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Introduction
It has been observed that virus-originated diseases exhibited 

similar spread and control patterns [1,2]. These patterns have 
been researched extensively and a few mathematical models were 
proposed to theoretically analyze and predict the spread and control 
patterns of these diseases [1-8]. There are many factors involved in 
the models which are represented as parameters in the differential 
equations. In most cases it is impossible to obtain strict mathematical 
solutions to the equation sets. Researchers have tried to apply various 
approximation approaches to get solutions with minimal errors; 
among them numerical simulation is an excellent choice due to the 
rapidly increasing computing power and the introduction of artificial 
intelligence techniques these days. Different disease control scenarios 
such as the effect from various control patterns may be studied and 
simulated using numerical simulations. It was observed that by 
changing certain parameters to optimal values in the disease control 
process, the spreading of the virus could be minimized [7,8]. A classic 
model for contagious diseases is the SIR (Susceptible, Infected, and 
Removed) model that contains three differential equations [2]. The 
SIR model can describe many contagious diseases such as H1N1, SARS 
(Severe Acute Respiratory Syndrome), Ebola and Zika; however, it has 
the drawback of over simplifying patterns. Therefore, the SIR model is 
usually used to study the disease patterns as first-order approximations. 
A more complex model example of contagious diseases was the SARS 
model. SARS epidemic attacked Asia in 2003 leaving almost a thousand 
people dead and many sick. The disease had spread quickly before 
effective control methods were put into place. Once the quarantine and 
isolation methods, as well as strict health precautions, went into effect, 
the disease started to die out. During this process, it has been observed 
that SARS, like certain other virus-originated diseases, exhibited 
similar spread and control patterns. The patterns of the SARS virus 
have been studied and a few closely related models were proposed and 
studied [3-8]. In these models a group of coupled differential equations 
were used to describe the SARS virus spread and control process. A 
few characteristics of SARS virus were studied using the models. Many 

factors, which are in the form of parameters, were involved in the 
models so it was impossible to obtain explicit mathematical solutions 
to the systems of nonlinear differential equations. Runge-Kutta method 
of order four and a numerical simulation approach were used to solve 
the equations under various circumstances. Different disease control 
circumstances such as effects from various patterns of quarantine rates 
have been studied and simulated [7]. A calibrated SARS model has the 
potential to give more accurate predictions on virus-originated disease 
spread and control patterns in the future. A tumor cell growth model 
usually involves coupled differential equations with a high dimensional 
parameter space, which is the result of many factors involved in the 
tumor growth dynamics [9]. Like contagious disease models, it is almost 
impossible to analytically obtain mathematical solutions to the equation 
set. Moreover, it is extremely time consuming to fit all parameters to 
experimental data with an acceptable error rate. Therefore, efficient 
numerical approximation methods need to be developed to solve the 
model and calibrate the model against experimental data. Various 
approximation techniques have been developed and implemented to 
get solutions with minimal errors for complex mathematical models 
[10-14]; among them certain AI (Artificial Intelligence) techniques 
are excellent choices because they are conceptually simple and easy 
to implement [10]. Among the search and optimization techniques in 
the evolutionary method category in AI, GAs (Genetic Algorithms) 
and the PSO (Particle Swarm Optimization) method were proved 
to be effective and efficient [11,13,14]. GAs were invented based on 
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the natural evolution process while the PSO method was inspired by 
the social behaviour of bird flocking or fish schooling, the collective 
intelligent behaviours of individuals who interact with each other and 
their environment. Both GAs and the PSO method help to calibrate 
the model to fit experimental data within tolerable error ranges in a 
reasonable time frame. They have been successfully applied in many 
areas including artificial neural network training, fuzzy systems, and 
optimization problems. Parameter space search in tumor models is 
a NP-hard optimization problem, which requires a computationally 
tractable algorithm to solve. GAs and PSO with Runge-Kutta solvers 
provide a good solution to these models. The difference between GAs 
and the PSO method is that no crossover or mutation operation is 
involved in the PSO search process, while GAs simulate the natural 
evolution and selection process with crossover and mutation operations. 
The rest of this paper is organized as follows. Next section describes 
mathematical models for SARS and tumor growth dynamics. Three 
following sections give details of the simulation method, demonstrate 
the simulation setup, and show the simulation results of Runge-Kutta 
methods with various orders and step sizes. The final section concludes 
the paper and discusses possible future work.

Related Work
The simulation for SARS spread and control patterns was based 

on a previously proposed model [4]. The model subdivides a given 
SARS-affected region into six mutually exclusive subpopulations and 
it consists of six differential equations 1-6.
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From equations 1-6, the total population at time t, denoted by N(t), 
is given by 7.

𝑁(𝑡)=𝑆(𝑡)+𝐸(𝑡)+𝑄(𝑡)+𝐼(𝑡)+𝐽(𝑡)+𝑅(𝑡)                         (7)

There are fifteen parameters involved in the model [4]. By dividing 
the whole population (N) into six subpopulations, which are susceptible 
(S), asymptomatically infected (E), quarantined (Q), symptomatic 
(I), isolated (J) and recovered (R) individuals, the spread and control 
patterns of SARS can be modelled with the differential equations using 
ratios and the probability of one subpopulation moving to others. 
Figure 1 shows the subpopulations and how they flow to each other in 
the model.

Solving the model with an appropriate parameter set can lead 

to finding when an asymptotically stable disease-free equilibrium is 
reached. The solution then can determine when the disease can stop 
spreading or can be put into control. The simulation results can also be 
used to study the spread and control patterns of other virus-originated 
diseases.

A more complex biological process simulated in the project is tumor 
cell population growth, which is described by a three-compartment 
model and mathematically modelled using a group of differential 
equations. Among the three compartments, the dynamics of nine 
state variables that are regulated by the governing biological processes 
were considered [9]. To deal with the practically insolvable high-
dimensional parameter space in the model, besides efficient numerical 
differential equation solvers, evolutionary methods such as GAs and 
the PSO techniques were implemented to speed up the search process 
in the multi-dimensional parameter space to find optimal parameter 
values that fit experimental data from mice cancer cells [9,14]. The 
fitness function, which measures the difference between calculated 
results and experimental data, was minimized in the parameter space 
search process.

Numerical Solutions
There are a few popular numerical methods that solve ordinary 

differential equations with various speeds and accuracy. Euler method, 
backward Euler, Runge-Kutta, Adams-Bashforth, Adams-Moulton, 
and backward differentiation were implemented as equation solvers 
to solve the models within GAs or the PSO method. Among them 
Runge-Kutta methods form a family of numerical methods that offer 
a good balance between efficiency and accuracy for the mathematical 
models studied. Since equations are solved for every parameter set in 
every generation in an evolutionary technique, the equation solver is a 
speed bottleneck in the simulation process. Both implicit and explicit 
versions of Runge-Kutta methods [15,16] were considered. The explicit 
versions of Runge-Kutta methods could be implemented in a fairly 
efficient manner thus became a desired equation solver for the models.

In SARS and tumor models studied in the project, all observed 
function values, such as infected subpopulations and the adenovirus in 
lymph node, change with time. Therefore, the variable for all functions 
is the time t. Assume an initial value problem as specified in equation 8.

𝑦̇=𝑓(𝑡, 𝑦), 𝑦(𝑡𝑜)=𝑦0                                                                                                                                      (8)

The general form of Runge-Kutta methods of s-stage can be defined by

Figure 1: Relationship among Subpopulations in the SARS Model.
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order-six and order-eight Runge-Kutta methods were also studied in 
simulations due to a concern of accuracy of the order-four method 
raised by researchers for the SARS model simulation [7]. All Runge-
Kutta methods implemented in simulation programs are defined by 
formulas 8-12.

Most of evolutionary techniques such as GAs and the PSO method 
follow a standard procedure with four steps [10]. In this study, adaptive 
versions were proposed and implemented to maximize the search 
effectiveness and efficiency. The procedure is as follows.

Step 1. Randomly generate an initial population based on the 
problem nature and complexity.

Step 2. Calculate and use fitness function values to rank individuals 
in the first generation.

Step 3. Reproduce the population based on fitness values. Adaptive 
methods such as dynamic crossovers and mutations are used in GAs. 
Local bests are used for the PSO method. Calculate and use fitness 
values to rank individuals in the new generation.

Step 4. If requirements are met or the maximum number of 
iterations is reached, stop and report results. Otherwise go back to Step 3.

Numerical Simulation
Simulation design

The simulation engine is composed of related classes that 
implement the search algorithms such as adaptive GAs and the PSO 
method. Essential modules in the simulation engine include 

i. Numerical equation solver such as a version of Runge-Kutta 
methods.

ii. Evolutionary component such as Crossover and Mutation 
classes for GAs.

iii. Experimental data processing and comparison component.

iv. User input, output, and event-handling component.

v. Exception handling features to handle unexpected run-time 
errors.

vi. File output feature that stores results in files for further data 
mining.

In SIR and SARS simulators, Graphical User Interfaces (GUIs) 
were designed and implemented for the simulation engines so equation 
parameters can be changed when the simulation is running and results 
are shown intuitively as functional curves on the screen, which much 
facilitate the research process using the models. The simulators with 
easy-to-use graphical user interfaces may be used by various groups 
of researchers to experiment with different aspects of virus-originated 
disease patterns. In the SARS simulator, functions were implemented 
to cause perturbations to variables and parameters such as quarantine 
rates for subpopulations. Therefore, the effects of control methods like 
quarantine rate control can be studied conveniently.

Implementation and validation of simulators

SIR model was implemented using the original version of GAs. 
The basic architecture is shown in Figure 2. The basic class is the 
Chromosome class, which is used to instantiate parameter set objects. 
The Reproduce class contains crossover, mutation, and selection 
methods, which form the core of GAs. The SIR model, which has three 

𝑦𝑛+1=𝑦𝑛+h𝑔 (𝑡𝑛,  𝑦𝑛, h)                                                                               (9)
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In simulations, the explicit versions of Runge-Kutta methods were 
used for efficiency purposes. Explicit Runge-Kutta methods satisfy 
condition 13.

𝑗 ≥ 𝑖 → 𝑏𝑖𝑗=0                  (13)

The Euler method can be treated as the Runge-Kutta method of 
order one. An example of an explicit four-stage Runge-Kutta method 
is specified by equations 14-19, which is one of the four-stage methods 
implemented in the simulation.
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𝑘4=𝑓(𝑡𝑗+h, 𝑦𝑗+h(𝑘1−𝑘2+𝑘3))                                                              (19)

Besides simulation speed, simulation error is another important 
metric. Runge-Kutta methods had been well analyzed in terms of local 
and global truncation errors. Assume y(x) is the exact solution of the 
initial value problem, the local truncation error of the Runge-Kutta 
methods is defined by

𝑒𝑟𝑟𝑜𝑟=𝑦(𝑡𝑛+1)−𝑦(𝑡𝑛)−h𝑔 (𝑡𝑛, 𝑦𝑛, h)                                               (20)

The order of a Runge-Kutta method is p if p is the greatest number 
so that

𝑒𝑟𝑟𝑜𝑟=𝑂(h𝑝+1)                                                                                      (21)

The global truncation error is one order lower [16]. Therefore, the 
step size h is also an important variable for local and total truncation 
errors. Systematic tests were conducted in simulations to study the 
relationship between the step size and simulation metrics such as 
accuracy and speed. Among all Runge-Kutta methods, Runge-Kutta 
method of order four has been most frequently used to numerically 
solve coupled differential equations [17]. Assume that f(t, y) is 
continuous and satisfies a Lipschits condition in the variable y, and 
consider an initial value problem 8, the Runge-Kutta method of order 
four uses the formulas 9 and 10 to approximate the solution to the 
differential equation using a discrete set of points. Parameters k1, k2, k3, 
and k4 are calculated using formulas similar to the above implemented 
four-stage method but with different coefficients [14].

Beside Runge-Kutta methods of order four, Euler method, 
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differential equations, was implemented in the SIR Model class. Pair 
class defines different ways to pair chromosomes to generate the next 
generation in GAs.

SIR model and SARS model simulators are shown in figures in the 
next section with simulation results. GUI components were designed 
and implemented for both SIR and SARS simulation engines so state 
variable initial values, parameter ranges, and simulation control 
variables can be specified directly on the interface.

For the tumor growth dynamic models, adaptive versions of GAs 
were designed and implemented. Figure 3 shows the simulator interface 
with GAs and different equation solvers. Besides variable initial values 
and parameter ranges, step size and GA control parameters can also 
be specified. Adaptive GAs are able to change the number of crossover 
points, use random crossover points, use random mutation rates, 
and dynamically evolve based on the simulation progress, which is 
evaluated by the best fitness function value achieved at the moment. 
Adaptive features introduced in GAs, when combined with Runge-
Kutta methods of the appropriate order and step size, much facilitated 
the parameter search process. The simulator using another evolutionary 
method, the PSO technique, is quite similar to the one using GAs [14].

To conduct an initial check to the simulators, a systematic list of 
test cases was constructed to test the special cases and extreme cases. 
After each simulation run, the simulation results from the text-based 
file outputs are obtained and checked against the expected results. For 
each test case, the generated results should match the expected results. 
This systematic procedure validates the simulator to an extent. The 
more general cases, however, cannot be examined because no analytical 
solution can be obtained for the models. Numerical error analysis is 
used for these scenarios.

Simulation results

The simplest model among the three, the SIR model, was examined 
first. Figure 4 shows a typical SIR simulator interface with numerical 

Figure 2: Implementation of SIR Model Solver using Genetic Algorithm.

results from the Runge-Kutta method of order four and a step size of 
one day. Due to its simplicity, SIR model is insensitive to the step size 
variable, when considering the scale of error measured by the variance 
between experimental data and calculated results. The solution does 
not change significantly as a function of the order of Runge-Kutta 
methods. However, Runge-Kutta method of order eight is desirable if 
more accurate experimental data becomes available in future. There are 
only three equations in the model so a solution can be calculated in a 
reasonable time frame using a higher order of Runge-Kutta methods.

Besides the simple SIR model, a systematic study on the SARS 
spread and control pattern was conducted using simulation. Disease 
control scenarios such as the effects from various patterns of quarantine 
rates were studied. The simulation results show that by moving people 
between pairs of subpopulations under certain rates, the SARS virus 
can be put under control more quickly. The results could also provide 
guidance to the control measure of diseases with similar patterns [7].

The cases without subpopulation exchanges were simulated 
first. Figure 5, 6 and 7 show that subpopulation functions E, Q, I, 
J, and R change with time with step sizes of 1 day, 0.5 day, and 0.1 
day, respectively. All three figures were calculated using the same set 
of parameter values in the SARS model. It was observed that curves 
were quite similar, including intercept patterns between curves, with 
different step sizes after ten different step sizes were examined. Minor 
differences showed up when the results were compared numerically. 
The calculated variable values with a step size of 0.1 day were set to 1.0 
and used as units to compare the average relative differences among 
variables as a function of step size. The results are shown in Figure 8. 
It was observed that the changes of variables were negligible when step 
size was less than 0.1 day for the SARS model, when compared with the 
error scale between experimental data and calculated results.

Typical results for more complex scenarios from the SARS model 
simulation are shown in Figures 9 and 10. Figure 9 shows that if people 
are moved by 20% from E to Q and from Q to J, I and J approach 
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Figure 3: Simulator with Variable Initial Values, Parameter Ranges, and Genetic Algorithm Control Variables.

Figure 4: Numerical Results from Runge-Kutta Method of Order Four for the SIR model with a Step Size of 1 Day.
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Figure 5: Subpopulation Functions E, Q, I, J and R without Impulsive Control with a Step Size of 1 Day.

Figure 6: Subpopulation Functions E, Q, I, J, and R without Impulsive Control with a Step Size of 0.5 Day.



Citation: Wang Z, Wang Q, Klinke DJ II (2016) Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious 
Disease and Tumor Models. J Comput Sci Syst Biol 9: 163-172. doi:10.4172/jcsb.1000234

Volume 9(5) 163-172 (2016) - 169 
J Comput Sci Syst Biol 
ISSN: 0974-7231 JCSB, an open access journal 

zero much faster than not having the movements among the four 
subpopulations. Thus the disease dies out faster under this set of control 
methods. A step size of 0.2 day was used for Figure 9 and 0.1 day was 
used for Figure 10. The movement between two subpopulations was 
implemented using a perturbation to both subpopulations. In real life, 
this can be done by manually moving people between subpopulations. 
After the perturbations were added, the effect of different step sizes and 
orders of Runge-Kutta methods were studied systematically like the 
impulse-free cases. Numerical results showed that Figure 8 also applied 
to the cases with impulsive controls. Therefore, the best practical step 
size for this specific SARS model is 0.1 day.

The difference between simulated order-four and order-eight 
Runge-Kutta methods can be safely neglected since the average error 
between experimental data and calculated results was one order 
greater than the difference. The results on the optimal step size and 
the optimal order of Runge-Kutta methods can be used to set good 
control parameter values to optimize the simulation process by saving 
computing time and increasing accuracy of calculated results for the 
SARS model and similar models for contagious diseases.

Tumor growth dynamic models were simulated extensively using 
GAs and the PSO method with various orders of Runge-Kutta methods 
and step sizes. Among all nine state variables, the total tumor volume 
is an important measurement for tumours. The tumor volume is a 
combination of the results from two variables, which are the MHC 
class I positive tumor cells volume CMHCI

+ and the MHC class I negative 
tumor cells volume CMHCI

-. Figure 11 shows the comparison between 
the numerical simulation result and three samples of experimental data 
for the total tumor volume. Runge-Kutta method of order eight and a 
step size of 0.2 day were used in Figure 11.

According to Figure 11, the results for the tumor volume are 
almost the same for the order four [14] and the order-eight Runge-
Kutta methods. The difference between different parameter sets for 
the Runge-Kutta methods with the same order is negligible compared 
with the truncation error. Among all variables, naïve CD8+ T cells, 
effector CD8+ T cells in lymph node, effector CD8+ T cells in blood, 
and interferon gamma have an average of 5% or less difference between 
order-four and order-eight Runge-Kutta methods, while tumor 
volume, adenovirus in lymph node, and tumor necrosis factor α have 
less than 2% of difference on average. Effector CD8+ T cells in tumor 
microenvironment gives the highest difference between order-four and 
order-eight Runge-Kutta methods, which is around 10% on average.

Table 1 shows the average percentage differences of simulation 
results for order one, order six, and order eight Runge-Kutta methods, 
using the calculated variable values from Runge-Kutta method of order 
four as units, with a step size of 0.2 day and a simulation length of 1,000 
generations in GAs. Crossover points were dynamic and mutation rate 
adjusted itself according to fitness of the population. Initial population 
was generated randomly according to estimated ranges. A random 
number was generated for a gene in the range of two neighbour genes, 
instead of using a random number in the whole permitted parameter 
range. With the exception of the Euler method, the differences shown 
in the table are insignificant, when compared with the difference 
between the calculated results and experimental data. Since Runge-
Kutta method of order four is the fastest, it was used as the major 
equation solver in simulators. For this specific tumor model, a step 
size of 0.2 day gives the best balance between solution accuracy and 
simulation speed, which is different from the optimal step size for the 
SARS model discussed before.

Figure 7: Subpopulation Functions E, Q, I, J and R without Impulsive Control with a Step Size of 0.1 Day.
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Figure 8: Average Variable Difference as a Function of Step Size.

Figure 9: Subpopulation Functions E, Q, I, J, and R with Impulsive Control (20% of E is moved to Q, 20% of Q is moved to J every 5 days). Step size=0.2 day.
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Figure 10: Subpopulation Functions E, Q, I, J, and R with Impulsive Control (20% of E is moved to Q, 20% of Q is moved to J every 5 days). Step size=0.1 day.

Figure 11: Simulation Results and Experimental Data for Tumor Volume (CMHCI
+ plus CMHCI

-) with a Step Size of 0.2 day.
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Conclusion and Future Work
A mathematical model for SARS was simulated to study the 

effect of different quarantine and isolation control methods on the 
disease subpopulation dynamics. The simulation results could provide 
guidance to work with spread and control patterns of SARS as well as 
other similar virus-originated diseases. GAs and the PSO method were 
identified as efficient optimization techniques for models with high-
dimensional parameter spaces. The simulation results from a tumor 
cell growth dynamics model showed their effectiveness and efficiency. 
An essential component in simulation programs is the differential 
equation solver. Among all numerical solvers, Runge-Kutta methods, 
which could provide a balance between solution accuracy and search 
speed, were proved to be the most effective and efficient for models 
studied in the project. It was found that Runge-Kutta method of order 
four was the most effective method in the Runge-Kutta method family, 
in terms of models examined. The optimal step size depends on the 
specific model in the study. A possible future work is to simulate other 
mathematical models using a systematic group of orders and step sizes 
for Runge-Kutta methods and possibly develop a uniform theory that 
could provide guidance for selection of appropriate orders and step 
sizes for different models.
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Table 1: Average Differences Relative to Results from Runge-Kutta Method of 
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