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Abstract
Background: Human metabolic profiles based on the four compound classes acylcarnitines, amino acids, hexoses 

and phospho and sphingolipids were found to exhibit a significant sex difference in a previous study. We set out to verify 
this result in a geographically distinct cohort with an adequately sized sample by analyzing the same set of biomarkers 
and various additional biogenic amines not hitherto considered in such studies.

Methods: The study population comprised 165 individuals (101 males, 64 females) for whom the serum 
concentrations of 138 different metabolites were measured. Sex differences were analyzed both at the level of individual 
metabolites by linear regression analysis and at the level of joint consideration of metabolites by partial least-squares 
discriminant analysis (PLS-DA). 

Results: The concentration of 60 metabolites (43.5%) showed a nominally significant sex difference in a linear 
regression analysis, 11 of which (8.0%) remained significant after correction for multiple testing. Among the previously 
studied markers, the most significant sex dependency was observed for lyso-phosphatidylcholine acyl C18:2 (adjusted 
p=0.001) and octadecadienyl-L-carnitine (p=0.004). Among the newly analyzed biogenic amines, only creatinine 
(adjusted p<10-4) and total dimethylarginine (p=0.017) showed a significant sex difference. PLS-DA confirmed the sex 
dependency of metabolic profiles.

Conclusion: Various previously reported sex differences in human serum metabolite concentration were confirmed 
in an independent and slightly different cohort. In addition, the concentrations of at least two biogenic amines were 
found to be sex-dependent as well. In the light of an increased interest in and an increased availability of large-scale 
metabolic data, our study strongly emphasizes the need for sex stratification or sex adjustment in epidemiological and 
molecular studies based upon such profiles.

and environmental exposition than the previously analyzed South 
German samples. Moreover, in order to gain further insight into the 
sex specificity of metabolic activity, we expanded the set of investigated 
metabolites by the inclusion of various biogenic amines.

Methods

Study design and population

We investigated the metabolic profiles of selected members of the 
PopGen population-based control cohort, which was established in the 
city of Kiel, Northern Germany, between June 2005 and February 2006 
[11]. Briefly, PopGen participants were ascertained through the local 
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Introduction
Sex is known to influence the manifestation of many phenotypes 

in humans, including diseases [1-3]. Correspondingly, either 
sex stratification or sex adjustment is commonly advised in the 
epidemiological and molecular analysis of such traits [4-6]. For 
example, sex differences have been reported recently to characterize 
even well-established disease associations between single nucleotide 
polymorphisms and both Coronary Artery Disease and Crohn Disease 
[7]. Many metabolites are known to play an intermediate, gene- and 
environment-dependent role in the etiology of complex traits. Thus, 
metabolic profiles can also be expected to be sex-dependent. Indeed, a 
recent two-tiered study of the KORA F3 and F4 cohorts by Mittelstrass 
et al. [8] revealed significantly different serum concentrations in men 
and women for 63 of 131 metabolic markers tested. However, various 
environmental factors, such as nutritional status, physical activity 
level, medication and stress, are well known to also strongly cause 
variation in single metabolite concentrations [9]. Moreover, since 
genetic variation influences metabolic pathways, it is conceivable that 
there is some metabolic differentiation within Germany, given the 
observed minor genetic differentiation in Germany [10]. We therefore 
set out to investigate the reported sex dependence of metabolic 
profiles in an independent population-based study population from 
Northern Germany with a slightly different genetic composition 
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population registry and invited to visit the study center at the local 
university hospital. EDTA blood samples were collected at baseline 
and fasting serum samples stored. All cohort members completed a 
questionnaire on lifestyle factors and underwent physical examinations, 
including measurement of waist and hip circumference. Body mass 
index (BMI) was calculated from self-reported weight and height data. 
For 230 of the 747 control individuals in PopGen, information on the 
fasting serum concentration of 186 metabolites was available from a 
previous study on fatty liver disease (FLD). For the current study, all 
115 participants without FLD and 50 FLD patients were randomly 
selected from the cohort population, thereby mimicking the 30% 
prevalence of FLD in Germany [12]. All PopGen cohort members were 
of German descent.

Ethics statement

All PopGen cohort members had given written informed consent 
prior to the study. Use of PopGen data for the present purpose was 
also approved by the ethics committee of the Medical Faculty of the 
Christian-Albrechts University, Kiel, Germany.

Measurement of metabolites and quality control

The serum concentration of 186 metabolites was measured with the 
AbsoluteIDQTM p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, 
Austria) as described [13]. Further details on the assays and reagents 
used can be found in the AbsoluteIDQTM p180 Kit manual (www.
biocrates.com). Measurements of metabolite concentrations were 
performed on three different plates, each time with the same kit and 
the same set of three negative controls. Five additional positive controls 
(‘QC samples’) were included on each plate for further quality control. 
Only metabolites with an average coefficient of variation <25% over 
the 15 QC samples, and with a detection rate >90% in all 165 serum 
samples combined, were analyzed further. Detection thresholds 
(‘Limits of Detection’, LODs) for single metabolites were taken from 
the Analytical Specifications AbsoluteIDQTM p180 Kit manual (AS-
p180, available upon request via www.biocrates.com). 

Statistical analysis

We tested for sex differences of non-metabolic characteristics 
by using a χ2 test for categorical variables and a Student t-test for 
continuous variables.

We analyzed log-transformed single metabolite concentrations 
using linear regression models with sex as the predictor while adjusting 
for age, waist-to-hip ratio (WHR), HDL cholesterol level and smoking 
status. Since most metabolites followed a right-skewed distribution, 
log-transformation of the metabolites was applied to ensure 
applicability of the linear regression framework by achieving a better 
fit to a Gaussian distribution. Given the strong partial correlations 
between metabolites, we applied the Westfall and Young Step-Down 
MaxT procedure [14] to correct p values for multiple testing. P values 
below 0.05 were considered statistically significant. Prior to regression 
modeling, we performed a formal power analysis based upon Cohen’s 
effect size measure γ [15]. 

In order to compare the strengths of single metabolite sex 
differences between our study and that of Mittelstrass et al. [8], we 
also calculated the relative sex difference (Δ) for each metabolite, being 
defined as the difference between the sex-specific mean concentrations 
divided by mean concentration in men.

Given the strong partial correlations between metabolites, we also 
performed a partial least-square discriminant analysis (PLS-DA) [16]. 

PLS-DA focuses upon maximizing the covariance between predictors 
and response when estimating the parameters of a linear regression 
model, rather than trying to maximize the variance of the predictors 
alone. It thus represents a regression extension of unsupervised 
principal component analysis. Here, we modeled metabolites as 
predictors and sex as the sole response variable. We quantified the 
contribution of individual metabolites to the PLS-DA model by the 
‘Variable Importance in the Projection (VIP)’ score [17]. With this 
score, the average of squared VIP scores over all variables equals 
unity and metabolites with a VIP score exceeding unity are therefore 
considered more important for discriminating between sexes than 
the other metabolites. The results of the PLS-DA were visualized by a 
scatter plot of the first two PLS components of each metabolic profile. 
Receiver operator characteristic (ROC) analyses were carried out to 
assess the predictive potential of the PLS-DA for a given number of 
PLS components considered. We imputed missing values for leucine 
(n=1), histamine (n=9), SDMA (n=8) and taurine (n=12) by the 
corresponding sex-specific sample means. For PLS-DA, concentrations 
of individual metabolites were standardized to unit variance and zero 
mean.

All analyses were performed using the R statistical software (v. 
2.14.1) [18]. For PLS-DA, we used R package pls (v. 2.3.0) [19], whereas 
the ROC analysis was performed using R package pROC [20].

Results

The present study included 165 individuals (101 men, 64 women). 
Male and female participants were found to differ significantly in terms 
of their waist-to-hip ratio (WHR), HDL cholesterol level and proportion 
of ever smokers (Table 1). However, while we were analyzing a non-
healthy but representative study population no significant differences 
between men and women could be observed for medical conditions, 
including FLD, hypertension, cancer, chronic disease, any form of 
diabetes, gallstones, heart attack, inflammatory bowel disease and 
neuropathy (Table 1).

Of total 186 measured metabolites 138 (74.19%) passed quality 
control and entered our analysis, including 68 phosphatidylcholines 
(89.47%), 21 amino acids (100%), 14 acylcarnitines (35.00%), 14 
sphingomyelins (93.33), 11 biogenic amines (57.89%), 9 lyso-
phosphatidylcholines (64.29%) and 1 hexose (100%). This marker set 
comprised 116 of the 131 metabolites originally studied by Mittelstrass 
et al. [8]. 

Single-metabolite analysis

Linear regression analysis of the log-transformed metabolite 
concentrations on sex without further adjustment for any covariates 
revealed a nominally significant association with sex for 42 of the 138 
metabolites (30.4%; Supplementary Table S1). However, given the many 
phenotypic differences noted between male and female study subjects 
(Table 1), all models were subsequently adjusted for age, WHR, HDL 
cholesterol level and smoking status. In the adjusted analysis, 60 of the 
138 metabolites (43.5%) showed a nominally significant association 
with sex, and 11 of these associations (8.0% of the total) remained 
significant after correction for multiple testing (Table 2). Twenty-
two of the 60 nominally significant associations in our study were 
previously found in the KORA study [8]. Creatinine (p<10-4), lyso-
phosphatidylcholine acyl C18:2 (p=0.001), octadecadienyl-L-carnitine 
(C18:2, p=0.004) and valerylcarnitine (C5, p=0.007) showed the smallest 
P values in our study with lyso-phosphatidylcholine  acyl  C18:2 also 



Citation: Siegert S, Yu Z, Wang-Sattler R, Illig T, Adamski J, et al. (2012) Sex Dependency of Human Metabolic Profiles Revisited. Metabolomics 
2:115. doi:10.4172/2153-0769.1000115

Page 3 of 6

Volume 2 • Issue 5 • 1000115
Metabolomics
ISSN:2153-0769 JOM an open access journal 

S1 and Figure 1). Calculation of Pearson’s correlation coefficient 
confirmed weak positive linear relationship between the lipoprotein 
and almost half of the phospholipids (28 phosphatidylcholines and 8 
sphingomyelins with 0.25 ≤ r ≤ 0.5).

For the vast majority of metabolites, regression results did 
not substantially change after adjustment for BMI instead of 
WHR or vice versa (Supplementary Table  S2). However, lyso-
phosphatidylcholines  acyl  C17:0 showed a significant sex difference 
after adjustment for WHR, but not after adjustment for BMI, 

found to be significantly associated with sex in the study by Mittelstrass 
et al. [8].

While most of the phosphatidylcholines and sphingomyelins tended 
to be higher in women than in men in the unadjusted analysis, this 
relation was reversed more often than not when HDL cholesterol was 
adjusted for (Supplementary Table S1). Moreover association with sex 
of some phosphatidylcholines and sphingomyelins became nominally 
significant in both the univariate and the multivariate regression 
analysis only after including HDL cholesterol (Supplementary Table 

Men Women p

N 101 64
Age, years 60 (6) 62 (7) 0.084

Range 50 - 76 50 – 77
Body mass index, kg/m2 26.19 (3.80) 25.85 (4.69) 0.612
Waist-hip ratio 0.93 (0.07) 0.84 (0.09) 1.04×10-12

HDL cholesterol, mg/dl 59.36 (14.43) 76.78 (21.07) 2.61×10-9

LDL cholesterol, mg/dl 143.38 (35.12) 147.20 (37.64) 0.508
Triglyceride, mg/dl 147.59 (94.08) 128.22 (72.66) 0.163
Ever smoker, n (%) 64 (63.37%) 27 (42.19%) 0.012
Alcohol intake1, n (%) 40 (54.79) 17 (38.64) 0.133

Alcohol intake, C2-units 0.64 (0.88) 0.38 (0.60) 0.085
High alcohol intake2, n (%) 8 (10.96) 3 (6.82) 0.677

Fatty liver disease, n (%) 30 (29.70) 20 (31.25) 0.971
Hypertension, n (%) 66 (65.36) 34 (53.13) 0.161
Prevalent diseases3, n (%)

0 42 (41.58) 18 (28.13) 0.092
1 38 (37.62) 31 (48.44)
2 17 (16.83) 8 (12.5)
3 2 (1.98) 6 (9.38)
4 2 (1.98) 1 (1.56)

Data are given as mean (standard deviation) unless indicated otherwise. P values refer to a χ2 test or a Student t test, as appropriate.
1Data are based upon 117 individuals because of missing values (28 men, 20 female). 
2High alcohol intake was defined as consuming more than 4 C2-units for men and 2 C2-units for women
3Number of prevalent diseases including cancer, chronic disease, any form of diabetes, gallstones, heart attack, inflammatory bowel disease and neuropathy

Table 1: Participant Characteristics.

P values and regression coefficients (ß) derived from a linear regression analysis of log-transformed metabolite concentrations measured in 165 study participants (101 
men, 64 women). All models were also additionally adjusted for age, waist-to-hip ratio, HDL cholesterol and smoking status
1 padj denotes the p value adjusted for multiple testing by the Westfall and Young Step-Down MaxT procedure with 10,000 permutations
2 Δ denotes relative sex difference, defined as the difference in mean concentration between men and women, divided by the mean concentration in men

Table 2: Significant Sex Differences in Serum Metabolite Concentration (after correction for multiple testing).

Unadjusted model Adjusted model
Metabolite β p β p padj

1 Δ (%)2

Acylcarnitines
C12 0.17 0.025 0.29 0.002 0.033 16.23
C14:2 0.19 0.019 0.32 0.002 0.029 13.49
C16 0.19 0.004 0.26 0.002 0.025 16.57
C18 0.21 0.001 0.28 4.5×10-4 0.010 18.36
C18:2 0.25 4.1×10-4 0.33 1.7×10-4 0.004 18.62
C5 0.38 2.8×10-9 0.28 2.7×10-4 0.007 31.62

Amino Acids
Glutamine 0.17 0.001 0.22 0.001 0.011 12.70

Biogenic Amines
Creatinine 0.28 1.1×10-8 0.30 10-8 <10-4 21.42
total DMA 0.13 0.004 0.19 0.001 0.017 9.47

Lyso-Phosphatidylcholines
lysoPC a C18:1 0.18 0.015 0.28 0.002 0.029 12.49
lysoPC a C18:2 0.28 0.001 0.41 3.9×10-5 0.001 19.39
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Joint-metabolites analysis

Joint discriminatory analysis (PLS-DA) of all 138 metabolites 
discriminated well, although not perfectly, between sexes (Figure 2). 
Leave-one-out cross-validation identified the first five PLS components 
as providing optimal discriminatory power (minimal root mean squared 
error of prediction: 38.7%). Taken together, these five components 
explained 65% of the variation in the predictors (metabolites) and 68% 
of the variation in the response (sex). VIP scores based upon the first 
five PLS components indicated acylcarnitines (particularly C5, C3, C0 
and C18) and amino acids (particularly leucine, glycine, isoleucine, 
proline, valine and ornithine) as more important for discriminating 
between sexes in the PLS-DA model than the other metabolite classes 
(Supplementary Table S1). Subsequent ROC analysis yielded an 
area under curve (AUC) of 99.0% (95% CI: [98.0; 100]) for the first 
five PLS components, with a specificity of 95.3% and a sensitivity of 
96.0% obtained at the optimal threshold for the dependent variable 
of the regression model (Supplementary Figure S1). Ten-fold cross-
validation with an equal number of men and women in each partition 
yielded a misclassification rate estimate of 19%.

Discussion
In this study, we could confirm a previously reported sex 

dependency of human metabolic profiles, comprising acylcarnitines, 
amino acids, biogenic amines, hexose, phosphatidylcholines, lyso-
phosphatidylcholines and sphingomyelins [8], in an independent 
German cohort of slightly different genetic compositions [10] and 
a slightly different set of environmental factor values. Whilst joint 
consideration of metabolites in a PLS-DA revealed an overall sex 
difference in terms of the measured serum concentrations, linear 
regression analysis of individual metabolites revealed various 
statistically significant sex dependencies. Acylcarnitines, with 6 out 

thereby corroborating previous findings by Mittelstrass et al. [8]. 
Moreover, for the most part results of our linear regression analyses 
were independent of further adjustment for lipid parameters (LDL 
cholesterol, triglycerides; Supplementary Table S2).

Because information on alcohol consumption was available for 
only 117 study participants (73 men, 44 women), a separate analysis 
was conducted on this subset. Although not significant likely due to 
the limited sample size, the absolute number of alcohol consumers and 
the average intake (in C2-units) differed among male and female study 
participants (Table1, p=0.133/p=0.085). Single regression analysis 
restricted to this sample subset yielded very similar results for the 
metabolites, although associations between sex and single metabolites 
became less significant due to the smaller sample size. However, when 
both, the former unadjusted and adjusted model, were additionally 
adjusted for alcohol intake, results were not influenced and significant 
sex-effects remained significant (data not shown).

Next we ruled out biases possibly arising from analyzing a non-
healthy but representative study population. In any case, the results of 
our linear regression analyses changed only marginally when adjusted 
for FLD, hypertension and other prevalent diseases. Moreover, 
the major conclusion that many metabolite concentrations show 
a pronounced sex difference also did not change when only the 115 
healthy controls were analyzed (data not shown).  

Almost all acylcarnitines, amino acids, biogenic amines, hexose and 
lyso-phosphatidylcholines showed higher concentrations in men than 
in woman, while phosphatidylcholines and sphingomyelins tended to 
be higher in women than in men (Supplementary Table S1). The largest 
relative sex difference was observed for valerylcarnitine (C5, Δ=31.6%), 
alpha-Aminoadipic acid (alpha-AAA, Δ=27.0%), phosphatidylcholines 
diacyl C 32:2 (Δ=-25.7%), C 34:3 (Δ=-23.7%) and C 36:6 (Δ=-21.9%).
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Figure 1: Q-Q Plot of p values from single-metabolite linear regression 
analyses. P values for the association between sex and single metabolite 
concentrations were obtained from linear regression models of log-transformed 
metabolites regressed on sex, while, at a later stage, additionally adjusting 
for age, waist-to-hip ratio, HDL cholesterol level and smoking status. Open 
circles: unadjusted model; filled circles: adjusted model.
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Figure 2: Scatter plot of the ���two PLS components from a partial 
least-square discriminant analysis (PLS-DA). Components were obtained 
from a joint analysis of 138 serum metabolite concentrations measured in 165 
individuals (101 male, 64 female) using PLS-DA. Open circles: males; filled 
circles: females. 
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of 14 metabolites yielding a multiplicity-corrected significant p value, 
represented the most discriminatory group. 

More specifically, serum concentration of individual metabolites 
showed a similar trend of sex dependency in the PopGen and the 
KORA cohorts [8] and, in most cases, outcome difference of the 
same magnitude. Mean serum concentrations were generally higher 
in men than in women in both studies, with the exception of the 
phosphatidylcholines and sphingomyelins. Glycine was the only amino 
acid with a marked, albeit not significantly, lower serum level in men 
than women, and this was observed in both PopGen (Δ=-8.2%) and 
KORA F4 (Δ=-14%). The serum concentration of hexose, the sum of C6 
sugars, was consistently higher in men than women (PopGen Δ=14.1%) 
even though the difference failed to attain statistical significance in our 
study after correction for multiple testing.

Mittelstrass et al. [8] found 102 of the 131 metabolite concentrations 
(77.9%) analyzed in KORA F4 to differ significantly between men and 
women. Sixty-three of them (61.8%, or 48.1% of the total) were also 
found to be significantly associated with sex in another (verification) 
KORA cohort, KORA F3 [8]. We were able to confirm this result 
for 22 of the 63 metabolites (34.9%) through a nominally significant 
association with sex in PopGen. Interestingly, C18 was the only one of 
12 acylcarnitines for which the sex difference discovered in KORA F4 
could be verified in KORA F3. In contrast, our study corroborated a 
significant sex difference for six of the acylcarnitines (C12, C14:2, C16, 
C18, C18:2 and C5) after correction for multiple testing. 

Sex differences for some phosphatidylcholines and sphingomyelins 
became nominally significant in our study only after adjustment for 
HDL cholesterol. HDL is known to be higher on average in women 
than in men [21], which was also the case here (Table 1). Since 
phospholipids are a predominant component (42-51%) of the lipid 
moiety of HDL [22], it was not surprising that the observed association 
between phospholipids and sex was modified by the inclusion of HDL 
cholesterol in the regression model. Lifestyle factors, like smoking 
behavior or alcohol intake, might also be confounders of sex-specific 
metabolic profiles. However, we found sex differences to be largely 
invariant to adjustments for smoking status and alcohol consumption 
in our study. Adjustment for lipid parameters (LDL cholesterol, 
triglycerides) as well as medical conditions pointed towards 
independence, and the strength of association was only slightly affected 
by adjustment for WHR or BMI.

A recent study emphasized properly taking into account the high 
variability of serum metabolite concentrations apparent in living adults 
even without any obvious metabolic disorder [23]. The authors referred 
to parameters like age, sex, genetic background, ethnicity, diurnal 
variation, diet, and health status or activity level as causing factors for 
these relatively large ranges of metabolite concentrations. Thus, results 
may have been affected by differences among the PopGen and KORA 
cohort, especially by means of differing regional habits (Northern vs. 
Southern Germany) such as diet or other lifestyle factors. In particular, 
the cohorts differed in mean age, BMI, WHR; values of blood lipids as 
well as proportion of smokers and high alcoholic intake (Table 1 and 
[8]). In addition, a recently SNP-based analysis of genetic substructure 
in the German population revealed genetic differentiation between 
the samples along a North-South gradient within Germany, namely 
between PopGen and KORA subjects [10]. Nevertheless, even if the 
number of significant findings differed between our study and that 
of Mittelstrass et al. [8], possibly due to the lower sample size of our 
study, the overall finding (sex difference in human metabolic profiles) 
was the same and, more specifically, the predominant proportion of 

comparisons showed a similar trend and outcome differences of the 
same magnitude.

Joint PLS-DA of all 138 metabolites discriminated well and 
subsequent ROC analysis yielded an AUC of 99.0% for the first five 
PLS components. However, since this analysis used the same data as 
training and as test set, this impressive value likely overestimates the 
predictive power provided by the metabolites. We therefore performed 
ten-fold cross-validation with an equal number of men and women in 
each partition to obtain a less biased estimate of the classification error. 
Based on the first five PLS components of individual metabolic profiles, 
22 men were classified as women, 10 women as men and 133 individuals 
(79 men, 54 women) were classified correctly, corresponding to a 
notably low misclassification rate of 19%.

A potential limitation of our study may have been that the study 
samples were taken from a sex- and age-matched case-control study of 
fatty liver disease (FLD). Since the liver is a metabolically active organ 
and FLD-related changes in metabolite concentrations are likely, the sex 
differences detected in our study could have been due to the presence 
of one or more FLD-associated confounders. To reduce the risk of 
confounding, however, 50 patients with sonographically diagnosed 
FLD were chosen at random to complement the 115 non-FLD samples 
available, thereby mimicking the 30% prevalence of FLD reported for 
the German population [12]. Moreover, the major conclusion that 
many metabolite concentrations show a pronounced sex difference 
also did not change when adjusting for medical conditions or when 
analyzing only the 115 healthy controls. While physical activity and 
nutritional status have previously been reported to likely influence the 
serum metabolic profile [9,23], these variables could not be included 
in our analyses due to the degree of missing information. Another 
potential limitation of our study was the small sample size. However, 
formal power analysis revealed that our sample had sufficient power 
(80%) to detect effect sizes γ of 0.45 or higher, justifying replication of 
at least modest sex effects. 

In addition to confirming previous results in an independent sample 
of slightly different genetic composition and environmental exposition, 
our study revealed a sex difference in the serum concentration of 
metabolites not hitherto analyzed. In particular, the AbsoluteIDQTM 
p180 kit used in our study comprises an additional set of 19 biogenic 
amines that were not included in the AbsoluteIDQTM p150 kit used by 
Mittelstrass et al. [8] and of which 11 entered our analysis. We found 
that the serum concentrations of these metabolites are also likely to 
be sex-dependent, especially in the case of creatinine (p<0.001) and 
total dimethylarginine (total DMA, p=0.017). Creatinine, whose 
serum concentration is known to increase with muscle mass, has been 
shown to be sex-dependent before [24]. This notwithstanding, whilst 
the possibility of a sex difference in metabolic profiles comprising 
acylcarnitines, amino acids, glycerophospholipids and sphingomyelins 
has been reviewed systematically already [8], further studies are 
required to better clarify the sex-specific role of biogenic amines.

In conclusion, our study has confirmed a previously discovered 
sex difference in human metabolic profiles. Given the expanding scale 
of both interest and availability of metabolic profiles in biomedical 
research, our results emphasize the importance of taking sex into 
account when analyzing such profiles to avoid spurious results in 
the identification of metabolic risk factors in epidemiological and 
molecular studies. On the other hand, even though our results are 
also strongly indicative of sex differences for various metabolite 
concentrations, a considerable overlap between male and female 
profiles was still immanent, both at the level of individual markers and 
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in the multivariate PLS-DA. The use of the term “sexual dimorphism” 
by Mittelstrass et al. [8] to characterize an otherwise incontrovertible 
sex difference appears therefore somewhat inappropriate to us and 
should be avoided in the future.
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