temperature, respiratory rate, and blood pressure.
Auscultation can also provide useful diagnostic information but requires the presence of a healthcare provider and
hence is done intermittently. New technologies of optimally designed sound acquisition and processing systems can
make this adaptable for continuous patient monitoring. The state of the art as well as some of the features,
advantages and challenges for using this technology for patient monitoring are discussed.
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Introduction

Current patient monitoring
Bedside patient monitoring is an important part of the standard of

care of hospitalized patients. Typical monitoring (in, e.g., operating
rooms, intensive care units, emergency departments) usually involves
measuring pulse, temperature, respiratory rate, and blood pressure and
may also include pulse oximetry and spirometry [1]. Changes in these
vital signs can be indicative of life-threatening conditions that may
require urgent intervention or triage to intensified level of care. Patient
monitoring in general wards, however, is usually intermittent and is
often based on tradition [2]. Low frequency monitoring may not be
optimal for the current hospital population, which tends to be older,
more vulnerable, and having more complex procedures and possible
higher rates of complications.

Manual and automated auscultation
Auscultation is a widely used procedure that provides useful

diagnostic information, is readily available, is non-invasive and can be
performed at a relatively low cost. The procedure is usually performed
using a stethoscope that transmits sounds from the patient skin to the
healthcare provider ear. Auscultation is typically performed by skilled
personnel and is therefore, used intermittently for patient care. Early
stethoscopes [3] were mechanical devices whose evolution has reached
a plateau. These stethoscopes do not lend themselves to continuous
monitoring because of their constant reliance on the human operator.

Electronic stethoscopes have also been developed and are typically
based on transducers that convert sounds and vibrations at the skin
surface into electrical signals. The transducers used vary in their
principle of operation and may involve electret microphones,
accelerometers, optical sensors, or piezoelectric films or discs.
Electronic stethoscopes offer inherent flexibilities since their electrical
output can be manipulated with relative ease. For example, filters and
amplifier can be incorporated in the design of these stethoscopes to
supplement the human hearing, which has frequency-dependent

sensitivity and may not hear subtle sound changes. For example, the
typical human hearing sensitivity drops by about 70 decibels at 20
Hertz (Hz) compared to that at 1000 Hz. As a result, some useful
diagnostic information, especially at low frequencies may not be easily
detectable by the unaided human ear. Most electronic stethoscopes are,
however, expensive, non-disposable and, hence, require cleaning after
each use to avoid cross contamination.

Advances in digital signal processing, artificial intelligence and the
availability of electronic stethoscopes have increased interest in the
development of systems that can automatically acquire and analyze
biological sounds and vibrations and provide diagnostic information
that may be used by healthcare providers and patients. Several studies
have shown that computer assisted analysis was able to find
correlations between acquired body sounds and certain pulmonary
[4-12], gastrointestinal [13-18] or cardiovascular conditions [19-21].

Body sound acquisition and analysis systems can be designed for
bedside patient monitoring in, for example, the emergency room, the
intensive care unit, or operating room. Although these systems can
provide useful diagnostic information to healthcare providers, they are
often not utilized. This is likely due, at least in part, to the uncertainty
of the benefit to the patient and the burden of having to attach the
additional sensors and wires (i.e., in addition to the EKG electrodes
and wires that are currently usually attached). To reduce this burden
new optimally designed sensors should be designed and constructed.
Desirable sensor characteristics include: high sensitivity and signal-to-
noise ratio in the frequency range of interest, small size, low cost, easy
attachment to the skin, disposability to avoid need for disinfection, and
capability to integrate with EKG electrodes to reduce need for extra
wires and reduce burden on the user.

The sensitivity and frequency response of most readily available
stethoscopes is usually unknown, which makes it difficult to compare
the results of different studies or chose optimal sensors for the sounds
to be measured. Optimal sensors for different studies are expected to
be different as acoustic energy may be concentrated in different
frequency bands. For example while most of the heart sound energy is
below 100 Hz, breath sounds energy is more dominant between
100-1000 Hz. Testing of sensors is another important area of
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investigation and optimization. Special sensors testing phantoms are
needed to properly document the frequency response and compare the
performance of different stethoscopes. While there are no widely
accepted methods for testing stethoscopes, there have been studies
[22-26] that proposed certain phantom designs. Desired phantom
characteristics include being made of materials that has density and
elasticity similar to soft tissue, having high temporal stability, ready
availability, low cost, and being made of materials that are easy to mold
into desired shapes. The phantom also needs to be compact in size and
able to supply surface acoustic signals that have high spectral and
spatial uniformity, and able to test sensors of different sizes.

Computer simulations of acoustic phenomena in humans and
animals have been also attempted [5,24,27-35]. The advantages of the
in silico approach include its ability to quantify both surface and
subsurface acoustic levels and predict acoustic values in areas where
these are hard or not possible to measure. They may also be used in
parametric studies that can elucidate the effects of the different
parameters relatively quickly and economically. The resulting insights
from these studies can help reduce the need for a large number of
bench and animal studies needed for the development of new
monitoring systems.
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