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Introduction
The advances in nanotechnology have brought new tools to the field 

of electronics and sensors. New designed materials offer new and unique 
properties enabling the development and cost efficient production of 
state of the art components that operate faster, has higher sensitivity, 
consume less power, and can be packed at much higher densities. With 
their nanometer scale geometry sizes and high operation frequencies, 
nanoelectromechanical systems (NEMS) hold great promises for much 
advanced performances in a broad range of applications [1,2]. To date, 
they have been served in many unprecedented applications such as mass 
spectrometry [3,4], and nanobiotechnology [5,6]. Mass spectrometry 
is an analytical technique used for determining the mass of both 
chemical and biological molecules and the elemental composition of 
molecules. The mass sensing mechanism of a mechanical resonator is 
the resonant frequency, which shifts when a mass is loaded. The micro/
nano-mechanical resonator sensors, which can detect the adsorption of 
a protein [4], a bio-molecule [5], a cell [7], a virus [8] and an atom [3], 
have been developed.

Graphene is a single two-dimensional layer of carbon atoms bound 
in a hexagonal lattice structure [9,10]. An atom thick graphene sheet 
comprised of a hexagonal network of covalently bonded carbon atoms 
is expected to exhibit novel mechanical and electronic properties 
[11,12]. Graphene has high carrier mobility [13] which leads to high 
speed nanoelectronics [10,14,15]. Graphene, a single-atom-thick sheet 
of graphite that combines aspects of semiconductors and metals, is a 
promising replacement for conventional semiconductor materials 
such as silicon. It consists of sp2-hybridized carbon atoms arranged 
in a two-dimensional (2D) honeycomb crystal structure [9,10]. At 
present, there are numerous publications devoted to investigation 
of nanoelectromechanical graphene-based resonators [16-19]. The 
authors [20,21] investigated the mass sensing of bio-molecules 
using single walled carbon nanotube-based nanoelectromechanical 
resonator. The purpose of the present paper is devoted for mass 
detection of molecules using single layer graphene sheet based 
nanoelectromechanical resonator.

The model

The nanoelectromechanical system (NEMS) resonator device is 
modeled as a single layer graphene sheet coupled to electronic transport 
through such device via two leads. The electron tunneling through such 
device is studied under the effect of both the magnetic field and an 
induced ac-field of certain frequency. It is known that this induced ac-
field with frequency, ω, can induce additional tunneling process when 
electrons exchange energy by absorbing and /or emitting photons of 
energy, ħω, where ħ is the reduced Planck’s constant. This kind of 
tunneling is known as the photon-assisted tunneling (PAT) [22].

Now, in order to detect the attached molecule and determining its 
mass, this can be achieved by activating the graphene sheet to vibrate. 
The resonant frequency shift, ∆f, and the quality factor, Q, might be 
expressed as [20,21,23]:
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Where Cg is the coupling gate capacitance with graphene sheet, 
Cgraphene is the graphene capacitance, Vg is the gate voltage, Γwith photons is the 
electronic tunneling probability, and G is the electronic conductance of 
graphene. In Equation 1 and 2, the parameter, f, represent the resonant 
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frequency of vibrating graphene sheet and kspring is the spring constant 
of the vibrating graphene sheet. The conductance (see Equation 1 
and 2) of the present device had been calculated using the following 
Landauer-Buttiker formula [24-26]:

24( ) sin( ) ( )
E nf

FD
withphotons

E f

feG E dE E
h E

ω

δ
+

∂ = − Γ ∂ ∫


                (3)

Where δ is the phase of the scattered electrons and FDf
E

∂ − ∂ 
 is the 

first derivative of the Fermi-Dirac distribution function and it is given 
by:
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Where kB is the Boltzmann constant and T is the absolute 
temperature. In Equation 3, the ( )withphotons EΓ represents the tunneling 
probability induced with the photons of ac-field and its expression is 
given as [25,26]:
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Where Jn is the nth order of Bessel function of first kind, Vac is the 
amplitude of the external ac-field, and d is the width of the barrier. The 
parameters qx and L are given as respectively:

12 2 2( )x f yq k k′= −                    (6)

and

( )sec( )sec( ) tan( ) tan( ) sin( )xL i s s q dγ ϕ θ ϕ θ′= +                 (7)

in which γ is expressed as:

( )
2

2
2

4 v
g

f
f

f

k

k

ε

γ

 
  ′+
 
 =

′



                   (8)

and

2
2( ) 2

v

g
b

f
f

V
k

ε
ε− −

′ =


                                     (9)

Where εg is the energy gap of graphene and ε is expressed as 
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The transport of quasiparticle Dirac fermions are influenced by 
applying both magnetic field, B, and an ac-field of amplitude, Vac, 
and of frequency, ω, Vsd is the bias voltage, Vb is the barrier height, 
and m* is the effective mass of quasiparticle Dirac fermions, E is the 
scattered energy of quasi- particle Dirac fermions, s = sgn(E) is the 
signum function of E and )sgn( bVEs −=′  and vf is the Fermi velocity. 
The components of the wave vectors kx and ky  outside the barrier are 
expressed in terms of the angle of incidence,ϕ, of the quasiparticles 
Dirac fermions as:

)cos(ϕfx kk = & )sin(ϕfy kk =                                     (11)

Where kf is the Fermi wave vector. In Equation 7 the angle θ is 
expressed as [25,27]: 
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Graphene is the elastic material used for the construction of the 
resonator [25,26]. The resonant frequency, f, of the vibrating graphene 
sheet is given as [17,27]:
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Where Y is Young’s modulus of graphene, ℓ is the length of the 
graphene sheet, t is its thickness, ρ is its density, m is the mass of the 
attached molecule, and T is the Tension. 

Results and Discussion
The present proposed graphene resonator device based mass 

detection will be analyzed numerically as follows: Numerical 
calculations are performed for resonant frequency, f. (Equation 13) 
and the conductance, G,(Equation 3). For monolayer graphene, the 
values of both barrier height, Vb, and its width are respectively Vb = 
120 meV and d = 80 nm [28-30]. Also, the value of the Fermi-velocity, 
vf is approximately 106 m/s, and the effective mass of quasiparticle 
Dirac fermions is approximately m* = 0.054 me, where me is the mass 
of free electron [28-30], Cg ≈ 0.4 nF, Cgraphene ≈ 1.8 fF [10,11], the 
photon energy, ħω, equals 0.3 eV and B = 2 T. The optimum value 
of the angle of incidence, ϕ, as indicated by the authors Ahmed et al. 
[25,26] is, approximately, ϕ ≈ 1 rad(57.3o). The energy gap of single 
layer graphene, εg, (Equation 9) is computed for different strain values 
[25,26]. Also, the values of parameters in Equation 13 [12,17-19] are: 
Y = 1 TPa, ρ = 2200 kg/m3, t = 10 nm, ℓ = 80 µm. The values of both 
the length and thickness of graphene sheet represent the optimum 
values for our model in order to give an optimum value of the resonant 
frequency, f, (Equation 13) [12,17-19].

The features of our results are the following:

Figure 1 shows the variation of the conductance, G, of the present 
device with the gate voltage, Vg, As shown from this Figure 1 that a 
periodic oscillation of the conductance with the gate voltage, taking 
into consideration the effect of both magnetic field, B, and the 
photon energy of the induced ac-field, ħω, (mid-Infrared radiation). 
According to the present model of nanoelectronics graphene device, 
the interaction of the tunneled electrons with the induced ac-field leads 
to photon-mediated transmission resonances. The interplay between 
the induced photons and the tunneled electrons leads to what it is 
known as Fano-resonance [24,31]. In general, the oscillatory behavior 
of the conductance might be due to Fano-resonance as the quantum 
transport of electrons is performed from continuum states of leads to 
the discrete states of nanostructure graphene sheet [31]. 

Figure 2 shows the variation of the resonant frequency, f, of the 

 

Figure 1: The variation of the conductance, G, with gate voltage, Vg,.
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vibrating graphene sheet with the mass of the attached molecule, m, 
(Equation 13). As shown from this figure that this resonant frequency 
decreases as the mass of the attached molecule increases. It must be 
noted that when calculating the resonant frequency, f, (Equation 13), 
we consider the position of the attaché mass is random on the graphene 
sheet during vibrating it. This is accomplished by relating the tension, 
T, (see Equation 13), to the strain, εο, [32,33] due to the attached mass 
as:

  Τ = εο Υ S                    (14)

Where S is the area of the graphene sheet and εο is the strain.

Figure 3 shows the variation of the resonant frequency shift, 
∆f, (Equation 1) with the mass of the attached molecule. As shown 

from this figure that the resonant frequencies shift decreases as the 
mass of the attached molecule increases. These ranges of frequencies 
are consistent with the photon energy, ħω = 0.3 eV, (mid infrared 
region) of the induced ac-field. This coupling between the mechanical 
vibration of the graphene sheet and the influenced photon energy affect 
prominently on the mass sensitivity in the range of zepto-gram [20,21].

Figure 4 shows the variation of the inverse of quality factor, (1/Q), 
with the mass of the attached molecule. As shown from this figure that 
the inverse quality factor decreases as the mass of the attached molecule 
increases. The higher quality factor (Q-factor) means higher sensitivity 
and more reliable performance of the present single layer graphene 
sheet based nanoelectromechanical systems (NEMS) resonator [3,19]. 
These results also show the promise of graphene for mass sensing of 
different types of molecules, for example, chemical gas molecules and 
bio-molecules.

Conclusion
Because of its unique material properties, graphene is an ideal 

candidate for a resonator material. It has very high Young’s modulus, is 
naturally one atom thick, and despite its miniscule thickness, is highly 
electrically conductive, and nearly impermeable to gasses and liquids. 
Results in the present paper show that the resonant frequency shift and 
the quality factor are sensitive to the mass of the attached molecules 
in the range of zepto-gram. So, single layer graphene sheet based such 
nanoelectromechanical resonator might be designed to target the 
detection of the mass of different types of molecules.
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