Serum Homocysteine: Is it a Biomarker for Vitiligo?
Fariba Ghalamkarpour, Zahra Jafarian*, Hoda Einollahi and Shima Younespour
Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background: Vitiligo is a common, multifactorial, polygenic pigmentary disorder with a complex pathogenesis. Free radical and immune mediated damage of melanocytes are the most probable pathological mechanism. There have been several conflicting reports on the blood levels of vitamin B12, folate and homocysteine in vitiligo and its severity. Because of relation between vitamin B12, RBC folate and homocysteine, we checked serum level of vitamin B12 and RBC folate as well.

Methods: In this study a total of 50 patients and 53 age and sex matched healthy controls were enrolled. Serum vitamin B12, homocysteine and RBC folate are checked. Disease activity was assessed by Vitiligo Disease Activity (VIDA) score and disease severity assessed by VASI score.

Results: The two groups did not differ significantly in RBC folate concentrations and serum levels of vitamin B12. Patients with vitiligo had significantly lower levels of homocysteine compared to healthy controls. Hyperhomocysteinaemia was detected in 34 (64.2%) healthy control but only in 18 (36%) patients with vitiligo.

Conclusions: Our study showed that serum homocysteine level did not affect the vitiligo severity and homocysteine level was not higher in majority of vitiligo patients comparing to healthy controls. But vitamin B12 had significant association with disease severity and a negative correlation was found.

Keywords: Vitiligo; Homocysteine; Vitamin B12; RBC folate

Abbreviations: Hcy: Homocysteine; Vit: Vitamin

Introduction

Vitiligo is a common, multifactorial, polygenic pigmentary disorder with a complex pathogenesis and prevalence of 1-2% of worldwide population [1]. The etiology of vitiligo still remains unknown. Different theories concerning autoimmune, cytotoxic, biochemical, neural, and oxidant-antioxidant mechanisms have been suggested in the pathogenesis of vitiligo [2]. Free radicals and immune mediated damage of melanocytes are the most probable pathological mechanism [3]. An association between vitiligo and reduced serum levels of vitamin B12 and folic acid has been suggested [4], and, recently, it has been found that serum Hcy is elevated in patients with vitiligo [5]. Elevated Hcy level causes oxidative stress on melanocytes by producing reactive oxygen species [6]. Furthermore, there are reports that Hcy inhibits tyrosinase activity by binding to copper in its active site, resulting in reversible hypopigmentation [7]. There have been several conflicting reports on the blood levels of vitamin B12 and folate in vitiligo [8-11]. In this study we tried to assess the serum level of Hcy, vitamin B12 and RBC folate and evaluate our data for supporting the role of oxidative stress in the pathogenesis of vitiligo.

Materials and Methods

A total of 50 patients and 53 age and sex matched healthy controls were enrolled in this study from the outpatient department of Dermatology of Shohada-e- Tajrish Hospital from Shihid Beheshti University Of Medical Sciences, Tehran, Iran. The healthy controls were selected from patient’s family to eliminate the difference of nutritional habits. Clinical diagnosis of the vitiligo patients was done by the dermatologist. Patients and controls with history of vitamins, methotrexate, oral contraceptive pills, phenytoin, carbamazepine, theophyllin, metformin, diuretics, nitric oxide, DOPA, retinoids, statins, immune suppressor drugs, fibrates and niasin intake within the last six months, smoking, hypertension, genetic amino acid metabolism disorders, chronic liver or kidney disease, diabetes mellitus, metabolic syndrome, systemic lupus erythematus and other rhomatologic disease, deep vein thrombosis, poly cystic ovary syndrome, inflammatory bowel disease, other skin diseases, hypothyroidism, cancers, low HDL or teriglycerid level, BMI<20 or BMI> 27, sleeping disorders and pregnancy were excluded from the study.

The local ethics committee approved the study design and all the participants signed an informed consent letter.

Venous blood samples were drawn after a 12-hour fasting. RBC folate and vitamin B12 were measured in both patients and control by electrochemiluminescent assay using assay kit Elecys (Roche, Germany), and Serum Hcy was done by Enzyme Callorymetry, kit of Axis shield kit by Cobas Mira (Roche, Germany). Normal range of Vit B12 is 160-970 pg/ml and folate is 1.5-17 ng/ml. Normal range of Hcy is: subjects<15y=<10 µL/L, adults (15-60y) = 5-15 µL/L, subjects>60y = 5-20 µL/L.

Disease activity was assessed by Vitiligo Disease Activity (VIDA) score [12] and disease severity assessed by VASI score [13]. According to distribution pattern, the patients were classified as non-segmental (acrofacial, mucosal (more than one site affected), generalized or common, universal, mixed (associated with segmental vitiligo), segmental and unclassified or indeterminate [14].

Statistical analysis

Statistical analysis was performed using the statistical software SPSS 18.0.0. (SPSS Inc. Chicago, IL, U.S.A.). P-values less than 0.05 were considered statistically significant.

*Corresponding author: Zahra Jafarian, Skin Research Center, Shohada-e-Tajrish Hospital, Tajrish Sq., Tehran, Iran, Tel: +9821 2274 4392; Fax: +9821 2274 4393; E-mail: Z_Jafarian81@yahoo.com

Received February 08, 2014; Accepted March 25, 2015; Published March 31, 2015

Copyright: © 2015 Ghalamkarpour F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Continuous variables are reported as mean ± SD or as median with interquartile range (25th-75th percentiles). Categorical data are expressed as number (percentage). Shapiro-Wilk’s W-test was used to examine the normality assumption of continuous variables.

Mann-Whitney U-test was applied for comparison between serum levels of homocysteine and vitamin B12 and t-test was used for comparison of RBC folate concentrations of the two groups. Pearson chi-square test was applied whenever the expected cell frequencies were at least 5. With small expected frequencies, Fisher’s exact test was employed. Spearman’s correlation coefficients were reported for the association between continuous variables.

In addition, multiple linear regression analysis was applied to determine the parameters most predictive of the serum homocysteine level. A step-wise forward regression algorithm was used to choose variables entering in the final standard least square model. All variables that were significant in univariate analysis and biologically plausible to affect serum homocysteine level were selected for examining in this algorithm. The logarithmic transformation of serum homocysteine level was used to improve the fit of the model. Analysis of the residuals was performed to detect violations in regression modelling assumptions.

Results

This study is comprised of 50 patients with vitiligo and 53 age and sex frequency-matched healthy controls. Baseline demographics and clinical characteristics of the study participants are presented in Table 1. There were no significant differences between these two groups according to age, BMI and gender of participants (Table 1).

The two groups did not differ significantly in RBC folate concentrations and serum levels of vitamin B12 (Table 2). There was no significant difference in mean RBC folate concentrations of males and females (909.76 ± 249.16 mg/mL for males vs. 915.91 ± 319.73 mg/mL for females, p=0.91). However, the median serum levels of vitamin B12 were significantly higher in female subjects compared to the males (median (IQR): 375 (281.25-444.50) pg/mL for females vs. 319 (231-395.25) pg/mL for males, p=0.03). Low RBC folate was observed in one patient and none of the healthy controls (p=0.48). Low vitamin B12 was detected in one of the patients and one of the healthy controls (p=1.00).

Patients with vitiligo had significantly lower levels of homocysteine than healthy controls (p=0.001, Table 2). Our findings demonstrated significantly lower levels of homocysteine in female subjects compared to the male individuals (Median (IQR): 11 (10-16.15) μmol/L in females vs. 18 (15-22) μmol/L in males, p<0.0001). Hyperhomocysteinaemia was detected in 18 (36%) patients with vitiligo and 34 (64.2%) healthy controls (p=0.006). Forty out of 58 (69%) male subjects and 12 out of 45 (26.7%) female subjects had hyperhomocysteinaemia (p<0.0001).

Serum homocysteine level was negatively associated with vitamin B12 level in both groups of study (r=-0.34, p=0.01 in patients and r=-0.34, p=0.01 in controls). Also, homocysteine was inversely associated with RBC folate in patient group (r=-0.36, p=0.01). When the two groups were combined, serum homocysteine concentration was negatively related to serum vitamin B12 level (r=-0.33, p=0.001).

According to our findings, no significant association was detected between serum homocysteine level and severity of disease (VASI score) (r=0.25, p=0.08), disease activity (VIDA score) (r=0.19, p=0.18), body surface area involved (r=0.22, p=0.12) and duration of disease (r=0.08, p=0.56). Serum vitamin B12 level was inversely associated with VASI score (r=-0.33, p=0.02) and body surface area involved (r=-0.32, p=0.02). However, there was no significant association between serum levels of vitamin B12 and both VIDA score (r=-0.14, p=0.33) and duration of the disease (r=0.27, p=0.06). Furthermore, RBC folate concentration was not significantly associated with VASI score (r=0.26, p=0.07), VIDA score (r=0.19, p=0.18), body surface area involved (r=-0.19, p=0.19) and duration of disease (r=0.09, p=0.55).

Table 1: Baseline demographics and clinical characteristics of the study participants.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients with vitiligo (n=50)</th>
<th>Healthy controls (n=53)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, no. (%)</td>
<td>Female 22 (44%)</td>
<td>23 (43.4%)</td>
<td>0.95</td>
</tr>
<tr>
<td>Age, years</td>
<td>Male 28 (56%)</td>
<td>30 (56.6%)</td>
<td>0.62</td>
</tr>
<tr>
<td>BMI</td>
<td>24.5 (21.6-26.8)</td>
<td>24.4 (21.5-26.8)</td>
<td>0.92</td>
</tr>
<tr>
<td>Duration of disease, year</td>
<td>5.5 (2.8-13)</td>
<td>5.5 (2.8-13)</td>
<td>0.006</td>
</tr>
<tr>
<td>Site of involvement</td>
<td>Acrofacial 3</td>
<td>3</td>
<td>Acrofacial 3</td>
</tr>
<tr>
<td></td>
<td>Mixed 0</td>
<td>0</td>
<td>Mixed 0</td>
</tr>
<tr>
<td></td>
<td>Generalized or Common 43</td>
<td>43</td>
<td>Generalized or Common 43</td>
</tr>
<tr>
<td></td>
<td>Universal 2</td>
<td>2</td>
<td>Universal 2</td>
</tr>
<tr>
<td></td>
<td>Mucosal (more than one site) 0</td>
<td>0</td>
<td>Mucosal (more than one site) 0</td>
</tr>
<tr>
<td></td>
<td>Segmental 0</td>
<td>0</td>
<td>Segmental 0</td>
</tr>
<tr>
<td></td>
<td>Unclassified or indeterminate 2 (4%)</td>
<td>2 (4%)</td>
<td>Unclassified or indeterminate 2 (4%)</td>
</tr>
<tr>
<td></td>
<td>Focal 2</td>
<td>0</td>
<td>Focal 2</td>
</tr>
<tr>
<td></td>
<td>Mucosal (only one site affected) 0</td>
<td>0</td>
<td>Mucosal (only one site affected) 0</td>
</tr>
<tr>
<td></td>
<td>Site of involvement</td>
<td>36 (72%)</td>
<td>36 (72%)</td>
</tr>
<tr>
<td></td>
<td>Hands 36 (72%)</td>
<td>36 (72%)</td>
<td>Hands 36 (72%)</td>
</tr>
<tr>
<td></td>
<td>Lower extremities 37 (74%)</td>
<td>37 (74%)</td>
<td>Lower extremities 37 (74%)</td>
</tr>
<tr>
<td></td>
<td>Trunk 32 (64%)</td>
<td>32 (64%)</td>
<td>Trunk 32 (64%)</td>
</tr>
<tr>
<td></td>
<td>Feet 30 (60%)</td>
<td>30 (60%)</td>
<td>Feet 30 (60%)</td>
</tr>
<tr>
<td></td>
<td>Head & neck 32 (64%)</td>
<td>32 (64%)</td>
<td>Head & neck 32 (64%)</td>
</tr>
<tr>
<td></td>
<td>BSA involvement, %</td>
<td>2.5 (1.7-6.4)</td>
<td>2.0 (1.6-3.4)</td>
</tr>
<tr>
<td></td>
<td>VASI score</td>
<td>1.62 (0.49-6.54)</td>
<td>1.62 (0.49-6.54)</td>
</tr>
</tbody>
</table>

The values are expressed as no. (%) or mean (IQR). * Positive history of UV-therapy within the last two months. Abbreviations: BMI, Body Mass Index (calculated as weight in kilograms divided by height in meters squared); IQR, Interquartile range (25th-75th percentiles); VASI: Vitiligo Area Scoring Index; VIDA score, vitiligo disease activity score.

Note: Grading of VIDA score is as follows: +4, Activity of 6 weeks or less duration; +3, Activity of 6 weeks to three months; +2, Activity of 3-6 months; +1, Activity of 6-12 months; 0, Stable for one year or more; and -1, Stable with spontaneous repigmentation since one year or more. A low VIDA score indicates less activity.

References

In our study, serum Vit B12 and RBC folate levels differences between two groups were not statistically significant. There was no significant relation between the disease activity and Vit B12 and folate levels. We found Vit B12 levels significantly higher in the female patients. Sex, activity and severity of vitiligo did not affect the levels of RBC folate, but Vit B12 had significant association with disease severity and serum vitamin B12 level was inversely associated with VASI score.

Yasar and et al. [11] found that Hcy levels were not altered in vitiligo, on the other hand Shaker and et al. [5] and Suman et al. [10] reported significantly higher Hcy levels in vitiligo patients. Shaker and et al. [5] also reported significantly higher Hcy levels in patients with especially progressive vitiligo. They recommended routine determination of Hcy levels in patients with vitiligo and addition of Hcy lowering agents such as Vit B12 and folic acid to the vitiligo treatment protocol. But contrary to their finding in our study the median Hcy level in patients was lower than control group. Hyperhomocysteinemia was detected in 34 (64.2%) healthy controls but only in 18 (36%) patients with vitiligo (p=0.006). The Hcy level in female patients was lower than male patients and this may be explained by hormonal status, greater muscle mass in men and gender related lifestyle difference [21,22].

Eighteen (36%) of our patients had hyperhomocysteinaemia, but overall there was no significant statistical association between Hcy level and disease severity, disease activity, body surface area involved and duration of disease was lower than. Like Yasar and et al. [11] we suggested that ethnic differences might have effects on Hcy levels. Another limitation was that, in Shaker and et al. study, vitiligo patients had a more severe disease classification and may have affected the Hcy levels. In addition other oxidative stress may be implicated in the pathogenesis of vitiligo as Jain et al. [23] revealed that malondialdehyde (an oxidative stress marker) levels were significantly raised while those of vitamin E, uric acid and seroluplasmin were significantly lowered in blood of vitiligo patients.

After further analysis we did not find significant association between Hcy and severity and activity in vitiligo patients, unlike Shaker et al. [5] and Suman et al. [10] in their studies.

Considering our finding, nutritional deficiency in Vit B12 and folic acid and serum Hcy level did not affect the vitiligo severity and did not have role the pathogenesis of this disease, but despite these results we suggested to perform another study with a large sample size to evaluate this role.

Acknowledgment

This research was supported by skin Research Center, Shahid Beheshti University of Medical Sciences. We would like to give our thanks to the subjects for their participation in this project.

References

