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Introduction
Parabolic curves are traditionally used in highway vertical 

alignment design because their properties make the analysis of curve 
characteristics easier. For example, a parabola has a constant rate 
of change in grade that makes the calculation of curve offsets and 
elevations easier. This feature was useful many years ago, when the 
calculations were performed manually. With computers, however, the 
extra mathematical calculations exhibited by the new curve are not an 
issue.

Existing asymmetrical vertical highway curves consist of either 
one or two or even three curves takes the form of parabolic or cubic 
equations for the purposes of accomplishing sufficient value of the sight 
distance and avoidance of the sudden change in vertical acceleration, 
i.e. rider's comfort [1,2].

The significance of unsymmetrical vertical curve arose because it
enhances the driving comfort, improves the available sight distance
and provides larger clearance.

The design guides of the AASHTO suggest that where there are 
requirements for vertical clearance or other geometric constraints, the 
unsymmetrical vertical curve is recommended to use [3].

A cubic parabolic single-arc unsymmetrical vertical curve was 
introduced by Sun and Chen aiming for the purpose of obtaining the 
curve minimum length putting into consideration three main limiting 
factors: driving comfort, least traveling time and the sight distance. The 
analysis of such curve is limited to the crest vertical curve only [3].

Easa presented a new and improved unsymmetrical vertical curve 
for highways that takes the form of a cubic, instead of the traditional 
parabolic, function [1]. The new curve has a rate of change in grade that 

gradually varies between PVC and PVT, thus eliminating the sudden 
change in curvature at the PCC of existing two-arc unsymmetrical 
curves. As a result, the new curve smoothes out driver comfort along the 
curve, replacing the sudden change that occurs at the PCC of existing 
curves. The new curve was developed considering a crest vertical curve, 
but the results are also applicable to sag vertical curves. The new curve 
consists of a single arc, unlike existing unsymmetrical vertical curves 
that consist of two parabolic arcs connected at the point of common 
curvature. The new curve slightly improved the highway sight distance 
in most cases.

For constrained vertical alignments, where the beginning and end 
of a vertical curve are fixed, existing symmetrical and unsymmetrical 
vertical curves may not satisfy vertical clearance requirements [4]. 
Accordingly, Easa presented a new three-arc vertical curve which 
accommodated the vertical clearance and the fixation of the beginning 
and end of the vertical arc. The curve connects two tangents with 
unequal lengths and consists of three parabolic arcs smoothly 
connected at the points of common curvature. The curve improved the 
sight distance for certain conditions [5].
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Abstract
The main goals of reasonable geometric design of unsymmetrical vertical highway curves are the fulfillment 

of the two main aspects: sufficient value of the sight distance and avoidance of the sudden change in vertical 
acceleration, i.e. rider's comfort.

Existing asymmetrical vertical highway curves consist of either one or two or even three curves takes the form 
of parabolic or cubic equations.

In the favor of maintaining more sufficient sight distance and curve smoothness, we introduce a new single 
reverse and unsymmetrical vertical highway curve employing a quintic polynomial equation of odd powers. Equation 
parameters were determined exploiting the given beginning and end grades, and elevations of the points of vertical 
curvature and vertical tangency.

The comparative study presented showed increment ranges between the values of 6.1% to 20.8% of the sight 
distance. The proposed curve proves smoothness particularly at the beginning of the curve, i.e. improvement of the 
rider’s comfort along the range of length up to 200 m and greater than 650 m along the curve.

Finally, the study demonstrated the suitability of using the curve for different values of beginning and end grades 
which is impossible to be connected using the other existing curves. Geometric properties and relationships of the 
curve are presented and justified numerically.
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Also, Easa in his study introduce a research in which the 
symmetrical curve was replaced with two arcs, which have two different 
rates of change of grade and a common point of tangency. The result 
curve, called the equal-arc unsymmetrical (EAU) curve enhanced sight 
distance, highway aesthetics, driver comfort, and vertical clearance [6].

Easa and Hassan used the cubic polynomial to develop a vertical 
transition curve before and after the parabolic vertical curve. The 
resulting curve, called transitioned vertical curve, consists of transition-
parabolic-transition segments. The minimum length of a transition 
curve is derived based on the criterion of driver comfort. The new 
transitioned vertical curve, which exhibits striking similarities to the 
spiraled horizontal curve [7].

In this paper, a new single reverse and unsymmetrical vertical 
curve for highways has been originated. The curve takes the form of 
a quintic polynomial equation of odd powers, whose parameters may 
be determined utilizing the values of grades of the beginning and end 
of curve and elevations of the points of vertical curvature and vertical 
tangency.

Such curve provides three main advantageous features which 
convincingly should enhance the design of highway vertical alignments. 
The first feature is the increasing of the value of the sight distance in 
comparative to the existing vertical curves. The offered comparative 
study demonstrates an increment ranges between the values of 6.1% to 
20.8% of the sight distance. 

The second feature is the smoothness of the curve particularly at the 
beginning of the curve at which, the rate of changes in slope equals zero 
and increase gradually. Such smoothness reflected on the avoidance in 
the sudden change in vertical acceleration at point of vertical curvature; 
point of common curvature and at point of vertical tangency, which, 
in turns, the improvement of the rider’s comfort on the highway. 
The third property is reversal of the curve which effectively enables 
and facilitates the suitability of using the curve for different values of 
beginning and end grades which is impossible to be connected using 
the other existing curves. 

Such advantages are investigated numerically and compared 
with previous cases. Geometric properties of the curve are handled 
and analyzed for the purpose of field planning and alignment. These 
include rate of change of slope, highest point, basic and reverse offsets, 
forward and backward offsets, and sight distance. A notable increase in 
the sight distance is attained using the curve.

Also, the study of the rider's comfort is analyzed via computing the 
vertical acceleration along different curve lengths. An improvement in 
the rider comfort is achieved along certain range along the curve.

Notations
The following are the elements to be used in analyzing the topic: 

L: Length of the curve

L1:  Length of the first tangent

L2: Length of the second tangent

g1: Slope of the first tangent

g2: Slope of the second tangent

PVI: Point of vertical intersection

PVC: Point of vertical curvature

PVT: Point of Vertical Tangency

PR: Point of Reflection

PCC: Point of Common Curvature 

hPVC: Elevation of PVC

hPVT :Elevation of PVT

xht: Highest point

Methodology
Highway vertical alignments consist of straight roadway sections 

(grades or tangents) connected by vertical parabolic curves. The 
vertical curves may be symmetrical, unsymmetrical, or reverse. The 
symmetrical vertical curve is a parabolic arc that connects two tangents 
such that their horizontal projections are equal. The unsymmetrical 
(compound) vertical curve consists of two parabolic arcs that connect 
two tangents with unequal horizontal projections [8]. 

There are different types of unsymmetrical vertical curves. 

Colcord developed an unsymmetrical curve in which the point of 
common curvature (PCC) lies at any intermediate point of the vertical 
curve [9]. 

In the traditional unsymmetrical curve, PCC lies under the point of 
vertical intersection [10,11].

Easa developed an unsymmetrical curve called an equal-arc 
unsymmetrical curve (EAU) in which PCC lies at the middle of the 
curve [1].

Existing symmetrical and unsymmetrical (two curves) vertical 
curves may not be feasible when the highway alignment is subject to 
physical constraints (e.g., vertical clearance) and the beginning and end 
of the vertical curve are fixed.

Curve Proposed Equation
According to Figure 1, we introduce the following items:

L=L1 + L2                                                                                                    (1)

A=g2 - g1                                 (2)

R=L1 /L                    (3)

Equation of the curve may be proposed as follows:

y=a + bx + cx3 + dx5                  (4)

L1 L2

L

PVC

y

PVIg1

g2

PVT

x

α

Figure 1: Proposed curve elements.
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hPVT=hPVC + g1 L1 + g2 L2                    (5)

where a; b; c and d are the parameters which will be determined 
according to the highway constraints, i. e. highway spatial features, as 
follows:

At x=0, y=hPVC, then "(4)" gives:

a=hPVC                    (6)

Also, at x=L, y=hPVT

then, "(4)" gives:

hPVT=hPVC + bL + cL3 + dL5                  (7)

Since the slope of the curve at any point (x, y) is given by the 
derivation of y w. r. to x, hence, "4" produces:

dy/dx=b + 3cx2 + 5dx4                  (8)

and, at x=0, dy/dx=g1, then "(8)" yields:

b=g1                                       (9)

and finally, at x=L, dy/dx=g2, then "(8)" yields:

g2=g1 + 3cL2 + 5dL4                 (10)

Solving "(7)" and "(10)", then:

c= (A/2L2)(4-5R)                 (11)

d=(-A/2L4)(2-3R)                (12)

Thus, equation of the proposed curve associated with the highway 
spatial features takes the form:

y=hPVC + g1 x + (A/2L2)(4-5R)x3 + (-A/2L4)(2-3R)x5

Curve Geometrical Properties
Geometrical properties of the new reverse and unsymmetrical 

vertical curve are significant for the purpose of studying and analyzing 
the structural design of the highway as well as safety and controlled 
speed considerations. Geometrical planning, design and alignment 
depend on such geometrical properties as well.

Rate of change of slope

The rate of change in slope of the curve is defined as the second 
derivation of the equation of the curve w. r. to x, i. e., "(4)" will be:

r= d2y/dx2=6cx + 20dx3                 (13)

or, using values of c and d from "(11)" and "(12)", then:

r=(Ax/L4)[3(4-5R)L2 – 10(2-3R)x2]                                (14)

or:

r=(Ax/L4)(2-3R)[3L2R1 – 10x2]

Since rate of change in slope equals zero at PVC and at PR, i. e. at 
x=0 and x=xPR, then "(14)" yields:

xPVC=0                    (15)

and 

xPR=(-3c/10d)1/2,

or:

xPR=[(3/10)L2 R1] ½                 (16)

where:

R1=(4-5R)/ (2-3R)                    (17)

At x=L, the rate of change rPVT is:

rPVT=(A/L)(15R-8)                 (18)

The minimum rate of slope occurs at distance xmin, Figure 2, and 
equals rmin, where:

xmin=[(L2/10) R1]
1/2                  (19)

rmin=(2A/L)(4-5R)(R1/10)1/2               (20)

State of reflexivity

As derived above, location of reverse point PR is located according 
to the relation:

xPR
2=(3/10)L2 R1

from which, we conclude that the curve will not be reversed unless 
the following condition must be satisfied:

 (4/5) L ≤ L1 < (2/3)L                 (21)

Highest point

At highest point, the first derivative of equation of the curve, "(8)", 
equals zero, i.e.:

dy/dx=b + 3cx2 + 5dx4=0,                               (22)

from which, the highest point lies at a distance xht from PVC, which is:

( )
2 22 111

103 9
510 14 2 3ht L

gLx R R A R= +
−

                  (23)

and the elevation of the highest point yht is determined from equation 
of the curve, "(4)", and equals:

yht=hPVC + g1xht + (A/2L2)(4-5R ) xht
3 – (A/2L4)(2-3R) xht

5                        (24)

Basic offset

For point A, and from the geometry of Figure 3, the basic offset fx 
equals:

fx=(Ax3/2L4)[(2-3R)x2 – (4-5R)L2]                  (25)

For PVI, where x=L1, the basic offset equals:

fx=(-ALR3/2)(1-R)2(3R+4)                  (26)

and for PVT, where x=L, the basic offset equals:

Figure 2: Rate of change in slope.
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 fx=(-AL)(1-R)                                   (27)

For reverse point PR, the basic offset fPR is:

fPR=-(7/20)AL(3R1/10)3/2(4-5R)                    (28)

Reverse offset

Focusing on Figure 4, the reverse offset fr at point A of coordinates 
(x, y) equals:

fr= (Ax3/L4) [2(2-3R)x2 – (4-5R)L2]                (29)

For PVT, where x=L, then the reverse offset equals:

fPVT=-ALR                  (30)

and for reflection point PR, the reverse offset equals:

fPR=(-2A/5L2)(3L2R1/10)3/2(4-5R)                (31)

Basic offset fx equals reverse offset fr at:

X=L(R1/3)1/2

Difference between reverse and basic offsets

Difference between reverse and basic offsets may be obtained using 
"(25)" and "(29)" as: 

fx-fr=(Ax3/2L4)[-3(2-3R)x2 – (4-5R)L2]

For PVT, where x=L, then the difference between reverse and basic 
offset equals:

fx-fr=-AL(1-2R)                 (32)

For reflection Point, where x=xPR, then the difference between 
reverse and basic offset equals:

fx-fr=(A/20L2)(3L2R1/10)3/2(4-5R)                 (33)

Such difference is represented in Figure 5.

Forward and backward offsets

Referring to the geometry of Figure 6, forward and backward offsets 
fb and ff may be derived utilizing "25" in terms of distance u before and 
after given point A of distance x from PVC are: 

fb=cu3+ du5 -3cu2x -5du4x +10du3x2 – 10du2x3                               (34)

ff=–cu3 – du5 - 3cu2x – 5du4x– 10du3x2 – 10du2x3               (35)

These relations are represented in Figure 7.

And the difference between fb and ff is:

Δ=(Au3/L4) [L2R1 – 10x2 –u2] (2-3R)                                 (36)

fb and ff are equal at:

x=[(L2R1-u2)/10]1/2                   (37)

and, 

fb=fa=(-Axu2/L4)(2-3R)(R1L
2-2u2)

at reflection point:

fb=(-Au3/L2)(4-5R) + du4(u-5xPR)               (38)

 
Figure 3: Basic offset.

Figure 4: Reverse offset.

Figure 5: Difference between reverse and basic offsets.

Figure 6: Forward and backward offsets.
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fa=(Au3/L2)(4-5R) - du4(u+5xPR)                 (39)

And finally, difference between fb and ff at reflection point is:

Δ=(-Au3/L4)(2-3R)(2L2R1+u2)                (40)

Sight Distance
Sight distance is a fundamental criterion in the design of any 

highway. It is essential for the driver to be able to perceive hazards on 
the road, with sufficient time in hand to initiate any required action 
safely. On a two-lane two-way road it is also necessary for him or her to 
be able to enter the opposing lane safely while overtaking. 

When the sight distance S is less than the length of the curve L the 
minimum sight distance occurs when the driver (or object) is at PVC 
and the object (or driver) is on the curve. Let h1=driver’s eye height, 
h2=object height, and x1 and x2 are distances from the tangent point to 
the driver and object, respectively.

From Figure 8, employing "25": 

h1= (-A/L2)(4-5R)x1
3 + (2A/L4)(2-3R)x1

5                   (41)

h2=-3cx1x2
2–cx2

3-10dx1
3x2

2– 10dx1
2x2

3 -5dx1x2
4 –dx2

5                                   (42)

Solving "(41)" and "(42)", the minimum sight distance for the curve, 
SMn is:

SMn=x1 + x2                   (43)

For EAU curve:

SMEAU=(2h1/r1)
0.5+ (2h2/r1)

0.5                (44)

Rider's Comfort 
The vertical acceleration on a vertical curve is a measure of rider 

comfort. As acceleration increases, comfort decreases.

This acceleration is given by [8]:

 C=V2 rx /1300                                   (45)

where C is the centrifugal vertical acceleration (m/s2), V is the 
design speed (km/h), and r is the rate of change in grade (percent 
change of the grade per m or A/L). For the proposed curve, based on 
"(13) and "(14)", the rate of change in grade at a distance x from VPC, 
rx, is given by:

rx=(Ax/L4)(2-3R)[3L2R1 – 10x2]

hence, acceleration C is:

 C=(AxV2/1300L4) (2-3R)[3L2R1 – 10x2]                                   (46)

Such relation is represented in Figure 9.

Riding comfort on sag curves typically doesn’t become a problem 
as long as centripetal acceleration does not exceed 0.3 m/s2 [1].

With this limit, the relationship between L and A becomes:

 L=AV2/395                  (47)

Lengths needed to provide ride comfort are typically about half that 
needed to meet headlight sight distance requirements, thus headlight, 
and subsequently stopping, sight distance control the length of a sag 
curve [1].

Numerical Justification
According to the highway design associations considerations, 

including AASHTO [1], there are critical issues should be fulfilled 
when acknowledging proposed geometrical design of vertical curve. 
These are sight distance; rider's comfort and validity of the curve to the 
various beginning and ending slopes.

Verification of validity of the proposed curve may be established 
and judged via comparing the above mentioned issues with those 
related to previous curves.

Figure 7: Forward and backward offsets.

 

Figure 8: Sight distance.

Figure 9: Rider's comfort.



Citation: Shebl SA (2015) Single Reverse and Unsymmetrical Vertical Curve for Highways Utilizing Quintic Polynomial Equation of Odd Powers. J 
Appl Computat Math 4: 257. doi:10.4172/2168-9679.1000257

Page 6 of 7

Volume 4 • Issue 5 • 1000257
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

Sight distance improvement

Consider passing sight distance, where according to AASHTO [8], 
the driver eye height (h1) and object height (h2) used in design are equal 
to 1.08 m. Assuming that g1=0.02, and g2=-0.03, the minimum sight 
distance was calculated for both the new proposed curve; the "New and 
improved single-arc unsymmetrical vertical curve for highways" and 
"the equal-arc unsymmetrical (EAU) vertical curve" developed by Easa 
[1] curves for different curve characteristics, as shown in Table 1. 

As noted, the new curve provides greater minimum sight distance 
in all cases. Note that if h1 and h2 are not equal, the minimum sight 
distance occurs when the shorter height is placed at PVC.

The results were obtained using "(4)"; "(42)", and "(43)", x1 and x2 
were calculated Maple software.

The results indicate notable increase in the value of sight distance 
ranges from 6.1% to 20.8%. 

Rider's comfort improvement

Addressing "(46)" and substituting the values of parameters of the 
new proposed curve calculated for the sight distance calculations, the 
rider's comfort of the proposed new curve was represented in Figure 1, 
in comparative to those related to Easa and EAU curves [1]. 

As mentioned above, the vertical acceleration on a vertical curve is a 
measure of rider comfort. As acceleration increases, comfort decreases.

For vertical curves of length L up to 200 m and L greater than 650 
m, the new proposed curve has a vertical acceleration less than those of 
the other two curves, consequently, emitting more comfortable within 
the stated length (Figure 10).

For curves of length L ranges between 200 m to 650 m, the proposed 
curve has a vertical acceleration greater than those of the other two 
curves consequently the curve is less comfortable within the stated 
length.

Validity of the curve to the various beginning and ending 
slopes

The following Figures 11-14 give an interesting and significant 
geometrical property which is the suitability of the unsymmetrical 
reverse curve for the all combinations of beginning and ending grades. 
Such figures were graphed using equation of the curve, "(4)". 

Conclusions
A new vertical unsymmetrical and reversed vertical highway curve 

was originated in this paper utilizing quintic polynomial equation of 
odd powers. Such equation has been formulated in terms of the spatial 
features of the highway, i.e. the values of grades of the beginning and 

end of curve and elevations of the points of vertical curvature and 
vertical tangency.

The geometric properties of the curve has been established and 
special attention has been paid for the characteristic features of the 
curve which are the sight distance; rider's comfort and validity of the 
curve to the various beginning and ending slopes.

Numerical justification has been arranged and has proven a notable 
beneficial enhancement in such features which recommend the use of 
such curve for the geometrical design of highways.

A noticeable increase in the value of sight distance for the curve 
ranges from 6.1% to 20.8% compared to the other common used curve.

The justification showed an approved degree of rider's comfort 
and also validity of applying the proposed curve for all the possible 

Figure 10: Comparison between vertical accelerations of the new proposed 
curve and both Easa and EAU curves.

Case L1 L2 Minimum sight distance, 
SM (m)

Increase 
in SM%

Increase 
in SM%

Proposed Easa EAU
1 320 500 343.9 317.6 313.8 7.6 8.8
2 400 500 383.1 359.9 356.7 6.1 6.9
3 320 600 358.1 315 314.4 12 12.2
4 400 600 394 352.7 351.3 10.5 10.8
5 500 600 440.2 402.5 401.1 8.6 8.9
6 500 1000 486.5 385.5 394.4 20.8 18.9

Table 1: Comparison of minimum sight distance between the  proposed; Easa, and 
EAU curves (h1=h2=1.08 m; g1=0.02, and g2=-0.03).

Figure 11: Reverse curve connecting two positive grades.

Figure 12: Reverse curve connecting two negative grades.
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combinations of beginning and ending grades which requires a 
compound vertical curve in other geometrical designs.
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