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Background
Medical intervention studies of chronic conditions and other 

ongoing processes often evaluate repeated measures of continuous 
normal outcomes on persons, facilities or other units at systematic 
timepoints before and after an intervention is delivered [1]. Some of 
the units are chosen to receive the intervention which starts at the 
same time in all of those units. While randomization of which units 
(i.e. either individual or facility) receive the intervention is preferred, 
it is not always feasible; particularly in health economics and services 
research. Difference-in-Differences (DD) designs thus often estimate 
impact of a new intervention or policy introduced at a given timepoint 
for non-randomized treating facilities (or individuals), compared 
to controls continuing on the existing regimen or policy [2-4]. The 
outcome being affected by the intervention is measured at b consecutive 
timepoints (enumerated −b, −(b-1),…. −1) prior to and k consecutive 
timepoints (enumerated 1, 2,…, k) after the intervention is given to 
the intervention arm. The difference in outcome(s) for the intervention 
arm between the b pre- and k post-intervention periods is compared to 
the corresponding difference for the control arm.

Now DD analysis is best applied using a mixed model framework 
that adjusts for serial correlation of repeated measures within the same 
intervention facility or individual [1]. We assume “Non-Randomized” 
allocation to intervention and control arms being done by convenience 
or some other process that is not purposely based on levels of the 
outcome over the first b timepoints. For example, maybe hospitals that 
are closer to a university are assigned the intervention developed at 
university. Still the pre-intervention levels of the outcome may differ 
by an unknown amount between the intervention arms due to the 

criteria that the circumstance allocation was based on even though 
the investigator was not deliberately seeking for this to happen. For 
example, perhaps for historical reasons, the outcome measure tends 
to be higher at those hospitals that were closer to the university. This 
pre-existing baseline difference between the arms over the b pre-
intervention timepoints will carry through to any post intervention 
effect during the k post-intervention timepoints. However, as discussed 
later if the investigator deliberately over selects individual hospitals 
specifically based on having higher or lower outcome level then the 
methods covered here do not apply.

In evaluating intervention effect studies, it is important to 
estimate whether one has a large enough sample to generate precise 
results. This is commonly denoted power estimation. For repeated-
measure longitudinal studies, the “power” depends on an often-
unknown correlation structure between repeated measures of the 
same unit (which may either be a facility or a person) [5]. Repeated 
measures within the same unit are typically positively correlated which 
complicates power estimation as well as statistical analysis compared 
to the standard setting of independence. While general linear models 
(GLMs) for both statistical analysis and power estimation are well 
known [6-8] for randomized studies, less power estimation literature 
exists for non-randomized studies using Difference-in-Differences 
analysis. This paper develops a generalized least squares (GLS) power 
estimation framework for non-randomized DD studies using the 
commonly-assumed compound symmetry (CS) correlation structure 

*Corresponding author: Yirui Hu, Biomedical and Translational Informatics, 
Geisinger, Danville, 17821, USA, Tel: 5702141913; E-mail: yhu1@geisinger.edu

Received November 04, 2018; Accepted November 20, 2018; Published 
November 27, 2018

Citation: Hu Y, Hoover DR (2018) Simple Power and Sample Size Estimation for 
Non-Randomized Longitudinal Difference in Differences Studies. J Biom Biostat 9: 
415. doi: 10.4172/2155-6180.1000415

Copyright: © 2018 Hu Y, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Simple Power and Sample Size Estimation for Non-Randomized 
Longitudinal Difference in Differences Studies
Yirui Hu1* and Hoover DR2

1Biomedical and Translational Informatics, Geisinger, Danville, 17821, USA
2Department of Statistics and Biostatistics and the Institute for Health, Health Care Policy and Aging Research, Rutgers University, Piscataway, 08854, USA

Abstract
Intervention effects on continuous longitudinal normal outcomes are often estimated in two-arm pre-post interventional 

studies with b≥1 pre- and k≥1 post-intervention measures using “Difference-in-Differences” (DD) analysis. Although 
randomization is preferred, non-randomized designs are often necessary due to practical constraints. Power/sample 
size estimation methods for non-randomized DD designs that incorporate the correlation structure of repeated measures 
are needed. We derive Generalized Least Squares (GLS) variance estimate of the intervention effect. For the commonly 
assumed compound symmetry (CS) correlation structure (where the correlation between all repeated measures is a 
constantρ) this leads to simple power and sample size estimation formulas that can be implemented using pencil and 
paper. Given a constrained number of total timepoints (T), having as close to possible equal number of pre-and post-
intervention timepoints (b=k) achieves greatest power. When planning a study with 7 or less timepoints, given large 
ρ(ρ≥0.6) in multiple baseline measures (b≥2) or ρ≥0.8 in a single baseline setting, the improvement in power from a 
randomized versus non-randomized DD design may be minor. Extensions to cluster study designs and incorporation 
of time invariant covariates are given. Applications to study planning are illustrated using three real examples with T=4 
timepoints and ρ ranging from 0.55 to 0.75.
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of repeated measures that leads to simple power and sample size 
estimation formulas.

The paper is organized as follows: We first review the standard 
hypothesis testing and power estimation approach. Next a general 
linear model of non-randomized pre-post interventional studies with 
repeated measures using the Difference-in-Differences estimator 
is presented that develops a standard Generalized Least Squares 
variance estimate of the intervention effect to be incorporated into the 
standard power estimation approach. Under the common assumption 
of compound symmetry repeated-measure correlation, a simple GLS 
variance formula for intervention effect is derived for non-randomized 
Difference-in-Differences studies. The influence of number or 
pre- and post-intervention delivery measures on this variance (and 
thus efficiency of the study) is evaluated based on this formula. The 
relative efficiency of non-randomized design is then compared to 
the randomized setting in terms of needed sample size to achieve the 
same power. These methods are extended to cluster study designs and 
incorporation of time invariant covariates. Finally, applications to 
some recent examples are presented.

Methods
General power estimation framework

We consider Ho: θ=0 versus HA: θ=θA0 where θA is some expected 
or hypothesized value for the intervention effect we wish to statistically 

detect. Without loss of generality, Aθδ
σ

= is the effect size [9] or θA 

expressed as units of standard deviation. For practical repeated-
measure designs, the normal approximation of the non-central t 
distribution can be applied [10]. In specific, the two distributions are 
almost identical when degrees of freedom (DF)  γ>30 and we have 
the following equations of power (1−β) in eqn. (1), in which ( ) ˆVar θ  
expressed as GLS variance estimate.

( )11
2

ˆ
A z z Varα βθ θ−

−

 
= + 
 

.                 (1)

where α and β are Type I and Type II errors, respectively.

It should be noted here that for smaller sample sizes, it might be 
appropriate to approximate degrees of freedom in the non-central t 
distribution for the mixture variance (for example, by Satterthwaite’s 
[11], and Kenward-Roger’s approximations [12]) and adjust (1) for 
this. But while the full details are beyond the scope of this paper, 
such will typically not be needed in practice. We now proceed to the 
derivation of ( )ˆVar θ for the Difference-in-Differences design within 
the General Linear Model Framework.

General linear model (GLM)

For non-randomized pre-post interventional studies with two 
intervention arms, researchers encounter repeated measures of a 
quantitative outcome at T=b+k systematic timepoints with b being before 
and k being after the intervention is delivered to one of the arms. Let h 
denote the intervention arm with h=0 for control and h=1 for the new 
intervention. For each arm, there are nh units (nofor the control and n1 
for the new intervention) and j={−b, −(b−1),…, −1, 1, 2,…, k} denotes 
the ordered times with {−b, −(b−1),…, −1} prior to and {1, 2,…, k} being 
after the intervention onset. The goal is to assess the impact of the new 
intervention (versus control) on pre-post change in a longitudinal 
continuous outcome Y where Y1ij is measure j from unit i in the new 
intervention arm and 0 ' 'i jY is measure j’ from unit i’ in the control arm.

For example, consider a non-randomized trial with n0=n1=30 
hospitals in each arm. Let i denote hospitals (as “units”) where i=1, 
…,nh. The “units” are measured annually for T=7 years total with 
b=2 years (2001 to 2002) before and k=5 (2003 to 2007) after the 
intervention implementation in the intervention arm (h=1). The 
outcome of interest, Y, could be portion of patients discharged within 
30 days after surgery. Thus, Y1,3,−2 and Y0,17,3, respectively, denote the 
measurement taken in 2001 (2 years prior to start of the intervention) 
in the 3rd hospital of the intervention arm and 2005 (3 years after 
the start of the intervention) in the 17th hospital of the control arm, 
respectively. We assume complete data with T=b+k measures observed 
on each unit; Yhijcan be decomposed as:

{ } { 1, 0}1 hij j h j ijhY I Iα γ β θ ε= >== + + + +                    (2)

Now (α) is an intercept, which corresponds to the centrality of the 
control arm. The fixed effect (γ) is the difference between the main 
effect of the intervention and control arms due to non-randomized 
selection as discussed earlier. The fixed time effect (βj) is modeled to 
allow for temporal effects at timepoint j that are common to both arms.

We assume an immediate impact of size θ (i.e., as the DD effect) 
on the outcome variable for the intervention arm after the intervention 
begins at time j=1 that remains unchanged at subsequent timepoints, 
which is captured in eqn. (2) by I{h=1,j>0} as the intervention effect (θ) 
only delivers to the intervention arm (h=1) on the k post-intervention 
measurements. This is an intervention by time interaction mediated 
by the intervention effect after the it begins. Note that other functions 
such as linear intervention effect increase j∗θZhj for j≥1 or immediate 
post-intervention jump followed by exponential decay e−j∗θZhj for 
j ≥ 1 are possible. However, there are settings where an immediate 
“jump effect” that continues forward unchanged is appropriate, such 
as when the intervention is a process change at a medical facility that 
can be implemented quickly, a drug that the body does not develop 
resistance or acclimation to, or an immediately successful behavioral 
intervention. Even if the intervention impact is not “immediate jump”, 
it could be close to this.

Any random unit (ithlevel) effects are subsumed into the within-
unit error term εij, where εij∼N(0,σ2V) with the correlation matrix V 
defined below in eqn. (3). But related to the second paragraph of the 
Background section, another important assumption on the error term 
is that of endogenicity; εij must be independent of the covariates in the 
model [13]. In this case the covariates are the intercept, indicator for 
assignment to the intervention arm, indicator of timepoint and the 
intervention by timepoint interactions. After collection of the data (but 
not during study planning) there are tests for whether endogenicity 
problems exist in the data [13]. Still, it is difficult to think of when 
endogenicity would not hold for our setting with one important 
exception that was noted earlier. If pre-intervention levels of the 
outcome are used to identify which units receive the intervention, for 
example, if poorly performing units or alternately those performing 
well (i.e. at timepoints j<0) are individually over-selected for the 
intervention, this will likely create endodenocity where εij for j<0 
is correlated with the intervention arm assignment. Then issues of 
regression to the mean [14] destabilize the analyses as the εij for j<0 are 
not correlated or are less correlated with intervention arm assignment.

The analyses described here using DD estimators are generally not 
tenable when selection for intervention arm assignment is deliberately 
based on observed performance of the unit. It is, however, acceptable 
if better or poorer performing units are placed into one of the arms by 
circumstance as long as the selection criteria are based on the strata 
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these units fell into being overall better or poorer performing strata. 
This selection criteria would be independent of εij and would therefore 
be captured by inclusion of γI{h=1} in eqn. (2).

Generalized least squares (GLS) estimate
The matrix form of eqn. (2) is: = +Y Xβ ε , where εij∼N(0,σ2V). 

Here X represents the design matrix and Y is a vector of outcomes. 
For the general parameter vector ( )( )1 11 , , , , , , , , −− −= … … kbáβ β β β β γ θ , the 

corresponding design matrix X has (T+2) columns (I,J−(b−1),…,J−1,J1,…, 
Jk,I{h=1},I{h=1,j>0}, with (n0+n1)T rows per column (Appendix 1). The 
indicator columns I, I{h=1},I{h=1,j>0} are coded (0, 1) as defined above; J−

(b−1),…,J−1,J1,…,Jk are columns corresponding to (T−1) independent 
time coded variables as follows: for j={-(b-1), -(b-2),…, -1, 1, 2,…k}, 
Jj={−1 at time −b (reference); 1 at time j; and 0 at all other times}. 

There is no column for J−b as 
( )1

k

b j
j b

β β−
=− −

= − ∑  under the fixed-effects 

constraint  0
k

j
j b

β
=−

=∑ .

More details on the full expansion of design matrix are in Appendix 
1. The covariance matrix V is made up with (n0+n1) times block T 
diagonal matrices 0 sV ' with all off-block diagonal matrix elements 
being 0. The error term measures are independent between units, and 
within-unit correlation structure is invariant between units (i≠i′) for 
any given two timepoints j and j’(j≠j′), that is, ρi,jj′=ρi′,jj′ . Thus,

( )0 1

0

0

0

0
+

 
 =  
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        (3)

The within-unit correlation structure (ρjj′) is often unknown in 
advance. Typically, correlation for any two timepoints would be 
monotonically non-increasing with |j –j’|, i.e., as the two timepoints 
are further separated, they will not become more strongly correlated 
[15-17].

The Generalized Least Squares (GLS) estimate for β  is β̂  in eqn. 
(4), which has proven properties of being the best linear unbiased 
estimator for β  and uniform minimum variance if Yhij is normally 
distributed [6] is now given

 ( ) 11 1−− −′ ′=â X V X X V Y .                     (4)

The Generalized Least Squares variance of β̂  is Λ in eqn. (5); a 
square matrix of order T+1 with the variance of θ̂  the estimated 
intervention effect being in the last row and last column of Λ.

( ) 11 2−−= ′X V XΛ σ .                   (5)

Results (For Compound Symmetry Correlation)
GLS estimate

As previously noted, one main difficulty in parametric analysis of 

longitudinal data lies in specifying covariance structure [17,18], i.e. 
estimating ρjj′ for j ≠ j’, as normative data from historical settings often 
does not exist or is limited. However, compound symmetry structure 
(VCS), in which correlations among repeated measures are assumed to 
be equal within the same unit, is often a reasonable assumption [19-21]. 
For example, VCS is shown below with T=7.

1
1

1
1

1
1

1

 
 
 
 
 

=  
 
 
 
 
 

CSV

ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ
ρ ρ ρ ρ ρ ρ

From here on we assume compound symmetry correlation. Under 
CS, the GLS variance ( )ˆVar θ  in eqn. (5) as shown in Appendix 2 has a 
simple form of eqn. (6).

( ) ( ) ( )2 2

0 1 0 1

11 1 1 1 1 1  1
k

ˆ T
Var

n n bk n n b
ρ

θ σ ρ σ
  −   = + = + + −    

    
.      (6)

We can then plug in the ( ) ˆVar θ  in eqn. (6) into eqn. (1) to obtain 
the number of units in each of the two arms for a given power 1−β. For 
example, if no=n1=n, then

( ) ( )2 2

1 12 21 1
2 2

1 11 1
k

T
n z z z z

bk bα β α β

ρ ρ
δ δ− −

− −

   − − = + = + +    
    

.      (7)

The next three sections use eqns. (6) and (7) to identify optimal 
Difference-in-Differences designs, evaluate relative efficiency of 
non-randomized to randomized designs, and extend to both non-
randomized cluster designs and inclusion of additional time invariant 
covariates into the model. The last section presents applications using 
derived formulas in three representative examples.

Optimal pre-post intervention allocation of timepoints

The relatively simple form of eqn. (6), simplifies investigation on 
optimal pre-post intervention allocation in planning non-randomized 
DD studies. For example, a repeated-measure design may have a 
constrained total number of timepoints T (T=b + k) because of limited 
budget and/or time. In such scenarios, finding the optimal allocation 
of T into b and k that maximizes power (or minimizes the sample size 
needed to obtain a given power) is important. From eqns. (6) and (7), 
for CS structure with constrained T given ρ, the optimal b* with the 
local minimization of variance is given when bk=b(T−b) is maximized. 

This occurs at b*; If T is even, then * * 
2
Tb k= = ; and if T is odd, then 

equally * 1 1    
2 2

T Tb or− +
= = .

Figure 1 presents the GLS variance estimates of the intervention 
effect by the pre-post intervention timepoints allocation and ρ 
(assumingσ2=100) for T=4, T=7, respectively. From the previous 
discussion, the optimal b* that minimizes the GLS variance in eqn. (6) 
is b*=2 for T=4, and b*=3 or 4 for T=7. While in common practice, 
b=1 is chosen to get units shifted onto intervention as soon as possible, 
delaying this switch by having multiple pre-intervention timepoints 
(e.g. b=2 or b=3 when T=7) substantially reduced the GLS variance 
estimate of the intervention effect.
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Comparison between the randomized and non-randomized 
setting

While it is known that randomization is superior to non-
randomization, as randomized studies may be more costly and difficult 
to conduct, the relative superiority may be important to know. Earlier 
work [19,22] have shown that for a randomized study conducted using 
the commonly assumed compound symmetry correlation (as shown in 
Appendix 2).

( ) ( ) ( )
( )

2

0 1

1 1 11 1
1 1R̂

T
Var

n n k b
ρ ρ

θ σ
ρ

 + −  −   = + 
 + −    

.                (8)

To compare eqn. (8) to eqn. (6), we must first address the impact 
that non-randomization has on ρ and σ2. For any given setting, σ2 will 
be larger while ρ will be smaller in a randomized design as variance 
about a common global mean due to randomization will be larger 
than variance about different intervention arm means in the non-
randomized design. Compared to the randomized setting with a 
common intercept, non-randomized setting will result in a lower 
within population variance on Yhij where 2 2 2

NR Rσ σ σ= < , together 
with a smaller within-unit correlation of Yhij and Yhij where ρ=ρNR<ρR, 
due to elimination of variance (h) from the total variance. Definitions 
of 2 2 2, , ,  and NR R NR R eσ σ ρ ρ σ  are presented in Appendix 3. However, 
from eqn. (6) the ( )ˆVar θ for the non-randomized design only depends 
on σ2 and ρ through the product (1−)σ2. To that end, this product is 
unchanged by application of the non-randomized setting in that
( ) ( )2 2 21 1NR NR R R eρ σ ρ σ σ− = − = . This invariance property means that 
the same effect parameters σ2 and ρ chosen for a randomized design can 
be directly used in eqn. (6) to estimate the variance of the intervention 
effect for the non-randomized designs no matter what the impact non-
randomization has on the final σ2 and ρ is.

To quantitatively measure the difference between randomized and 
non-randomized studies, we first calculate the ratio of the variance 
estimate under CS assumption using eqns. (6) and (8) with randomized 
setting as a reference where as shown above ρ is taken from the 
randomized setting.

( )
( )

( )
( )

( )
( )

( )
( )

1 1 1 1
1 1 * 1

ˆ

1 1 1 1 1 1
R̂

Var T b k k
bb T b T TVar

θ ρ ρ ρ
ρ ρ ρθ

 + −  − − = = + = + >
 + −   + −   + −      

.   (9)

As ρ→1, the ratio goes to 1, meaning the randomized design 
behaves similar but still better than the non-randomized design 

when ρ is close to 1. As ρ→0, the ratio reduces to 1 k
b

+ , meaning the 

non-randomized setting requires ( 1 k
b

+ ) times more units than the 

comparable randomized setting to achieve the same power whenρ is 
close to 0. Thus, increasing k or decreasing b (with all other parameters 
fixed) can lead to more advantages in conducting randomization. For 

b≥k, the ratio lies within (1, 2); for very small k
b

, the ratio is close to 

1, meaning that randomization does not qualitatively reduce the GLS 
variance estimate of the intervention effect.

Figure 2 provides examples with the number of pre-intervention 
timepoints (b) varying between 1 and (T−1) for T=4 and T=7. We chose 
T to be 4 and 7 as this seems reasonable range for the three examples 
presented later and other settings where studies would be conducted 
over periods of 2-4 years with repeated measures at 3-6 month intervals. 
When T=4, for ρ≥0.6 and for b≥2, non-randomization performed 
close to randomization as the variance ratio was less than 1.14. But for 
b=1, variance from non-randomization did not approach that from 
randomization until ρ≥0.8 where the variance ratio was 1.17. Similarly, 
when T=7, non-randomization performed close to randomization as 
the variance ratio was less than 1.22 (for ρ≥0.6 and b≥2), while variance 
from non-randomization did not approach that from randomization 
until ρ≥0.8 for b=1 where the variance ratio was 1.21.

Extension to cluster designs

The cluster-randomized trial, with a randomly chosen subset of 
communities or other units being longitudinally followed that switched 
into a new intervention at the same timepoint [23], is similar to the 
pre-post interventional study we have discussed above. However, it 
differs in that the outcome of the cluster design is not measured on the 
entire unit, which instead is taken as an average of the outcomes of m 
randomly chosen participants at each new timepoint [23]. For example, 
m=50 new participants at the same community are randomly chosen at 
each timepoint of a smoking cessation intervention study (where all 
participants at a community receive the same intervention) and the 
outcome is the average number of cigarettes smoked among these 50 
participants. While typically units are randomized into such pre-post 
intervention studies where b=0, k=1, repeated-measure designs (b>0, 
k>0) with non-randomly chosen units are possible, where m different 
participants being randomly selected within each of all T timepoints. 
Now the outcome is  ijY an average of m independent participants in ith 
cluster at time j. We should caution the readers that our notation for 
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Figure 1: Variance of intervention effect estimate in non-randomized designs under compound symmetry by b and ρ when T=4 and T=7.
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the covariance ρ differs from that used in such cluster designs which we 
denote as ρ  as the variance of the  ijY  depends on m. To convert the 

within-unit repeated-measure correlation ρ  used in those papers to our 

ρ defined above, we implement 1
m

ρρ ρρ
=

−
+







. Therefore, in a cluster 

design with m=50 participants per cluster where the within-cluster 
correlation of the outcome is 0.02ρ = , then the within-unit correlation 

of the outcome  ijY  from different timepoints (j and j’) can be derived 

using the above formula where 
0.02 0.511 1 0.020.02

20m

ρρ ρρ
= = =

− −
+ +







.

Inclusion of time-invariant covariates

We extend the GLS variance estimate in eqns. (6) and (8) by adding 
time invariant baseline covariates W1,…,WQ (either policy-level or 
unit-level covariates) to eqn. (2), which can control for compositional 
changes and further improve the accuracy by decreasing the unmodeled 
variance. We again assume endogenicity that the added covariates are 
not correlated with the error term [13,24]. While this assumption 
must always be evaluated for any given setting, it is difficult to see how 
external baseline covariates could be correlated with εij except perhaps 
through interaction with the previously described over selection of 
poorly (or well) performing units at j−1 to be put into the intervention 
arm. We noted before, that after collection of the data there are tests 
for whether endogenicity problems exist [13]. As derived in Appendix 
4, if endogneicity problems do not exist, then after inclusion of time 
invariant covariate into the model.

( ) ( ) ( )2 2

0 1 0 1

11 1 1 1
k

ˆ 1 1 1Q
Q Q Q

T
Var

n n bk n n b
ρ

θ σ ρ σ
−    = + = + + −    

    
. (10)

where R2 is the multiple correlation coefficient between W1,…,WQ and 
Y while ρQ and 2  Qσ are the within-unit correlations and variances of Y 
after adjusting for baseline covariates W1,…,WQ and ( )2 2 21Q Rσ σ= −  
where σ2 is what the variance would have been without the additional 
covariates.

Application to representative examples

We selected three representative examples from available data and 

literature to evaluate potential repeated-measure correlation studies; i) 
depression measured by the Center for Epidemiologic Studies Score 
for Depression (CESD) in women seen every 6 months [25] on which 
we observed ρ=0.55, ii) cardiovascular and other clinical measures 
of regularly monitored patients for which ∼0.65 was observed [19], 
and iii) a longitudinal study of an intervention of community-based 
sanitation in Indian villages for which ρ=0.75 was noted [26].

Let’s assume that for one of these settings, a non-randomized 
longitudinal study with two intervention arms is planned, for T=4. The 
goal of interest is to calculate the number of units needed to obtain 
a specified study size and power. In many settings, the intervention 
would be implemented after one baseline visit (i.e., b=1, k=3). But from 
previous discussion of optimal pre-post allocation, the GLS variance 
of the intervention effect in the non-randomized design (the main 
focus of this paper) is minimized with b=k=3. In some settings, b=3, 
k=1 might be used. Table 1 thus provides the needed sample size (units 
for both arms) to detect effect size δ=0.25 and δ=0.50 as calculated 
using eqn. (7) at 80% power for two-sided hypothesis testing at 0.05 
significance-level. This is done for (b,k)=(1,3), (2,2) and (3,1) for both 
non-randomized and randomized setting. For simplicity (and to 
optimized power), n0=n1=n is assumed.

For example, when planning a non-randomized DD study, if 
(b,k)=(1,3), δ=0.50, ρ=0.55, from eqn. (7),

( ) ( ) ( )
2

2
12 21

2

1 4* 1 0.55
* 1.96 0.84 19

1*3*0.50
T

n z z
bk α β

ρ
δ −

−

 − −
= + = + ≈  

 
. 

Thus, we would need a total sample size of 38 units for both arms to 
achieve 80% power at 0.05 significance-level.

Now comparing the non-randomized DD to a randomized study, 
the corresponding randomized setting reduced the number of needed 
units for both arms by ~17% (70 vs. 84 for δ=0.25 and 18 vs. 22 for 
δ=0.50 when (b,k)=(1,3) and ρ=0.55. But the reduction in needed units 
for randomized vs. non-randomized setting when (b,k)=(1,3) and 
ρ=0.65 was higher, approximately 32%-35% (as 100 vs. 152 for δ=0.25 
and 26 vs. 38 for δ=0.50).

However, the total number of units needed for both the randomized 
as well as the non-randomized design was lower for (b,k)=(2,2) than 
for (b,k)=(1,3) in these examples. For the non-randomized design, the 
reduction in units needed for (b,k)=(2,2) vs. (b,k)=(1,3) was ~25%, 
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Figure 2: Ratio of the variance of intervention effect estimate non-randomized/randomized design under compound symmetry by b and ρ for the randomized 
design when T=4 and T=7.
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which follows from b∗k being in the denominator of formula (7) with 

the ratio 1*3 0.75
2* 2

= .

With (b,k)=(2,2), the advantage of the randomized vs. non-
randomized was much less than it was with (b,k)=(1,3), as the total 
number of units needed ranging from no reduction at all (16 for both 
when ρ=0.75 and δ=0.50), to 14% (98 vs. 114 when ρ=0.55 and δ=0.25).

By symmetry, the total number of units needed for (b,k)=(1,3) was 
the same as for (b,k)=(3,1) in the non-randomized design. However, 
for the randomized design, the total number of units needed was 
much larger for (b,k)=(3,1) than for (b,k)=(1,3). Thus, the advantage 
of randomization over non-randomized was small when (b,k)=(3,1), 
ranging from no reduction in needed units when ρ=0.75 and δ=0.50, 
to a reduction of 8 units (~5%) from 152 to 144 for both arms when 
ρ=0.55 and δ=0.25.

Conclusion
The aim of this paper was to develop a power and sample size 

estimation framework for non-randomized two-arm pre-post 
interventional studies with repeated continuous longitudinal outcomes 
using Difference-in-Differences analysis. We presented generalized 
least squares variance estimates of intervention effect in linear models 
assuming a jump effect on the outcome immediately after intervention.

An easily implemented formula for variance estimate of 
intervention effect was derived under the commonly-assumed within-
unit compound symmetry correlation among repeated measures. Not 
surprisingly, the variance decreases as the number of total timepoints 
(T) increases. However, this must be weighed against the extra cost 
associated with more follow-up timepoints. For non-randomized 
DD studies with a constrained T, equal number of pre- and post-
intervention timepoints can achieve the greatest power by minimizing 
the GLS variance of intervention effect.

For power analysis in planning intervention studies with pre-
post intervention outcomes and T ranging from 4 to 7, although 
randomization is always preferred, non-randomization can work nearly 
as well for high within-unit repeated-measure correlation (ρ≥0.60) in 
multiple baseline designs where b≥2, while for single baseline designs 
where b=1, researchers should be more cautious about choosing non-
randomization unless a higher correlation (b=1, ρ ≥ 0.80) exists.

To extend GLS variance formulas to studies conducted with a 
cluster design approach with the outcome ijY , being an average of m 
different participants randomly chosen from the cluster we convert 

the ρ  used for the “within-cluster correlation” in those papers to 

our within-unit repeated-measure correlation ρ using 1
m

ρρ ρρ
=

−
+







. We further extended GLS variance formulas by incorporating time-
invariant covariates, that can reduce the variance of the intervention 
effect estimate by (1−R2) where R2 is the multiple correlation coefficient 
between those covariates and the outcome.

Several limitations should be mentioned. For simplicity, we focused 
on designs with no missing data, although such will likely be the case 
when units are facilities with the outcome data collected by ongoing 
periodic quality control monitoring even in the absence of a DD study. 
We assumed an immediate one-time jump effect of the intervention. 
While the effect may have accruing cumulative or some other patterns 
in some settings, it may still be very close to an immediate jump. 
Although compound symmetry correlation is often assumed when 
planning a study, it may not always hold in practice as covariance could 
change over time from uncontrollable mechanisms. Relaxation of the 
above assumptions may likely lead to complicated settings that could 
be addressed with simulation.

In conclusion, this paper developed a generalized least squares 
power estimation framework based on compound symmetry correlation 
that resulted in simple GLS variance formulas of the intervention effect 
for non-randomized Difference-in-Differences studies which could 
be implemented with pencil and paper. We investigated the optimal 
pre-post intervention allocation of timepoints in planning non-
randomized longitudinal Difference-in-Differences studies. While 
randomization is always preferred to reduce the variance estimate of 
the intervention effect, non-randomization performs relatively well (for 
T≤7 timepoints) when high within-unit repeated-measure correlation 
holds particularly if there is a large number of pre-intervention relative 
to post-intervention timepoints. The formulas easily extend to cluster 
study designs and adjust for time invariant variables.
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