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Introduction 
Our mind works and our heart beats as long as there is propagation 

of action potentials in our body. Action potentials are generated by 
the inward and outward movements of numerous ions, such as Na+, 
K+, Ca2+, Cl- across the cell membrane. These action potentials travel 
in the form of waves through the various chambers of the heart. To 
fully understand the heart, a detailed knowledge of action potential 
propagation is essential.

In unhealthy (ischemic) tissue, the extracellular potassium 
concentration, [K]0, is elevated. High [K]0 is believed to predispose 
cardiac tissue to break excitation (Roth and Patel) [1], which in turn 
plays an important role in re-entry induction and defibrillation. 
Because fibrillation raises extracellular [K]0 levels, break excitation 
may play a more important role in defibrillation than is suggested by 
simulations and experiments using normal [K]0 values. In their 2003 
paper, Roth and Patel theoretically simulated action potential data in a 
1 cm2 tissue verifying that the action potential may fail to propagate in 
an ischemic region. The wave propagates for [K]0=2 to 12.5mM and at 
higher potassium concentrations the wave dies out.

Sidorov et al. studied propagation in ischemic tissue experimentally. 
Their optical mapping experiment in a rabbit heart using [K]0 values of 
4, 6, 8, 10 and 12 mM indicated that spatial heterogeneity of the action 
potential duration (APD) restitution, created with regional elevation of 
[K+]0, can lead to action potential (AP) instability, 2:1 block, and re-
entry induction [2].

The goal of this research is to simulate Sidorov et al. experiment using 
a mathematical model by incorporating a Luo-Rudy representation of 
the cell membrane current with the bidomain model of the cardiac 
tissue, and to examine propagation of potassium from a normal to an 
ischemic region.

Methods
Luo rudy model

Hodgkin and Huxley published a landmark paper that paved the 
way for subsequent electrophysiological models. They successfully 
explained the propagation of action potentials in the giant squid axon 

by representing the membrane resistance as resulting from ion flow 
through three ion channels: sodium, potassium and leakage [3]. Each 
pathway was accompanied by a battery that had a potential equal to 
the Nernst potential for that ion. Variable resistances signifying the 
various ion channels opening and closing were expressed in terms of 
their conductance. The probability of opening or closing of these ionic 
channels was governed by three gating parameters m, n and h following 
the first order kinematics. 

( )1i
i i i i

ds á s s
dt

β= − −  (1)

In eq. (1), αi and βi represent the rate of opening and closing of the 
m, n, and h gates. These rate constants depended on the transmembrane 
voltage.

Hodgkin and Huxley wrote down the rate of change of membrane 
potential as

( )1 = − + 
 

i stim 
dV I I    
dt C

                     (2)

Following the mathematical formulation of Hodgkin and Huxley, 
in 1991 Luo and Rudy developed a model of the ventricular cardiac 
action potential. They introduced and analyzed more ion channels then 
other contemporary physiological models. They replaced the three ionic 
current terms in Hodgkin and Huxley’s model with six other currents. 
They were a fast inward sodium Na+ current INa, a slow inward calcium 
Ca++ current ISi, a time dependent delayed rectifier potassium K+ current 
Ik, and time-independent potassium inwardly rectifying current Ik1, the 
plateau K+ current Ikp, and a time independent background current Ib. 
The membrane current depended on [K+]0 as a parameter in this model. 
Considering a membrane patch of area 1 cm2 with capacitance 1 µF/cm2 

equation (2) can be rewritten as 
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( )0.0183K KI K V Eρ ρ ρ= −                 (15)

Where, Ekp= Ek1

1.
7.4881 exp

5.98

=
 −  +    

pK
V

                                                 (16)

The background current is formulated as

( )= −b b bI G V E                   (17)

where, 59.87mV= −bE , 59.87mV= −bE

Then the total time independent current is

( ) 11 K K bK TI I I Iρ= + +                                    (18)

Finally the rate of calcium uptake is given by 
[ ] [ ]( )4 4( )

10 . 0.07 10− −= − + −i
si i

d Ca
I Ca

dt
                                (19)

The complete listing of all the governing equations, parameters and 
their corresponding values can be found in Appendix.

Bidomain model

The two or three dimensional cable model, more commonly known 
as the bidomain model, describes the interaction of electric current with 
cardiac tissue. It was developed in the late 1970’s (Muler and Markin, 
Miller and Geselowitz, Tung) [9-11] and was applied to more problems 
in cardiac electrophysiology in the 1980s (Plonsey and Barr, Barr and 
Plonsey, Roth and Wikswo) [12-14].

Here we will solve the coupled parabolic and elliptic equations using 
a finite difference technique (Roth) and discuss some consequences of 
unipolar stimulation of cardiac tissue [15]. The first analysis of this kind 
of work was done by Sepulveda et al. [16]. The starting point here is to 
solve the set of two coupled partial differential equations governing the 
transmembrane potential, Vm, and extracellular potential, Ve

2 2

2 2

1  ∂ ∂ ∂
= − − + ∂ ∂ ∂ 

m e e
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                                 (20)
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                (21)

To solve the parabolic type of equation, we use the simple Euler 
method. The idea here is to solve eq. (20) for the new value of Vm, and 
then solve the elliptic eq. (21) for the new value of Ve using the new 
value for Vm as a source term, by over-relaxation. 

By, rearranging, we get,
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In eq. (22), let, 
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          (3)

All these ionic currents also depend on the gating variables, which 
are actually probabilistic values indicating the closing and opening of 
various ion channels. The time variation is given as

( )
y

y ydy
dt

∞ −=
τ

                                     (4)

where, 

( )
1

y
y y

 
β

τ =
α +

                      (5)

and,

( )
y

y y

y
β∞

α
=

α +
                  (6)

Here, y can be any of the gating variables (m,h,….), τy is the time 
constant, and y∞ is the steady state value of y. αy and βy are voltage 
dependent rate constants.

The fast inward sodium current in eq. (3) was described using 
the Ebihara-Johnson model [4] (Ebihara and Johnson) coupled with 
the slow inactivation gate (j) of the Beeler-Reuter model (Beeler and 
Reuter) [5],

( )3
Na Na NaI G m hj V E= −                 (7)

where, NaG is the ,…maximum conductance of the sodium channel (23 
mS/cm2); m the activation parameter and h the inactivation parameter; 
and ENa is the reversal potential of sodium.

[ ]0[ ln 54.4
[ }

],
  = =       

Na Na
i

NaRTE   E mV
F Na

                                   (8)

The formulation of ISi comes from the Beeler-Reuter model

[ ]( )7.7 13.0287ln= −si i
E Ca                 (9)

where, 

[ ]( )7.7 13.0287ln= −si i
E Ca                 (10)

and, d and f are two other gating parameters.

The delayed outward rectifier current Ik was based on a formulation 
proposed by Shibasaki and included a time–dependent activation 
gate X, a time independent (fast) inactivation gate Xi capturing the 
inward rectification properties of the delayed rectifier current, and a 
conductance modulated by extracellular K+ concentration [6].

[ ]077 , 0.282
5.4

= − =K K

K
E  mV G               (11)

where, 
[ ]077 , 0.282
5.4

= − =K K

K
E  mV G                 (12)

The formulation of Ik1 was based on patch clamp data of Sakmann 
and Trube as well as other data from single ventricular myocytes [7].

( )1 1 11= −K K x KI G K V E                   (13)

where,
[ ]0

1 0.6047
5.4

=K

K
G                 (14)

The voltage-dependent and time independent plateau current that 
activates at depolarized plateau potentials was identified by Yue and 
Marban [8],
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brings about a faster rate of repolarization at higher [K]0. Also the peak 
of IK1(T) occurs earlier (at more positive membrane potential), reflecting 
an increase of the reversal potential EK1.

Furthermore, Figures 5-7 indicates that during repolarization the 

So, we can write an expression for extracellular potential, Ve in 
terms of Vm, as follows:

( ) ( ) ( )( )
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    (23)

Results and Discussion
By developing a code using the FORTRAN software, we simulated 

the distribution of extracellular potassium by using the bidomain model 
with a LR action potential. Sepulveda et al. used a passive bidomain 
model to study unipolar stimulation of cardiac tissue [16]. They found 
that near a unipolar cathode, the tissue is strongly depolarized under 
the cathode, and more weakly hyperpolarized in two regions near the 
cathode along the fiber direction. Figure 1 shows our model generated 
transmembrane potential produced around the cathode, located at the 
origin.

In presence of the cathode the tissue is depolarized (positive 
transmembrane potential) in a dogbone shape. However, about 2 
mm from the cathode, in the direction along the fibers, is a region of 
hyperpolarization (negative), called a “virtual anode”. In Figure 1, only 
one quarter of the tissue is shown, so two virtual anodes exist one on 
each side of the cathode. The values in the plots are given in volts. Figure 
2 shows anodic stimulation, which gives rise to two virtual cathodes on 
either side of the origin. Figure 3 shows the calculated transmembrane 
potential during unipolar cathodal stimulation of an anisotropic two-
dimensional sheet of passive cardiac tissue in a color plot.

A space clamped calculation of the LR action potential was 
performed in Luo and Rudy’s original paper (Luo and Rudy) [17]. 
Figure 4 shows simulated action potentials for different extracellular 
concentrations of potassium.

As [K]0 decreases, action potential duration increases and resting 
potential becomes more negative. Figure 5 shows the time course of 
IK1(T), IK, and Isi during the action potential. A peak in IK1(T) is observed 
during repolarization. For [K]0=7mM the peak is almost 3 µA/cm2 but 
for [K]0=3mM it is less than 2 µA/cm2. This large difference in IK1(T) 

Figure 1: Transmembrane potential induced in a 2D sheet of tissue by 
unipolar extracellular cathode, located at the origin. The fibers are along 
the X axis.
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Figure 2: Transmembrane potential induced in a 2D sheet of tissue by 
unipolar extracellular anode located at the origin.
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Figure 3: Color plot of cathodal stimulation in a two dimensional sheet of 
cardiac tissue. The electrode is at the center of the tissue, and the fibers 
are horizontal.

 

Figure 4: Action potentials for [K]0=7, 5.4, 4,  and 3 mM, calculated using 
the space-clamped Luo-Rudy model.
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Figure 5: Dependence of ionic current IK1(T)  on [K]0.
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Figure 6: Dependence of Ik on [K]0.
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Figure 7: Dependence of Isi on [K].
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total time independent potassium current depends strongly on [K]0, 
while the time–dependent potassium current (IK) and slow inward 
current exhibit only weak dependence on [K]0.

The 1991 Luo-Rudy Phase I model did not describe intracellular 
Ca2+ cycling, sarcolemmal Na+-Ca2+ exchange, Na+-K+ pumping and 
temporal variation of intracellular ion concentrations [17]. Luo and 
Rudy produced another model called Luo-Rudy phase II model, which 
is one of the most popular cardiac ventricular cell models even today 
(Luo and Rudy) [18]. However, because focus is made on extracellular 
potassium concentration and not on intracellular calcium dynamics, it 
is not relevant here.

Our next analysis is made by combining the bidomain model with 
an active Luo-Rudy membrane, which bears similarity with simulations 
performed previously by Roth [15]. Figure 8 shows stimulation 
threshold as a function of [K]0.. The threshold initially decreases as [K]0 
increases, but then rises abruptly for [K]0 above 12mM. Figure 9 shows 
the resting potential as a function of potassium ion concentration. The 
resting potential follows approximately the potassium Nernst potential, 
with a very negative value at low [K]0 and then rising to less negative 
values as [K]0 increases. 
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Figure 8: Stimulus threshold voltage as a function of [K]0.
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Figure 9: Resting potential as a function of extracellular potassium ion 
concentration. The straight line represents the potassium Nernst potential.
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a case where propagation was successful in the normal tissue but then 
failed to enter the ischemic tissue. Also attempt was made by applying 
more than two stimuli (up to five) with various timings, and varied the 
distribution of extracellular potassium so that in one case the left was 
5.4mM and the right was 8mM (Figure 13), and in another case the 
left was 8mM and the right was 12mM (Figure 14). Nevertheless, after 
extensive simulations none of these simulations resulted in propagation 
on the left but then failure on the right.

We validated our calculations by combining both models by 
verifying previous calculations, in that we reproduced results reported 
by Sepulveda et al. [16], Luo-Rudy action potential (Luo and Rudy, 
1991) and by Roth and Chen [17,19]. This exercise brought about 
the conclusion that resting potential rises with [K]0, which tends to 
make propagation easier (lower threshold) initially as [K]0 increases, 
but makes propagation harder (higher threshold) for very high [K]0 
(Figures 8 and 9). 

Finally the Sidorov et al. experiment was simulated. In their case, 
the wave front propagated from a region of [K]0=4mM to a region 
of [K]0=10mM in a Langendorff-perfused rabbit heart [2]. They 
often found cases in which propagation was successful in the normal 
(4mM) tissue but then failed at the boundary between the normal and 
ischemic (10mM) tissue. Here this behavior was never observed. The 
reason appears to be the dependence of action potential duration on 
[K]0. In the Luo-Rudy model, the action potential duration decreases 
as [K]0 increases, so that the refractory period in the ischemic region 
is short. Any action potential that can propagate through the normal 
tissue (with a long refractory period) should have no problem also 
propagating through the ischemic tissue (with a short refractory 
period). Interestingly, in Sidorov et al. data, the action potential 
duration (and therefore the refractory period) appeared insensitive 
to extracellular potassium ion concentration. This appears to be the 
primary difference between our simulations (reported herein) and their 
experiments. Future simulations of Sidorov et al.’s data would need to 
include a model of the membrane kinetics that properly captures the 
[K]0 dependence of the action potential duration.

Conclusions
We simulated Sidorov’s experiment, in rabit heart, using 

Having verified that the model gives results similar to previous 
calculations, we can now apply the model to simulating the experiments 
of Sidorov et al. [2]. We can consider a tissue that has [K]0=4mM 
(normal) on the left half of the tissue, and [K]0=10mM (ischemic) on 
the right (Figure 10). The tissue sheet is 10 mm by 10 mm (100 × 100 
nodes), with a space step in each direction of 0.1 mm.

We can stimulate the tissue by raising the extracellular potential 
along the left edge to 20 mV at time t=0. An action potential 
then propagates across the tissue from left to right. Plots of the 
transmembrane potential versus time at three locations are shown in 
Figures 11 and 12. Point A (x=-4.92 mm, y=-4.92 mm) is near the left 
edge of the tissue sheet in the region of normal [K]0, point B (x=-0.025, 
y=-0.025) is at the center (just on the boundary between normal and 
ischemic tissue), and point C (x=4.9 mm, y=4.9 mm) is near the right 
edge in the region of elevated [K]0.

The second stimulus was applied at various times, but never found 

V 
(m

V)
 

Time (milli-seconds) 

Figure 11: Action potential wave. The 2nd stimulus produced no AP 
because the tissue is refractory. Time interval chosen to apply stimulus is 
below the diagram (small table).

A(-4.9,-4.9)                                       B(-.025,-.025)                          C(4.9,4.9) 

T Stimulus 

0<t ≤ 1 20 Mv 

542<t ≤ 543 20 mV 

Figure 10: Two-dimensional sheet of tissue with normal (left) and ischemic 
(right) regions. Following an extracellular stimulus of 20 mV along the left 
edge, applied for the time periods, shown in the table, an action AP wave 
spreads from normal to ischemic tissue.
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Figure 12: The transmembrane potential when the second stimulus is applied 
in the interval 542<t ≤ 543 ms. It can be observed that both, the first and second 
action potential waves, pass through the normal and ischemic tissue.
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a mathematical model, wherein we incorporated Luo Rudy’s 
representation of the cell membrane current with a bidomain model 
of the cardaic tissue. 

In addition to matching experimental results by Sidorov, reliability 
of our model is also demonstrated by reproduction results of previously 
reported models that predicted dependence of extracellular potassium 
on action potential duration. 

Using our model, we examined the propagation of potassium 
from low to high concentration and found that [K]0 is dependent on 
the action potential duration. Further research is necessary to refine 
our modelling approach by making it more inclusive of physiological 
parameters.
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Appendix 

Governing equations, parameters and their corresponding values for the Luo 
Rudy Model

( )1 = − + 
 

i st 
dV I I
dt C

( )
y

y ydy
dt

∞ −=
τ

( )
1

y
y yβ

τ =
α +

( )
y

y y

y
β∞

α
=

α +

( )323= −Na NaI m hj V E

For V ≥ -40 mV:
10.0,

10.660.13 1 exp
11.1

h j h V
βα = α = =

  +  +   −   

V 
(m

V)
 

Time (milli-seconds) 

Figure 13: AP wave with left region 5.4 mM and right at 8 mM. Time interval 
chosen, were: 100<t<101; 520<t<521; 920<t<921; and 1720<t<7211; the left 
but then failure on the right.
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Figure 14: AP wave with left region 8 mM and right at 12 mM but for the same 
time intervals and stimulus voltage as in Figure 13.
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Slow inward Current:

( )0.09si siI df V E= −
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Calcium uptake: d([Ca]i)/dt=-10-4.Isi+0.07(10-4-[Ca]i)

Expressions for outward currents are given below.

Time dependent Potassium Current:
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 for V>-100 mV and Xi=1 for V ≤ -100 mV
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Time- independent potassium current:

( )1 1 11K K x KI G K V E= −

[ ]0
1 0.6047

5.4
=K

K
G

( ){ }1
1

1.02
1 exp 0.02385 59.215K

KV E
α =

+ − −  

( ) ( ){ }
( ){ }

1 1
1

1

0.49124exp 0.08032 5.476 exp 0.06175 594.31

1 exp 0.5143 4.753
K K

K
K

V E V E

* V E
β

− + + − −      =
+ − − +  

Plateau Potassium current:

( )0.0183K KI K V Eρ ρ ρ= −

Ekp=Ek1 1.
7.4881 exp

5.98

=
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pK
V

Background current:

( )0.03921 59.87bI V= +

Total time independent potassium current:

( ) 11 K K bK TI I I Iρ= + +
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