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Introduction
Aggressive B-cell Non-Hodgkin’s Lymphoma (B-NHL) such as 

Diffuse Large B-cell Lymphoma (DLBCL), Mantle Cell Lymphoma 
(MCL), Burkitt’s Lymphoma (BL) and Transformed Follicular 
Lymphoma (TFL) are incurable with current chemo-immunotherapy 
regimens including stem cell transplantation [1]. Therefore, the 
development of novel and effective treatments based on biologically 
validated targets is urgently needed for aggressive B-NHL. Clinical 
lymphoma research has focused on targeting signal transduction 
pathways and the tumor microenvironment in B-NHL particularly 
phosphoinositide 3-kinase (PI3K/Akt/mTORC), chronic B-cell 
receptor (BCR) activation (Syk and Btk) and protein kinase C [2-6]. 
The major goal is to incorporate these novel agents into existing anti-
B-NHL therapy by understanding their biologic roles and synthetic
lethality.

PI3K binds to and is activated by several upstream receptors 
and non-receptor protein tyrosine kinases [7-10]. Once activated, 
PI3K phosphorylates its lipid substrate phosphatidylinositol 
4,5-bisphosphate (PtdIns (4,5) P2) to PtdIns (3,4,5) P3, a critical 
intra-cellular lipid second messenger. This process is opposed by the 
tumor suppressor PTEN (phosphatase and tension homolog) which is 
frequently deleted or mutated in human cancers [11] that results in 
constitutive PI3K activation. It in turn activates AKT, an important 
down-stream effector through interacting with PtdIns (3,4,5) P3 
via its PH domain which mediates cell proliferation, survival, cell 
cycle progression, apoptosis, angiogenesis and autophagy [12-14]. 
There are 3 classes of PI3K isoforms (I, II and III). Class I isoforms 
are subdivided into 1A and 1B. Class 1A is composed of p110α, p110β 

and p110δ (catalytic domains), bound by p85, p50, or p55 (regulatory 
domains). Class 1B consists of a single catalytic domain, p110γ bound 
by the regulatory domain p101. The relation between deregulated PI3K 
activity and cancer is well documented. Forced expression of PI3K 
was shown to be transforming in cell lines [15] and induced tumors 
[16] and angiogenesis in vivo [14]. It has also been shown that Akt
is involved in malignant transformation [17]. PI3K activity has been
linked to a variety of human tumors including breast cancer [18],
lung cancer [19], melanomas [20], leukemia [21], colon and bladder
carcinoma, glioblastoma, acute myeloid leukemia blasts [22,23], and
non-Hodgkin’s lymphoma [3,6]. Inhibition of the PI3K pathway is a
promising approach for novel targeted therapeutic agents [24,25].

LY294002 is a pan inhibitor of all isoforms of PI3Kand has 
demonstrated anti-tumor and anti-angiogenic activities in vivo 
[26,27]. However, LY294002 compound is not a viable drug candidate 
due to insolubility and short half-life. Recently, SF1126, a novel RGD 
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Abstract
The PI3K pathway is activated in a variety of human tumors including B-cell Non Hodgkin Lymphoma (B-NHL). 

Targeting this pathway has been validated in solid tumors, leukemia and lymphomas. SF1126, a novel pan-PI3K 
inhibitor designed by conjugating RGD peptide to LY294002 facilitates clinical testing of this prodrug, suppresses 
growth and survival of multiple solid tumors in vitro and in vivo. In this study, we demonstrated SF1126 had potent 
activity in a panel of aggressive B-NHL cell lines. Cells treated with SF1126 exhibited decreased phosphorylation 
of Akt and GSK-3β confirming the mechanism of action of a PI3K inhibitor. Also, treatment of B-NHL cell lines 
with SF1126 induced apoptosis in a dose-dependent manner and inhibited cell proliferation with an IC50 < 4 µM. 
However, the selective p110δ inhibitor, CAL-101 was less potent in inducing apoptosis and inhibiting cell proliferation 
compared to SF1126. Moreover, SF1126 induced G1 cell cycle arrest significantly at low concentrations which 
contributed to suppression of cell proliferation and corroborated to a decrease in cyclin D1. Finally, rituximab 
enhanced apoptosis induced by SF1126 and CAL-101. Taken together, our findings provide for the first time that 
SF1126 inhibits the constitutively activated PI3K/Akt pathway in aggressive B-cell NHL cell lines with associated 
inhibition of cell cycle progression, cell proliferation and promotion of apoptosis. These findings suggest that 
SF1126 is a novel therapeutic strategy in aggressive B-cell NHL and warrants early phase clinical trial evaluation 
± rituximab.
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peptide conjugated LY294002 prodrug was developed by Semafore 
Pharmaceuticals [28] and is at the end of phase I clinical trials. Phase 
I study of the multi kinase prodrug SF1126 in solid tumors and B-cell 
malignancies [29], ASCO poster discussion, June 3-7, 2011. SF1126 is 
water soluble, has favorable pharmacokinetics, and is well tolerated in 
murine systems. It has been shown that SF1126 has anti-tumor activity 
in neuroblastoma, breast cancer cells [30], glioma cells and prostate 
cancer cells [28]. In this study, we demonstrate that SF1126 was 
superior to CAL-101 a PI3K delta-specific inhibitor in suppression of 
cell proliferation, induction of G1/S arrest and promotion of apoptosis 
inaggressive B-cell NHL cell lines associated with inhibition of Akt 
and GSK-3β activity and down-regulation of cyclin D1. Further, the 
addition of rituximab to SF1126 or CAL-101 enhanced apoptosis 
compared to single agent activity. These results suggest that SF1126 
+ rituximab should be examined further as a potential therapeutic 
strategy for patients with aggressive B-cell NHL. 

Materials and Methods
Cells and reagents

DLBC: SUDHL-4, TMD-8, TOLEDO, SUDHL-6, RL and DB; 
MCL: JeKo-1, Granta-519 and Granta-4 cell lines used in this study 
were from Drs. S. Grant (Virginia Commonwealth University, VA), 
L. Rimsza (University of Arizona, AZ) and C. Jordan (University of 
Rochester, NY) and maintained in RPMI 1640 medium (Mediatech, 
VA) supplemented with 10% fetal bovine serum, 2 mM sodium 
pyruvate and 100 units/ml penicillin/streptomycin at 37°C in a 
humidified atmosphere containing 5% CO2. SF1126 was kindly 
provided by Semafore Pharmaceuticals (Indianapolis, IN). CAL-101 
(p110δ inhibitor) was purchased from Active Biochem (http://www.
activebiochem.com). The compounds were dissolved at 10 mM in 
ddH2O (for SF1126) and DMSO (for CAL-101) as a stock solution, and 
then further diluted to desired concentrations for in vitro experiments. 
Rituximab was a kind donation by the Arizona Cancer Center Clinic. 
Anti-phospho-Akt (Ser473), anti-Akt, anti-phospho-GSK-3β and anti-
β-actin antibodies were purchased from Cell Signaling Technology 
(Danvers, MA). Anti-PARP (H-250), anti-p53 and anti-CyclinD1 were 
from Santa Cruz Biotechnology (Santa Cruz, CA). 

Analysis of cell proliferation inhibition (MTS assay)

Cells were seeded at 8,000 per well in 96-wellculture plates and 
allowed to grow for 24 hr followed by the desired treatment with 
increasing concentrations of the indicated agents for 4 days. The studies 
were conducted in triplicates. Viable cell densities were determined 
using a Cell Titer 96 Cell Proliferation Assay (Promega, Madison, WI). 
The IC50 values were estimated by Calcusynsoftware (Biosoft, UK). 

Apoptosis assay

Using Annexin V staining to detect apoptosis, treated cells were 
harvested and rinsed with cold PBS once. After centrifugation for 5 
min, cells were resuspended in 500 µl of 1×Annexin V binding buffer 
(BioVision, Annexin V-FITC Reagent Kit, Cat. #1001-1000) and 
then added 5 µl of Annexin V-FITC and 5 µl of Propidium Iodide 
(BioVision, Annexin V-FITC Reagent Kit). After incubation for 5 min 
at room temperature in the dark, the samples were analyzed by flow 
cytometry. 

Cell cycle analysis

Cells were treated with different concentrations of SF1126 and 

CAL-101 for 48 hr and then the cells were centrifuged at 1,500 × g for 
5 min at 4°C and resuspended in PBS, fixed by drop wise addition of 
ice-cold ethanol (100%) to a final concentration of 70%, and incubated 
for 30 min on ice. Fixed cells were pelleted and treated with 100 µl 
of RNase A (0.2 mg/ml in PBS) for 5 min at room temperature, then 
suspended in 1 ml ddH2O. After staining with 4 µg/ml propidium 
iodide, the DNA content was determined using a Becton Dickson flow 
cytometer and the cell cycle profile was analyzed by ModFit software. 
Cell aggregates were gated out of the analysis, based on the width of the 
propidium iodide fluorescence signal. Each profile was compiled from 
10,000 gated events.

Immunoblotting

The cells were lysed in NP-40 lysis buffer containing 50 mM Tris.
Cl (pH 7.4), 0.15 M NaCl, 0.5% NP-40, 1 mM DTT, 50 mM Sodium 
Fluoride, and 2 µl/ml Protease inhibitor cocktail (Sigma, St. Louis, 
MO). Protein concentrations were determined using the BioRad 
protein assay kit (Hercules, CA) and 50 µg of protein was resolved 
by electrophoresis on a 10% SDS-PAGE gel. The proteins were then 
transferred onto a nitrocellulose membrane and nonspecific binding 
was blocked by incubating with 5% nonfat milk in TBST buffer (0.01 M 
Tris-Cl, 0.15 M NaCl, 0.5% Tween-20, pH 8.0) at room temperature for 
1 hr. The membrane was subjected to the indicated antibodies and the 
proteins were detected by a LI-COR Odyssey Infrared Imaging System.

Statistical analysis

All quantitative results are expressed as mean values ± SD. 
Statistical tests were conducted with Graph Pad Prism version 5.0. P 
values were 2-tailed and considered significant if P < 0.05. 

Figure 1: Antiproliferative activity of SF1126 and CAL-101 in aggressive 
B-NHL cell lines. SUDHL-4 and TMD-8 cells were exposed to varying 
concentrations of SF1126 and CAL-101 for 4 days. Cell viability was 
assessed by MTS analysis. Points are the means of triplicate determinations 
± SD. Inset: The IC50s of SF1126 and CAL-101 were calculated in these two 
cell lines. A significant difference of IC50s between SF1126 and CAL-101 
was determined by two-tailed t-test (P = 0.0063 in SUDHL-4 and P < 0.0001 
in TMD-8).

http://www.activebiochem.com
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Results
SF1126 is superior to CAL-101 in suppressing cell 
proliferation in ABC and GCB DLBCL cell lines

PI3K is important for cancer cell survival and proliferation. 
SF1126, which is against all class I isoforms of PI3K, has been reported 
to suppress tumor growth in several solid types of cancers [28-30]. 
To examine whether SF1126 inhibits B-NHL cells, MTS assays were 
performed to evaluate the growth including SUDHL-4 and TMD-
8 which represents GCB and ABC DLBCL subtypes respectively. 
Consistent with previous studies, SF1126 effectively inhibited the 
growth of these two cell lines with IC50 values of 3.28 µM and 1.47 µM 
(Figure 1). CAL-101, a p110δ selective PI3K inhibitor which has been 
shown to inhibit multiple myeloma [31], B-cell acute lymphoblastic 
leukemia [32] and chronic lymphocyte leukemia [33,34] was also used 
in this experiment as a positive control. Interestingly, the IC50 of CAL-
101 in SUDHL-4 and TMD-8 cells was higher than that of SF1126 (5.62 
µM and 5.31 µM, respectively) (Figure 1). Statistical analysis indicated 
that the IC50s were statistically significant difference between CAL-
101 and SF1126 in SUDHL-4 (P = 0.0063) and TMD-8 (P < 0.0001). 
Together, the data demonstrate that SF1126 is more potent against 
ABC- than GCB- DLBCL and is superior to CAL-101 against both 
types of DLBCL.  

SF1126 induces superior apoptosis to CAL-101 in DLBCL cell 
lines

It is also known that apoptosis is induced when suppression of 

PI3K pathway. To examine apoptosis, B-NHL cells were treated with 
varying doses of SF1126 and CAL-101, stained with Annexin V and PI 
and evaluated by flow cytometry assays. As expected, both of SF1126 
and CAL-101 induced apoptosis in SUDHL-4 and TMD-8 B-NHL cells 
in a dose-dependent manner (Figure 2A and 2B). However, apoptosis 
was more prominent in both B-NHL cell lines treated with SF1126 
versus CAL-101: 25% versus 12% in SUDHL-4 at 50 µM and 20% 
versus 6% in TMD-8 at 20 µM. In addition, consistent with suppression 
of cell proliferation (Figure 1), SF1126 was more potent in inducing 
apoptosis in the ABC-type DLBCL (TMD-8) than GCB-type DLBCL 
(SUDHL-4):20% versus 11% at 20 µM, respectively (Figure 2A and 
2B). These results were confirmed by demonstrating an increased level 
of cleaved PARP in treated B-NHL cells (Figure 2C). Furthermore, 
apoptosis was detected in a panel of additional B-cell NHL cell lines 
including mantle cell lymphoma treated with SF1126 (Figure 3A) 
with confirmatory PARP cleavage analysis (Figure 3B). B-NHL cells 
were treated with SF1126 at increasing doses (5 µM, 10 µM, 20 µM, 
40 µM and 50 µM) and PARP cleavage was observed at a dose > 20 
µM, suggesting apoptosis induction is dose-dependent (Figure 3B). In 
addition, apoptosis was induced as early as 8 hr in B-NHL cells treated 
with SF1126 (Figure 3C). 

SF1126 inhibits cell cycle progression by down-regulating 
cyclin D1 in aggressive B-NHL

Activation of the PI3K pathway regulates cell cycle progression 
[35,36]. SF1126 has been shown to induce G1 arrest in breast cancer 
cells [30]. To examine cell cycle progression in B-NHL, SUDHL-4 and 
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Figure 2: Apoptosis induction by SF1126 and CAL-101 inB-NHL cell lines. (A). SUDHL-4 cells were treated with SF1126 or CAL-101 at different doses [10 µM, 20 
µM, 30 µM, 40 µM and 50 µM] for 72-hr. Apoptosis was detected by flow cytometry based on propidium iodide (Y-axis) and annexin V staining (X-axis). Percentages 
of apoptotic cells (lower right quadrant represents the early apoptotic population, upper right quadrant represents the late apoptotic population and upper left quadrant 
represents the necrotic population) are indicated. (B). TMD-8 cells were treated as above and apoptosis was analyzed by flow cytometry after staining of propidium 
iodide and annexin V. The graph represents the mean percentage of apoptosis  S.D. (n = 3). (C). SUDHL-4 and TMD-8 cells were treated with SF1126 and CAL-101 
at 10 µM, 20 µM, 30 µM and 40 µM for 72 hr. Apoptosis was evaluated by immunoblotting to detect PARP cleavage with an anti-PARP antibody. GAPDH was used as 
a loading control. Numbers indicates density of cleaved PARP.
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and 48-hr]. PARP cleavage was determined using immunoblotting with an anti-PARP antibody. β-actin was used as a loading control.
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Figure 4: SF1126 induced G1 arrest and decreased cyclin D1 in B-NHL cell lines. SUDHL-4 (A) and TMD-8 (B) cells were treated SF1126 or CAL-101 for 48 hr 
at varying concentrations. Samples were harvested and stained with propidium iodide. DNA content was analyzed by flow cytometry. X-axis: DNA content, Y-axis: cell 
numbers. Percentages of G0/G1, S and G2/M phase cell populations were analyzed by ModFit software. (C). SUDHL-4, TOLEDO and SUDHL-6 cells were treated 
with SF1126 for 48 hr at 5 µM, 10 µM, 20 µM, 40 µM and 50 µM. Cyclin D1 protein level was evaluated by immunoblotting.
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TMD-8 cells were treated with SF1126 or CAL-101 at 0.5 µM, 1.0 µM, 
2.0 µM, 5.0 µM and 10.0 µM for 48 hr and DNA content was evaluated 
using flow cytometry (Figure 4A and 4B). Treatment of B-NHL cells 
with SF1126 dramatically increased G0/G1 and decreased S phase 
populations in both DLBCL cell lines. However, CAL-101 had a similar 
effect only in the TMD-8 cell line (Figure 4A and 4B), indicating a pan-
PI3K inhibitor continues to be potent in different B-NHL subtypes. 
Very similar data were also observed in SUDHL-6, TOLEDO, RL, 
Granta-519 and Granta-4 cell lines (data not shown). Since cyclin D1 
is a critical player in the G1/S cell cycle progression and is activated by 
the PI3K pathway [17], inhibition of PI3K by SF1126 led to a G1 arrest 
consistent with observed down-regulation of cyclin D1 at the protein 
level in B-NHL cells (Figure 4C). 

SF1126 inhibits PI3K/Akt/GSK-3β signaling in B-NHL cells

Receptor tyrosine kinase or chronic B-cell receptor signaling 
leads to activation of the PI3K pathway whereby Akt is activated 
by phosphorylation at Thr308 by PDK1 and at Ser473 by PDK2. 
Subsequently, Akt promotes cell survival by inhibiting apoptosis by 
phosphorylating and inactivating several down-stream targets. Akt is 
also involved in cell cycle regulation by phosphorylating GSK-3β at 
Ser9 which mediates phosphorylation and degradation of cyclin D1 
[37,38]. Hence, we examined the activity of Akt and GSK-3β when 
B-NHL cells were treated with SF1126. As expected, phosphorylation 
of Akt at Ser473 was significantly decreased with SF1126 even at 5 
µM. However, the total Akt protein level was unchanged upon SF1126 
treatment, indicating that the decreased pSer473 was due to inhibition 
of phosphorylation and not to Akt protein degradation or translational 
down-regulation (Figure 5). Phospho-GSK-3β was also reduced 
dramatically by SF1126 in a dose-dependent manner (Figure 5). Hence, 
these data demonstrate that SF1126 effectively inhibits PI3K/Akt/GSK-
3β pathway in B-NHL cells.

SF1126 plus rituximab enhances apoptosis in DLBCL cells

It has been reported that rituximab [R] diminishes the constitutive 
activity of the PI3K/Akt signaling pathway and increases chemo-
sensitization to drug-induced apoptosis [3]. Here we treated SUDHL-4 
and TMD-8 cells with 10 µM of SF1126 alone, 20 µg/ml of R alone and 

the combination of SF1126 plus R for 48 hr. Apoptosis was evaluated 
and the results clearly show R plus SF1126 induced more apoptosis 
than R or SF1126 alone (Figure 6). Rituximab also enhanced apoptosis 
in the cells treated with CAL-101, suggesting rituximab increases the 
anti-tumor activity of PI3K inhibitors in B-cell NHL cells.

Discussion
Most aggressive B-cell non-Hodgkin lymphomas (B-NHL) are 

not curable with current chemo-immunotherapy combinations [1]. 
The PI3K/Akt/mTORC signaling pathway is frequently deregulated 
in B-NHL [3,6], promoting the evaluation of novel small molecule 
inhibitors as an alternative treatment strategy. Indeed, disruption of 
mTORC1, an important down-stream mediator of PI3K/Akt, with 
rapalogs is now accepted as a therapeutic conceptin relapsed/refractory 
mantle cell lymphoma [6]. In this study, we demonstrate that SF1126, a 
novel pan-PI3Kprodrug small molecule inhibitor, potently suppresses 
cell proliferation, induces G1 cell cycle arrest by inhibiting cyclin D1 
protein level, and promotes apoptosis with suppression of Akt and 
GSK-3β activity in a panel of aggressive B-NHL cell lines. SF1126 has 
been shown to have potent anti-tumor activity in glioma, prostate 
cancer [28], recurrent neuroblastoma [29] and breast cancer [30]. A 
phase I trial evaluated SF1126 in patients with advanced solid tumors 
and B-cell lymphoproliferative diseases including CLL [D. Mahadevan 
et al. Phase I study of the multikinaseprodrug SF1126 in solid tumors 
and B-cell malignancies, ASCO poster discussion, June 3-7, 2011]. 
However, few studies have been done to evaluate SF1126 activity in 
aggressive B-NHL. Our results here support the inhibition of PI3K 
by SF1126 may represent a novel therapeutic strategy that warrants 
clinical trial evaluation in aggressive B-NHL.

CAL-101, a potent and selective p110δ inhibitor, has been 
extensively assessed and shows significant pre-clinical activity in 
multiple myeloma [31], chronic lymphocytic leukemia [34] and 
immature or mature B-cell malignancies [32]. Compared with SF1126, 
CAL-101 is less effective in suppressing cell proliferation and promoting 
apoptosis in B-NHL. The most likely explanation is redundancy leading 
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Figure 5: SF1126 potently inhibits phosphorylation of Akt and GSK-3β. 
SUDHL-4 and TOLEDO cells were untreated or treated with SF1126 at 5 µM, 
10 µM, 20 µM, 40 µM and 50 µM for 1-hr. Cells were collected for protein 
isolation. 50 µg of total protein from each lysate was resolved by SDS-PAGE 
and immunoblotted with antibodies specific for pan-Akt, phosphorylated Akt 
(Ser473) and phosphorylated GSK-3β (Ser9). β-actin was used as a loading 
control.
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Figure 6: Rituximab enhances SF1126 induced apoptosis in aggressive 
B-NHL. SUDHL-4 and TMD-8 cells were untreated or treated with 10 µM 
SF1126, 10 µM CAL-101,20 µg/ml of rituximab alone and combinations as 
indicated for 48 hr. Apoptosiswas evaluated by flow cytometry after Annixin 
V and PI staining.The graph represents the mean percentage of apoptosis ± 
S.D. (n = 3).
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to resistance as other PI3K class I isoforms such as p110α, p110β and 
p110γ exist in an activated form these subtypes of B-NHL. In fact, all of 
the PI3K class I isoforms are expressed and active in a variety of ABC-
type DLBCL cell lines including TMD-8 [5]. Additionally SF1126 is 
also known to inhibit mTORC1 and 2, PIM-1 and DNA-PK which are 
also therapeutic targets in B-NHL [28]. Moreover, PI3K/Akt/mTORC 
is frequently activated in all subtypes of B-NHL including DLBCL 
[39], MCL [40] and follicular lymphoma [41,42]. Hence, a pan-PI3K 
inhibitor is likely to be more active than an isoform selective inhibitor 
for the treatment of B-NHL.

SF1126 inhibits cell proliferation at low concentrations (IC50 < 3.5 
µM) (Figure 1). However, in cell culture >10 µM of SF1126 is required 
to induce apoptosis (Figure 2). In the phase I trial of SF1126 a maximum 
tolerated dose was not reached based on toxicity with the maximum 
administered dose being 1110 mg/m2 administered intravenously twice 
weekly three days apart. The pharmacokinetics showed that serum 
levels of 25 µM were readily achieved. (D. Mahadevan et al. [1] Phase 
I study of the multikinaseprodrug SF1126 in solid tumors and B-cell 
malignancies, ASCO poster discussion, June 3-7, 2011). Thus, G1 cell 
cycle arrest may contribute more to suppression of cell proliferation by 
SF1126 as this is achieved at low concentrations (Figure 4). Cyclin D1, 
is an oncogene that regulates the G1-S cell cycle transition in B-NHL, 
particularly in MCL where it is over-expressed due to the t(11;14) 
(q13;q32) chromosomal translocation. Pre-clinical studies have shown 
frequent activation of mTORC1 in MCL patients and cell lines and 
inhibition with rapalogs leads to decreased cyclin D1 expression [40]. 
Also cyclin D1 is regulated by glycogen synthase kinase 3β (GSK-3β) 
as the latter phosphorylates cyclin D1 at Thr286, leading to ubiquitin-
mediated proteolytic degradation in the cytoplasm [37]. The activity 
of GSK-3β is inhibited by Akt-dependent phosphorylation and thus 
Akt mediated GSK-3β inhibition stabilizes cyclin D1. Over-expression 
of constitutively active Akt extends the half-life of cyclin D1 protein 
whereas treatment with the PI3K inhibitor (e.g. Wortmannin) 
accelerated its degradation [37]. Consistent with these findings, SF1126 
activates GSK-3β through inhibition of PI3K/Akt and decreases cyclin 
D1 protein in B-NHL (Figure 5).

In conclusion, our findings indicate that inhibition of the PI3K/
Akt/mTORC pathway is an excellent therapeutic strategy for aggressive 
B-NHL. SF1126, a pan-PI3K inhibitor that also inhibits mTORC1 and 
2 is superior to CAL-101 a PI3K delta-specific inhibitor in reducing 
tumor cell proliferation, enhancing apoptosis and induction of G1 cell 
cycle arrest in aggressive B-NHL. PI3K pathway inhibition by SF1126 
was confirmed by decreased phosphorylation of Akt and GSK-3β 
with associated decrease in cyclin D1. Finally combining SF1126 with 
rituximab increased apoptosis and may be a synthetic lethal interaction 
(Figure 6). These results suggest that SF1126 should be evaluated in 
combination with rituximab in early therapeutic trials in aggressive 
B-cell NHL.
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