
Volume 8 • Issue 3 • 1000353J Biom Biostat, an open access journal
ISSN: 2155-6180

Research Article

Banik and Golam Kibria, J Biom Biostat 2017, 8:3
DOI: 10.4172/2155-6180.1000353

Research Article Open Access

Journal of Biometrics & BiostatisticsJo
ur

na
l o

f B
iometrics & Biostatistics

ISSN: 2155-6180

Keywords: Bivariate distribution; Bootstrapping; Correlation
coefficients; Hypothesis tests; Monte Carlo simulation; Power; Size

Introduction
One of the most useful statistical tools for quantifying the relationship 

between two continuous variables is the coefficient of correlation that 
developed by Pearson [1] from a related idea introduced by Galton [2]. 
In statistics, Pearson’s correlation coefficient is used to find the linear 
relationship between two quantitative variables (say) X and Y. It gives a 
value between -1 and +1 inclusive, where -1 indicates a perfect negative 
correlation, 0 is no correlation and +1 indicates a perfect positive 
correlation between X and Y. Since the population correlation coefficient, 
ρ is usually unknown, it is necessary to estimate it by estimator, r from 
the observed data or sample information. Even the sample correlation 
coefficient (r) is a biased estimator of population correlation coefficient 
ρ, the biasness disappears with the increase of sample size. When 
there is a question of estimation, its estimation accuracy and thus the 
validity through the hypothesis testing is essential. Several researchers 
considered several confidence intervals for estimating the population 
correlation coefficient ρ [3]. However, a comparison of several test 
statistics for testing the population correlation coefficient is limited in 
literature. In this paper, we have made an attempt to consider several 
test statistics for testing the population correlation coefficient. Since, 
a theoretical comparison among the test procedures is not possible, a 
simulation study will be conducted to compare the performance of the 
test statistics based on empirical size and power of the test. We believe 
that the findings of this study will make an important contribution to 
literature to choose appropriate test statistics for testing the population 
correlation coefficient for practitioners.

The paper is organized as follows: One proposed and some existing 
methods for testing the population correlation coefficient are described 
in section 2. A Monte Carlo simulation study along with results is 
discussed in section 3. Finally, some concluding remarks are given in 
section 4.

Methods for Testing the Population Correlation 
Coefficient

Suppose we are interested to find the linear relationship between 
two variables X and Y. Then the population correlation coefficient 
between two variables X and Y is denoted by ρ and is defined by
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It can be shown that −1 ≤ ρ ≤ 1. A value of 1 implies that a linear 
equation describes the relationship between X and Y perfectly, with all 
data points lying on a line for which Y increases as X increases. A value 
of −1 implies that all data points lie on a line for which Y decreases 
as X increases. A value of 0 implies that there is no linear association 
between X and Y. Several methods for testing for population correlation 
coefficient, H0: ρ=0 vs. H1: ρ ≠ 0 are given as follows.

The classical test statistic

Suppose, the sample correlation coefficient, r is a point estimator 
of ρ. The distribution of r when ρ is zero was for the first time studied 
by a student [4]. Thus, a common test is that of whether or not a linear 
relationship exists between two variables X and Y. The test statistic is 
defined as follows:
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where n is the sample size and (n-2) is the degrees of freedom(df). Thus 
the critical value for this test statistic can be obtained from t-distribution 
with (n-2) degrees of freedom.
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Abstract
Correlation measures the strength of association between two variables, which plays an important role in various 

fields, such as Health Science, Economics, Finance, Engineering, Environmental science among others. Several 
tests for testing the population correlation coefficient are proposed in a literature by various researchers at different 
time points. This paper evaluates the performance of some of the prominent test statistics for testing the population 
correlation coefficient based on empirical size and power of the tests. Some bivariate distributions, such as normal, 
lognormal, gamma and chi-square are considered to compare the performance of the test statistics. We believe that 
the findings of this paper will make an important contribution to select some good test statistics to find the relationship 
between two variables.
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Fisher’s large sample test statistic

Since the sampling distribution of Pearson's r is not normally 
distributed, Pearson's r is converted to Fisher's z and the test statistic 
for testing H0: ρ=0 vs. H1: ρ ≠ 0 is computed using Fisher's [5] 
transformation and is given as follows:

03(z )z n zt = − −     				                     (2)
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The distribution of 𝑡𝑧 has a standard normal distribution. 

Gorsuch and Lehmann test statistics

To improve the performances of the classical statistic, Gorsuch and 
Lehmann [6] modified the classical statistic and the Fisher statistic and 
proposed the following four statistics for testing H0: ρ=0 vs. H1: ρ ≠ 0 
based on different standard errors of r:

Modified classical statistics:
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 the critical value of 𝑡𝐺𝐿1 

is assumed to be 2 (details see Gorsuch and Lehmann [6]) and the 
distribution of 𝑡𝐺𝐿2 follows t distribution with (n-1) df.

Modified Fisher statistics:

03 3(z z )GL nt = − −     			   (5)

04 3(z z )GL nt = − −   				    (6)

where the critical value of 𝑡𝐺𝐿3 is assumed to be 2 (details see Gorsuch 
and Lehmann [6]) and 𝑡𝐺𝐿4 has a t-distribution with (n-1) degrees of 
freedom.

Proposed test statistic

We know that 1
x

y

sr b
s

= × , where b1 is estimator of β1 for the model 

yt=β0+β1xt+et, β0 is the constant, β1 is the regression coefficient of y on 
x and et ~ N (0, σ2). The test statistic for testing H0: ρ=0 vs. H1: ρ ≠ 0 is 
given by
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The distribution of 𝑡𝑆𝐾 has t-distribution with (n-2) df.

Parametric bootstrap test statistic

Let (*) (*) (*) (*)
1 2x , ,.., nx x x=  and (*) (*) (*) (*)

1 2, y ,.., yny y=  where ith random 
samples are denoted by x(i)and y(i) for i =1,2, …, B and B is the number 
of bootstrap samples [7]. The test statistic for testing H0: ρ=0 vs. H1: ρ 
≠ 0 is given by 
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Where critical values of the above statistic is the *
(n 2) , 2

t α
−  which is 

the (α/2)th sample quintiles of 𝑡𝑝𝑏𝑜𝑜𝑡.

Parametric bootstrap Fisher z test statistic

The test statistic for testing H0: ρ=0 vs. H1: ρ ≠ 0is computed using 
Fisher’s z [8] transformation and is given as follows:

*
03(z z )Fboott n= − −    			    	                   (9)

Where critical values of the above statistic is the *
/ 2zα , which is the 

(α/2)th sample quintiles of 𝑡𝐹𝑏𝑜𝑜𝑡.

Parametric bootstrap version of proposed test statistic

The test statistic for testing H0: ρ=0 vs. H1: ρ ≠ 0is computed follows:
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Where critical values of the above statistic is the *
(n 2) , 2

t α
− , which is 

the (α/2)th sample quintiles of 𝑡𝑆𝐾𝑏𝑜𝑜𝑡.

Bootstrap bias corrected acceleration test statistic

This method is introduced by Efron and Tibshirani [9]. The test 
statistic for testing H0: ρ=0 vs. H1: ρ ≠ 0is the t-statistic defined in eqn. (1) 
and the critical value is calculated by ( )cri
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distribution function of the Z distribution, acceleration factor 

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i i i ia = − = − = − − ∑ ∑ , r is the correlation between x 

and y and ri is the correlation between x and y of (n-1) observations 
without the ith observation.

Simulation Study
The main goal of this paper is to evaluate the performance of test 

statistics for testing population correlation coefficient based on size and 
power properties, discussed in section 2. Since a theoretical comparison 
among the tests is not possible, a simulation study has been conducted 
in this section.

Simulation design

MATLAB (2015) programming language was used to run 
simulations and to make necessary tables. The most common level of 
significance α=0.05 is considered and assumed random sample sizes 
n=10, 30, 50, 80 and 100 and ρ1=-0.5, -0.9, 0.3, 0.8 and 0.99. We have 
considered 2500 replications for our simulation experiments and 1500 
bootstrap samples for each selected random samples sizes. Random 
samples produced from the following population distributions:

(a)	 Bivariate normal with µ1=15, µ2=20 and σ1=10, σ2=4

(b)	 Bivariate log normal with µ1=15, µ2=20 and σ1=10, σ2=4

(c)	 Bivariate gamma with shape parameters 1 and mean 
parameters 2

(d)	 Bivariate chi-square with dfs 1 and 3
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Results Discussion 
Table 1 presents estimated sizes of the selected test statistics for 

selected values of n and ρ, when random samples are generated from 
the bivariate normal distribution. For a visual expression, simulation 
results are presented graphically in Figure 1.

We can see from Figure 1 and Table 1 is that for all sample sizes, all 
proposed test statistics except GL1 and SK Boot have empirical sizes 
close to the 5% nominal level.

We have presented estimated sizes when data are generated from 
the bivariate lognormal distribution in Table 2 and depicted results for 
visual inspection in Figure 2. From Table 2 and Figure 2, we observe 

that for moderate to large sample sizes, tBoot, FBoot, SKBoot and 
BCABoot have sizes close to the nominal level, while rest of the tests 
achieve nominal level only when sample sizes are large.

In Tables 3 and 4, we have reported estimated sizes when data 
generated from the bivariate gamma and bivariate chi-square 
distribution respectively. We find that all tests have correct sizes expect 
GL1 and SKboot. GL1 test has small sizes than the nominal level and 
SKboot has higher sizes than the nominal level (Figures 3 and 4).

In Table 5, we have presented the estimated powers when data are 
generated from the bivariate normal distribution for various sample 
sizes and various values of ρ. We observed that for small sample size 
n=10 (Figure 5), Fisher, G0L3, GL4, FBoot and SKBoot have good 

Tests n=10 n=30 n=50 n=80 n=100
t 0.0476 0.0520 0.0480 0.0588 0.0560

Fisher 0.0488 0.0548 0.0484 0.0604 0.0560
GL1 0.0920 0.0608 0.0528 0.0592 0.0552
GL2 0.0592 0.0552 0.0512 0.0608 0.0576
GL3 0.0440 0.0512 0.0452 0.0560 0.0520
GL4 0.0248 0.0476 0.0436 0.0564 0.0532
SK 0.0460 0.0360 0.0356 0.0496 0.0468

tBoot 0.0300 0.0332 0.0336 0.0400 0.0392
FBoot 0.0424 0.0524 0.0552 0.0560 0.0500

SKBoot 0.1328 0.1020 0.0860 0.0624 0.0568
BCABoot 0.0540 0.0558 0.0520 0.0480 0.0412

Table 1: Estimated sizes at the 5% level of significance for bivariate normal data.

Tests n=10 n=30 n=50 n=80 n=100
t 0.0896 0.0608 0.0496 0.0436 0.0312

Fisher 0.0904 0.0608 0.0504 0.0436 0.0312
GL1 0.1028 0.0620 0.0508 0.0436 0.0312
GL2 0.0960 0.0608 0.0508 0.0436 0.0316
GL3 0.0876 0.0604 0.0488 0.0436 0.0312
GL4 0.0792 0.0600 0.0488 0.0436 0.0312
SK 0.0896 0.0608 0.0496 0.0436 0.0312

tBoot 0.0464 0.0312 0,0252 0.0260 0.0204
FBoot 0.0228 0.0356 0.0240 0.0320 0.0200

SKBoot 0.0812 0.0436 0.0296 0.0340 0.0208
BCABoot 0.0576 0.0336 0.0360 0.0368 0.0340

Table 2: Estimated sizes at the 5% level of significance for bivariate lognormal data.
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Figure 1: Estimated sizes for various values of n in case of the bivariate normal distribution.
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Figure 2: Estimated sizes for various values of n in case of the bivariate lognormal distribution.

Tests n=10 n=30 n=50 n=80 n=100
t 0.0520 0.0500 0.0536 0.0468 0.0420

Fisher 0.0524 0.0504 0.0540 0.0472 0.0420
GL1 0.0924 0.0588 0.0564 0.0472 0.0412
GL2 0.0652 0.0532 0.0560 0.0484 0.0440
GL3 0.0500 0.0484 0.0492 0.0440 0.0396
GL4 0.0288 0.0432 0.0480 0.0452 0.0408
SK 0.0520 0.0500 0.0536 0.0468 0.0420

tBoot 0.0152 0.0276 0.0184 0.0252 0.0228
FBoot 0.0348 0.0368 0.0508 0.0436 0.0348

SKBoot 0.0852 0.1804 0.2292 0.1048 0.1552
BCABoot 0.0412 0.0376 0.0436 0.0384 0.0380

Table 3: Estimated sizes at the 5% level of significance for the bivariate gamma data.

Tests n=10 n=30 n=50 n=80 n=100
t 0.0456 0.0452 0.0560 0.0544 0.0468

Fisher 0.0472 0.0456 0.0568 0.0548 0.0468
GL1 0.0912 0.0504 0.0596 0.0548 0.0468
GL2 0.0608 0.0480 0.0592 0.0568 0.0476
GL3 0.0420 0.0428 0.0520 0.0500 0.0448
GL4 0.0220 0.0388 0.0516 0.0516 0.0460
SK 0.0456 0.0452 0.0560 0.0544 0.0468

tBoot 0.0064 0.0008 0.0228 0.0312 0.0224
FBoot 0.0348 0.0432 0.0400 0.0408 0.0424

SKBoot 0.2108 0.1828 0.2000 0.1744 0.1700
BCABoot 0.0364 0.0344 0.0500 0.0488 0.0392 BCABoot

Table 4: Estimated sizes at the 5% level of significance for the bivariate chi-square data.

powers as compare to other test statistics. For sample sizes 50 or above, 
(Figure 6 for n=50) we found that all test statistics have good powers 
except for ρ=0.3. We noted that for weak positive correlation, SKboot 
has highest power as compare to rest of the test statistics.

In Figure 7, we have presented estimated powers when data are 
generated from the bivariate lognormal distribution for n=10. We 
observed that for strong negative correlation, t, SK, tBoot and BCABoot 
tests statistics have very poor power compare to other tests statistics. 
For positive correlation, we found that all tests have good powers but 
tBoot and BCABoot. We observed that these two tests have very low 
powers as compare to other test statistics.

Figure 8 presents estimated powers when data are generated from 

the bivariate lognormal distribution for n=80. We observed that all tests 
have good powers except bootstrap versions of t, Fisher, SK and BCA 
for ρ=0.3.

we have tabulated estimated power of various test statistics when 
data are generated from bivariate gamma and bivariate chi-square 
distributions (see Figure 9 (n =10) and Figure 10 (n=30) for better 
understanding). It is observed that power properties of the selected tests 
are similar when data generated from bivariate normal distribution or 
lognormal.

In Figures 11 and 12, we have plotted estimated powers for various 
values of n for ρ=-0.5 and ρ=0.8 to check effects of n on the selected 
tests. It is observed from these graphs that as n increases powers are 
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Figure 3: Estimated sizes for various values of n in case of the bivariate gamma 
distribution.
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Figure 4: Estimated sizes for various values of n in case of the bivariate chi 
square distribution.

t Fisher GL1 GL2 GL3 GL4 SK tBoot FBoot SKBoot BCABoot

pho=-0.5
n=10

0.2360 0.3300 0.3680 0.2860 0.3140 0.2200 0.2360 0.1440 0.2900 0.5800 0.2760

pho=-0.9 0.6000 0.9740 0.7780 0.6820 0.9740 0.9640 0.6000 0.4740 0.9840 0.9700 0.7400

pho=0.3 0.0940 0.1040 0.1680 0.1080 0.1020 0.0660 0.0940 0.0420 0.0940 0.3280 0.1080

pho=0.8 0.4680 0.8120 0.6260 0.5300 0.8000 0.7220 0.4680 0.3500 0.8460 0.8760 0.5600

pho=0.99 0.6620 1.0000 0.8520 0.7620 1.0000 1.0000 0.6620 0.4860 1.0000 0.9420 0.6260

pho=-0.5
n=30

0.7720 0.8420 0.7940 0.7760 0.8320 0.8260 0.7720 0.6660 0.8260 0.8800 0.7320

pho=-0.9 0.9080 0.9080 0.9620 0.9200 0.9080 0.9580 0.9080 0.7560 0.9560 0.9580 0.9080

pho=0.3 0.2480 0.2800 0.2720 0.2520 0.2640 0.2480 0.2480 0.1740 0.3180 0.5380 0.2140

pho=0.8 0.8440 0.9300 0.8600 0.8500 0.9180 0.9120 0.8440 0.6820 0.8940 0.9300 0.8400

pho=0.99 0.9012 0.9745 0.9340 0.9310 0.9235 0.9205 0.9012 0.7930 0.9012 0.9745 0.8923

pho=-0.5
n=50

0.9500 0.9740 0.9520 0.9520 0.9660 0.9660 0.9500 0.9240 0.9440 0.9740 0.9340

pho=-0.9 0.9920 0.9980 0.9920 0.9920 0.9980 0.9980 0.9920 0.9800 0.9960 0.9980 0.9920

pho=0.3 0.4420 0.4780 0.4500 0.4460 0.4600 . 0.4560 0.4420 0.3720 0.5220 0.6960 0.4260

pho=0.8 0.9660 0.9900 0.9740 0.9720 0.9900 0.9900 0.9660 0.9420 0.9920 0.9980 0.9540

pho=0.99 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pho=-0.5
n=80

0.9940 0.9980 0.9960 0.9960 0.9980 0.9980 0.9940 0.9860 0.9980 0.9980 0.9940

pho=-0.9 0.9960 1.0000 0.9960 0.9960 1.0000 1.0000 0.9960 0.9940 1.0000 1.0000 0.9940

pho=0.3 0.5480 0.5860 0.5540 0.5560 0.5740 0.5740 0.5480 0.4420 0.5920 0.7780 0.4780

pho=0.8 0.9900 0.9980 0.9900 0.9920 0.9960 0.9960 0.9960 0.9900 0.9780 1.0000 0.9840

pho=0.99 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pho=-0.5
n=100

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pho=-0.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pho=0.3 0.7200 0.7620 0.7200 0.7260 0.7440 0.7540 0.7200 0.5820 0.7020 0.8480 0.6860

pho=0.8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pho=0.99 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5: Powers at the 5% level of significance for bivariate normal data.
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Figure 8: Estimated powers for n=80 and various values of ρ in case of bivariate 
lognormal distribution.
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Figure 6: Estimated powers for n=50 and various values of ρ in case of bivariate normal distribution.
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Figure 7: Estimated powers for n=10 and various values of ρ in case of bivariate 
lognormal distribution.
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Figure 5: Estimated powers for n=10 and various values of ρ for bivariate normal distribution.
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Figure 9: Estimated powers for n=10 and various values ofρ for bivariate gamma distribution.
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Figure 10: Estimated powers for n=30 and various values of ρ in case of bivariate chi-square distribution.
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Figure 11: Estimated powers for various values of n and ρ = -0.5 in case of bivariate normal distribution.
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Figure 12: Estimated powers for various values of n and ρ = 0.8 in case of bivariate normal distribution.
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Figure 13: Estimated powers for various values of n and ρ = -0.5 and bivariate lognormal distribution.
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Figure 14: Estimated powers for various values of n and ρ = 0.8 and bivariate lognormal distribution.
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also increases for all selected tests. We noted that for small sample sizes, 
Fisher, GL2, Fboot and SKboot tests are more powerful than the other 
considered tests. It is also noted that our proposed bootstrap version 
SKboot is more powerful than the other considered tests.

In Figures 13 and 14, we have plotted estimated powers for selected 
values of n and two selected values of ρ. Here also we observed same 
patterns like Figures 11 and 12 as sample size increases, estimated 
powers also increases. As compare to the Figure 11, we noted very 
low powers n=10 when data generated from the bivariate lognormal 
distribution. We noted that tboot and BCAboot tests have very low 
power compared to the other tests.

Figures 15-18 present estimated powers for various values of n and 
two selected values of ρ when data are generated from the bivariate 
gamma distribution and bivariate chi-square distribution respectively. 
Similar interpretation can be drawn from these figures, as we observed 
when data are generated from the bivariate normal distribution.

Conclusion 
In this paper, we study the performance of several methods 

for testing the population correlation coefficient by means of a 
simulation study. Data were generated randomly from several bivariate 
distributions, namely, bivariate normal, bivariate lognormal, bivariate 
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Figure 15: Estimated powers for various values of n and ρ = -0.5 in case of bivariate gamma distribution.
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Figure 16: Estimated powers for various values of n and ρ = 0.8 in case of bivariate gamma distribution.
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gamma and bivariate chi-square with a range of sample sizes. Overall, 
we found that test statistics, t, Fisher, GL2, GL3, GL4, SK and FBoot 
have sizes close to the 5% nominal level. Fisher, GL3, GL4, FBoot and 
SKBoot have good powers as compare to other test statistics. It appears 
from the simulation study is that the test statistics, Fisher, GL3, GL4, 
FBoot and SKBoot can be recommended for practitioners because 
these test statistics have good sizes and powers compare to the rest of 
selected test statistics.
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Figure 17: Estimated powers for various values of n and ρ = -0.5 in case of bivariate chi-square distribution.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

t Fisher GL1 GL2 GL3 GL4 SK tBoot FBoot SKBoot BCABoot

n=10 n=30 n=50 n=80 n=100

Figure 18: Estimated powers for various values of n and ρ = 0.8 in case of bivariate chi-square distribution.
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