
Open AccessISSN: 0974-7230

Journal of Computer Science & Systems Biology

Abstract
Serverless computing has emerged as a paradigm-shifting technology in cloud computing, promising scalability, cost-efficiency, and reduced 
operational overhead. This research article explores the architectural patterns, performance optimization techniques, and real-world use cases 
of serverless computing in the cloud. We delve into the core concepts of serverless computing, its advantages, challenges, and practical 
implementations. Through a detailed analysis of architectural patterns and optimization strategies, we provide insights into how organizations 
can harness the full potential of serverless computing for their applications. Additionally, we present case studies illustrating the diverse range of 
applications and industries where serverless computing has made a significant impact.

Keywords: Serverless computing • Microservices • Cold start mitigation

Serverless Computing in the Cloud: Architectural Patterns, 
Performance Optimization and Use Cases
Jorge Volpert*
Department of Business Information Systems, University of São Paulo, Butantã, São Paulo, Brazil

*Address for Correspondence: Jorge Volpert, Department of Business 
Information Systems, University of São Paulo, Butantã, São Paulo, Brazil, E-mail: 
martinbartolini3@gmail.com

Copyright: © 2023 Volpert J. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution and reproduction in any medium, provided the original author and 
source are credited.

Received: 01 July, 2023, Manuscript No. jcsb-23-113759; Editor Assigned: 03 
July, 2023, Pre QC No. P-113759; Reviewed: 17 July, 2023, QC No. Q-113759; 
Revised: 22 July, 2023, Manuscript No. R-113759; Published: 31 July, 2023, 
DOI:10.37421/0974-7230.2023.16.480

Introduction 

Serverless computing, often referred to as Function as a Service, is a 
cloud computing model that abstracts server management and infrastructure 
concerns from developers, enabling them to focus solely on writing code in the 
form of functions. This model offers several advantages, including automatic 
scaling, reduced operational overhead, and cost-efficiency. This article explores 
the foundational concepts, architectural patterns, performance optimization 
strategies, and practical use cases of serverless computing in the cloud [1-
3]. Serverless computing supports various architectural patterns, enabling 
developers to design applications that are highly scalable and fault-tolerant. 

In this pattern, functions are triggered by events such as HTTP requests, 
message queues, database changes, or scheduled tasks. This event-driven 
approach allows for efficient resource utilization and automatic scaling in 
response to workload fluctuations. Serverless facilitates the implementation of 
microservices by breaking down complex applications into smaller, independently 
deployable functions. Each function can serve a specific purpose, and 
communication between them is typically managed via APIs or event triggers. 
Serverless functions are inherently stateless, meaning they do not maintain 
any persistent state. This simplifies scaling and ensures that functions can be 
executed in parallel without contention for shared resources. To make the most of 
serverless computing, performance optimization is crucial. 

Literature Review

Cold starts occur when a serverless function is initialized, resulting in 
higher response times for the first request. To mitigate this, developers can 
use techniques like provisioned concurrency, warm-up functions, or optimizing 
code and dependencies. Efficiently managing resources, such as memory 
allocation and function execution time, can impact cost and performance. 

Careful consideration of these parameters is essential to strike the right balance. 
Leveraging function composition techniques like chaining or orchestration 
can help reduce the overhead of invoking multiple functions separately, thus 
improving performance.

Serverless is well-suited for web applications, particularly for handling API 
requests, user authentication, and data processing. Companies like Airbnb and 
Netflix have adopted serverless for parts of their infrastructure. Serverless can 
process and analyze streaming data from IoT devices, social media, and sensors, 
making it valuable for real-time analytics and monitoring. Automation tasks, such 
as continuous integration/continuous deployment pipelines and infrastructure 
provisioning, benefit from serverless for their event-driven nature. Scalable and 
cost-effective serverless solutions are used for inventory management, order 
processing, and recommendation engines in e-commerce platforms [4,5].

Discussion

Healthcare applications leverage serverless for processing patient data, 
managing appointments, and ensuring compliance with healthcare regulations. 
While serverless computing offers numerous benefits, it also presents challenges 
related to vendor lock-in, limited execution time, and increased complexity in 
debugging and monitoring. Event Sourcing is a software architectural pattern 
for capturing and storing all changes to an application's state as a sequence of 
immutable events. These events represent the facts about how the application's 
state has evolved over time. Instead of storing the current state of an object or 
entity, as is typical in a traditional relational database, Event Sourcing stores a 
historical log of events that can be replayed to reconstruct the current state.

Events are immutable records that represent state changes in an application. 
These events typically contain data about what changed, when it changed, and 
any relevant metadata. Events are appended to an event log as they occur. The 
event log is a central component of Event Sourcing. It's a sequential record of 
all events in the system. Each event is appended to the end of the log, and 
events are never updated or deleted. This log serves as the source of truth for 
reconstructing the application's state. An aggregate is a domain-driven design 
pattern that represents a cluster of related data and the logic to manage that 
data. Aggregates are responsible for handling commands, validating them, and 
producing events in response. Commands are requests to change the state 
of an aggregate. When a command is received, the aggregate processes it, 
potentially generates one or more events, and emits those events to the event 
log. Commands are mutable and can be rejected if they violate business rules [6].

Event handlers are responsible for updating the read models or projections of 
the application. They listen for events in the event log and update the query-side 
models accordingly. These models are used to retrieve current state efficiently. 
When a user interacts with the application, such as creating an order or updating 

Mini Review
Volume 16:4, 2023



J Comput Sci Syst Biol , Volume 16:4, 2023Volpert J.

Page 2 of 2

How to cite this article: Volpert, Jorge. “Serverless Computing in the Cloud: 
Architectural Patterns, Performance Optimization and Use Cases.” J Comput Sci 
Syst Biol 16 (2023): 480.

a profile, the application generates events that represent these actions. These 
events are appended to the event log. To retrieve the current state of an entity 
or object, you replay the events from the event log. By starting with an initial 
state and applying each event in sequence, you can reconstruct the current 
state of the entity. For querying and displaying data, you maintain one or more 
projections that are updated in real-time or through batch processes as events 
are recorded. These projections provide efficient ways to access the current state 
without replaying all events each time. It provides a complete history of how the 
application's state has changed, making it valuable for auditing and compliance 
purposes. Developers can analyze past states of the application by replaying 
events up to a specific point in time. It enables scalability by allowing different 
components to subscribe to specific events and react to them independently. 
Since events are immutable, it's easier to recover from failures and rebuild state.

However, Event Sourcing is not without challenges. It can introduce 
complexity, especially in distributed systems, and may require careful 
consideration of event versioning, schema evolution, and event storage. Event 
Sourcing is a powerful architectural pattern that can be valuable in scenarios 
where a complete history of state changes is required, such as financial systems, 
e-commerce platforms, and systems with complex business rules. It's a way to 
capture the full story of how an application's state evolves over time.

Conclusion

Serverless computing in the cloud has emerged as a transformative 
technology with its architectural patterns, performance optimization strategies, 
and diverse use cases. By abstracting infrastructure management, it enables 
organizations to focus on building scalable and cost-efficient applications. 
However, understanding the nuances of serverless, optimizing performance, 
and addressing challenges are essential for successful adoption. As serverless 
continues to evolve, it will likely play an increasingly central role in the future of 
cloud computing.

Acknowledgement

None.

Conflict of Interest

Authors declare no conflict of interest. 

References
1. Chen, Xiaokai, Hao Lei, Rui Xiong and Weixiang Shen, et al. "A novel approach to 

reconstruct open circuit voltage for state of charge estimation of lithium ion batteries 
in electric vehicles." Appl Energy 255 (2019): 113758.

2. Luo, Xuan, Longyun Kang, Chusheng Lu and Jinqing Linghu, et al. "An enhanced 
multicell-to-multicell battery equalizer based on bipolar-resonant LC converter." 
Electronics 10 (2021): 293.

3. Beloglazov, Anton, Jemal Abawajy and Rajkumar Buyya. "Energy-aware resource 
allocation heuristics for efficient management of data centers for cloud computing." 
Future Gener Comput Syst 28 (2012): 755-768.

4. Mrabet, Hichem, Sana Belguith, Adeeb Alhomoud and Abderrazak Jemai. "A survey 
of IoT security based on a layered architecture of sensing and data analysis." 
Sensors 20 (2020): 3625.

5. Grošek, Otokar, Viliam Hromada and Peter Horák. "A cipher based on prefix codes." 
Sensors 21 (2021): 6236.

6. Košťál, Kristián, Pavol Helebrandt, Matej Belluš and Michal Ries, et al. "Management 
and monitoring of IoT devices using blockchain." Sensors 19 (2019): 856.

https://www.sciencedirect.com/science/article/pii/S030626191931445X
https://www.sciencedirect.com/science/article/pii/S030626191931445X
https://www.sciencedirect.com/science/article/pii/S030626191931445X
https://www.mdpi.com/974180
https://www.mdpi.com/974180
https://www.sciencedirect.com/science/article/pii/S0167739X11000689
https://www.sciencedirect.com/science/article/pii/S0167739X11000689
https://www.mdpi.com/1424-8220/20/13/3625
https://www.mdpi.com/1424-8220/20/13/3625
https://www.mdpi.com/1424-8220/21/18/6236
https://www.mdpi.com/1424-8220/19/4/856
https://www.mdpi.com/1424-8220/19/4/856

