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Introduction
Define a bounded integer program (IP) as max cTx subject to Ax 

≤ b, 0 ≤ x ≤ u, nx∈ . IPs are NP-complete [1] and IPs are typically 
solved by branch and bound [2], which has an exponential run time. 
A common method that typically decreases the computational effort 
of branch and bound involves the addition of valid inequalities to 
the IP formulation. This paper presents a new technique to perform 
exact sequential lifting, which modifies a weak valid inequality into a 
stronger valid inequality.

First, define an IP’s feasible region to be
  :    ,  0    { }= ∈ ≤ ≤ ≤

nP x Ax b x u . (If x ≥ l, then through translation 
one may assume x ≥ 0.) Let the convex hull of solutions be denoted 
as PIP=conv(P). Define the restricted space of P when xi=k to be 

   }:  {= = ∈ =
ix k iP x P x k  and ( ).

= =
=

i i

IP IP
x k x kconvP P  For convenience, this 

restricted space definition can be extended to any number of equalities 
or inequalities in the obvious manner. That is, let { }|1 |  ,  ...,  = ⊂  F

FK k k  
and F ⊂ N where N={1,...,n}, then the restricted space of P when xj=kj 
for all j ∈ F is PF =K{x ∈ P: xj=kj  for all j ∈ F} with P =

IP
F K  as the respective 

convex hull.

 An inequality  1
  α β

=
≤∑n

i ii
x  is said to be valid for PIP if and only 

if every x ∈ P satisfies this inequality. A valid inequality induces a face 
of dimension r in PIP if and only if the maximum number of affinely 
independent points in P that satisfy  1

  α β
=

≤∑n
i ii
x  is r+1. A face of 

dimension r is a facet if the dimension of PIP is equal to r+1. Nemhauser 
and Wolsey [3] provide more information about polyhedral theory 
with respect to integer programs.

Generating a weak valid inequality is trivial. Lifting, introduced by 
Gomory [4], is a technique used to modify a weak inequality into a 
stronger inequality. Numerous researchers have used lifting to create 
useful cutting planes for various problems. A small subset of these 
articles is [4-25]. Briefly, let E ⊆ N={1, 2 . . .n} and F ⊆ N\E be any 
nonempty set. Now let  α α β∈ ∈+ ≤∑ ∑i F i i i E i ix x  be a valid inequality 
of PIP where 0 ≤ kj ≤ uj for all j ∈ F. Lifting seeks to create a valid 
inequality of PIP, which takes the form  α α β∈ ∈

′+ ≤′∑ ∑i F i i i E i ix x . 

There are various types of lifting, such as sequential, simultaneous, 
approximate and exact, up, middle and down lifting techniques. For 
distinction, α∧ and α∨ denote the coefficients that are obtained through 
up and down lifting, respectively, and α represents a lifted coefficient 
that is either up or down lifted. 

Of these lifting techniques, sequential up lifting is the most widely 
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Abstract
Lifting integer variables is a widely used technique to create strong cutting planes. In 1975, Wolsey introduced 

a method to compute the exact sequential lifting coefficients of bounded integer variables by solving many integer 
programs. This paper presents a new technique to perform exact sequentially up and down lifting of general integer 
variables. The technique requires solving only a single branching tree. Some computational results demonstrate that this 
new sequential lifting technique performed approximately 11 times faster than Wolsey’s technique.

used technique [7, 8, 25-29]. Sequential lifting requires |F |=1 and up 
lifting assumes α β∈ ≤∑ i E i ix  is valid inequality for 

1 0=

IP

xP where kj=0 for 

all j ∈ F. Therefore, sequential up lifting assumes that 
2
α β

=
≤∑n

i ii
x  

is valid for 
1 *=

IP

x kP and seeks to create an inequality of the form 

1 1 2
.α α β∧ =

+ ≤∑n
i ii

x x  

Sequential down lifting assumes 2
 α β

=
≤∑ ii i

n x  is valid for 
1 1=

IP

x uP
and obtains and inequality of the form 1 2

 α α γ∨ =
+ ≤∑n

i ii
x x  where γ 

is typically equal to 1 1 β α ∨− u . There is also a sequential lifting when 

2
 α β

=
≤∑n

i ii
x  is valid for 

1 *=

IP
x kP where k∗∈ {1... u1-1}, which is roughly 

a combination of both up and down lifting.

Lifting can be approximate or exact. Exact lifting finds the strongest 
'α  and/or 'β  possible. Thus, exact sequential up lifting finds the 

maximum value of α1∧ that still maintains the validity of the inequality. 
If such a value of α1∧ is obtained, then the dimension of the face 
induced by the sequentially lifted inequality increases by at least 1 in 
the unrestricted polyhedron.

Approximate lifting techniques obtain coefficients that maintain 
valid inequalities, but at times these coefficients could be strengthened. 
These approximate lifting techniques do not necessarily increase the 
dimension of the induced face, but rather trade the computational effort 
required for exact lifting for a theoretically weaker inequality. Some 
such approximate lifting results include sequential up lifting [7] and 
sequence independent lifting [6,30-32]. Other work has used a linear 
relaxation or just a portion of the original problem to approximate the 
lifting coefficients [29,33].

Simultaneous lifting requires |F | ≥ 2. Zemel [34] provided an exact 
technique to simultaneously up lift sets of binary integer variables. 
This technique solves an exponential number of integers programs 
and then finds extreme points of the polar created from the solutions 
to these integer programs. This method yields numerous inequalities, 
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but is computationally intensive. Recently, [17] created a linear-time 
algorithm that exactly up lifts sets of binary variables into a cover 
inequality generated from a single binary knapsack constraint (a single 
nonnegative less than or equal to constraint, {x ∈ {0, 1}n:ax ≤ b, a ≥ 
0}). Observe that the aforementioned sequence independent lifting 
references could also be viewed as an approximate method to up lift 
sets of integer variables.

Prior to this research Wolsey [29] provided the only known 
technique to exactly perform sequential lifting of general integer 
variables. His method requires the solution to u1 integer programs. 
This paper presents a new technique to perform exact sequential lifting 
of general integer variables. This new technique requires the solution 
to only a single branching tree for both up and down lifting and two 
branching trees if lifting over a valid inequality when x1=k∗ where k∗ ∈ 
{1, ..., u1-1}.

The remainder of the paper is organized as follows. Section 2 
presents the new technique to sequentially up lift integer variables and 
compares this to Wolsey’s existing technique. Some computational 
results are contained in Section 3 that demonstrate that this new method 
is faster than Wolsey’s method. A conclusion and some directions for 
future research are discussed in Section 4.

Up Lifting Integer Variables
Wolsey [29] introduced a method to exactly lift general integer 

variables. This technique is derived directly from his theorem which 
states:

Theorem 2.1: Given a general integer programming instance, let 

2
 α β

=
≤∑n

i ii
x  be a valid inequality when x1=k∗ where k∗ is integer and 

0 ≤ k∗ ≤ u1. For each 0 ≤ k ≤ u1 and k k∗≠ define 

2

1

Maximize

Subject to

0 and 1,..., .

α
=

+

=

≤
=

≤ ≤ ∈ ∀ =

∑



n
k
W i i

i

i i i

Z x

Ax b
x k

x u x i n

If, for a specific k, the problem is infeasible, then let = ∞k
WZ . Now 

let

1 1
 or  if α α∧ ∧= = ∞ =

k k
min k u

k k
and

*
*

1 1*  or  if 0.βα α
∨ ∨<

−
= = −∞ =

−

k
W

k k

Zmin k
k k

The sequentially lifted inequalities are *
1 1 1

2
α α β α

=

+ ≤ +∑
n

i i
i

x x k  

and such an inequality is valid for any α1 such that 1 1 1
α α α ∧

∨
≤ ≤ . 

Furthermore, if 
2
α β

=

≤∑
n

i i
i

x defines an r dimensional face of *
1

IP

x k
P

=
then

*
1 1 1

2
α α β α

=

+ ≤ +∑
n

i i
i

x x k  defines a face of dimension at least r+1 as long as α1 

is finite and 1 1α α
∨

= or 1
α ∧

As mentioned in the introduction, of the many possible values of 
k∗ the most frequently used is k∗=0, which is called up lifting. That is, 
a valid inequality is obtained when x1=0, and x1 is up lifted into this 
inequality. From Theorem 2.1 it is easy to see that Wolsey’s up lifting 
method requires the solution to u1 integer programs and the right hand 
side β does not change.

Now the attention turns toward the purpose of this paper, which 
produces a new technique to up lift general integer variables. The 
algorithm creates an inequality that increases the dimension of the face, 
but may not necessarily be a valid inequality (guess too high of a value 
for α1∧). A modifiable branching tree is then used to check to see if the 
inequality is valid. If the inequality is not valid or equivalently there 
exists a point violating the proposed inequality, then α1∧ is decreased 
according to this feasible point and the objective function is reset with 
this new α1∧. This process continues until all nodes are fathomed.

The input to the Sequential Lifting Algorithm (SLA) is composed 
of the constraints and bounds of a general integer program and an 

inequality 
2
α β

=

≤∑
n

i i
i

x that is valid for
1 0=
IP

xP . SLA up lifts x1 by finding an 

α1∧ that is the maximum value such that 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x is valid for PIP.

The Sequential Lifting Algorithm (SLA)

Set α1∧:=M where 
2
| |β α

=

> +∑
n

i i
i

M u

Begin a modified branch and bound tree by letting the following LP 
be the unfathomed root node of the tree.

11
2

1

Maximize

Subject to
1

0  and 1,..., .

α α∧

=

+

+

≤
≥

≤ ≤ ∈ ∀ =

∑



n

i i
i

i i i

x x

Ax b
x
x u x i n

While there exist unfathomed nodes in the branch and bound tree, 
begin. Select an unfathomed node and solve the linear relaxation with 
the solution denoted by *

LRZ  and *
LRx .

If * β≤LRZ  or the linear relaxation is infeasible, then fathom the 
node

If the solution to the node is an integer solution with * β>LRZ  then 
begin

Let 

*

2
*1

1

:
β α

α ∧
=

−
=

∑
n

i LR i
i

LR

x

x

Change x1’s objective coefficient in every pendant node to α1∧. 
Create a single child constraint with no additional constraints.

end if

 If * β>LRZ  and x∗ is non-integer, then begin

Create two new children nodes by branching on any *
LR ix  that is 

non-integer.

One node has the parent’s LP with the added inequality * ≤  i LR ix x  

The other child’s node has the parent’s LP and adds the inequality
* ≥  i LR ix x .

end if 

end while

Output

If α1∧= M, then α1∧:=∞.

Report 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x , a valid inequality for PIP.
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The following example demonstrates this algorithm and provides 
some fundamental insights into the differences between Wolsey’s 
method and SLA. The branching tree is explored according to a depth 
first left strategy.

Example 2.2: Consider an integer program with feasible region 
defined by

1 2

1 2

1 2

6 5 27
5 6 28

, .+

+ ≤
+ ≤

∈

x x
x x
x x

First observe that x2 ≤ 4 is a valid inequality of 
1

IP
xP that defines a face 

of dimension 0 from the point (0, 4). Figure 1 provides the branching 
tree to exactly up lift x1. SLA begins with the root node given by the LP

1 2

1 2

1 2

1 2

6 5 27
5 6 28

, .+

+
+ ≤
+ ≤

∈

Max Mx x
x x
x x
x x

Solving this LP results in * 4.5=LRZ M and * (4.5,0)=LRx . Two new 
child nodes are created. One adds on the constraint x1 ≤ 4 and the other 
x1 ≥ 5. The second node’s solution is * 4 .6= +LRZ M and * (4,.6)=LRx . 
Two new nodes are added, one with the constraint x2 ≤ 0 and the other 
with x2 ≥1. The LP solution to the left node, node 3, is * 4=LRZ M  and

* (4,0)=LRx . This is an integer solution and 4M>β=4. So α1∧ is changed 
so that 4 × α1∧+0=4 and α1∧=1. The objective function of all remaining 
LPs is changed to x1+x2. Unlike branch and bound, this node is not 
fathomed; instead a single child node is added with the same LP as 
its parent, but with the updated objective value. The solution to node 
4 is * 4=LRZ and * (4,0)=LRx . This node is fathomed, not because it is 
integer, but because * 4≤LRZ .

Node 5’s solution is * 5 4= >LRZ  and * (2,3)=LRx . The α1∧ is updated 

so that 2 × α +3=4 and 1

1
2

α ∧ = . All remaining nodes have the new 

objective of 1 2
1
2

+x x and a single child node is added. The complete tree 

is shown in Figure 1. The final value of 
1

1
2

α ∧ =  sequentially up lifted 

inequality being 1 2
1 4
2

+ ≤x x .

Figure 1 provides a graphical view of lifting x1 into x2 ≤ 4 and is 
used to discuss the difference between this new technique and Wolsey’s 
technique. Wolsey’s method uses a single IP to find the maximum 

value of 
2
α β

=

≤∑
n

i i
i

x for each x1=k for k=1, 2... u1. In this example the 

points that give the optimal solutions are (1, 3), (2, 3), (3, 1) and (4, 
0). Wolsey’s method uses this point to obtain the candidate α1∧ where 
this point would meet the new inequality at equality. In this case, 
the candidate α1∧ values would have been 1, 1

2
, 1 and 1, respectively. 

The method then takes the minimum of these values as α1∧=1, which 
guarantees a valid inequality and increases the dimension by at least 
1. In Figure 1, x1=1, x1=3 and x1=4 all have identical candidate α1∧ 
values, because they are on the same line. Essentially, Wolsey’s method 
checks every possible extreme point and accepts the best α1∧ value that 
maintains validity. Clearly some work is typically waisted.

In contrast, SLA begins by starting with an objective function that is 
nearly parallel to the x2 axis. As soon as an integer solution is discovered 
with value larger than 4, α1∧ is changed to intersect this point. In this 
case, it happens at node 4 with the point (4, 0). The inequality now 
tested for validity is x1+x2 ≤ 4, which intersects (4,0). If no integer 
solutions satisfy x1+x2 ≤ 4, then the inequality is valid. However, node 
5 finds such a violating point (2,3) and the objective function changes 

to 1 2
1   4
2

+ ≤x x . Observe that (2, 3) meets this inequality at equality. 

Eventually, the tree is fathomed and there are no integer solutions with 
a value larger than 4 to the objective function. Thus, the inequality is 
valid.

Essentially SLA maintains inequalities that guarantee to increase 
the dimension of the face (an additional point meets the inequality 
at equality), but may not necessarily be valid. Once the algorithm 
terminates, the inequality is clearly valid since there does not exist a 
feasible point with a value larger than β. Since α1∧ is calculated from 
a feasible point, the dimension of the lifted inequality’s face also 
increases in the unrestricted polyhedron. SLA seeks to obtain the lifting 
coefficient by coming through the inside of the polyhedron; whereas, 
Wolsey’s method seeks to obtain the lifting coefficient by identifying all 
extreme points.

One may attempt to incorrectly argue that SLA is Wolsey’s 
method. The erroneous argument states that the root node should have 
u children with each branch having xi set to a different integer between 
0 and u. Such an IP would only generate a single objective function. 
This single IP could not accurately calculate the lifting coefficient. Thus, 
SLA is not merely an extension of Wolsey’s method, but a new method 
to perform sequential lifting.

The main theoretical result of the paper, which states that SLA 
terminates with a valid inequality, can now be presented. Furthermore, 
this inequality results in the same coefficient as Wolsey’s method, 
and, under a feasibility assumption, the dimension of the inequality 
increases over the non-restricted polyhedron. 

Theorem 2.3: Let 
2
α β≤∑

=

n
xi ii

be a valid inequality of 
1 0=
IP

xP . Given a 

bounded integer program, the Sequential Lifting Algorithm terminates 

and reports a valid inequality, 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x , of PIP. Furthermore, 

the coefficient α1∧ returned from SLA is the equal to the α1∧ generated 

from Wolsey’s method. If 
2
α β

=

≤∑
n

i i
i

x defines a face of dimension r in

1 0=
IP

xP , then 11
1

α α β∧

=

+ ≤∑
n

i i
i

x x  defines a face of dimension at least r+1 

in PIP as long as α1∧ is finite.
 

Figure 1: Branching tree to up lift x1 into x2 ≤ 4.
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Proof: Assume a node in the branching tree has an integer solution 

with z>β. Then 
β α

∧

∑ i LR i

LR

. Clearly, this new value of α1∧ 

is strictly less than the previous value of α1∧. Thus, the values of α1∧ 
monotonically decrease as the branching tree progresses.

Due to the monotonically decreasing nature of the α1∧, any 
integer solution contained in the feasible solution space of a node 
that is fathomed because z ≤ β satisfies the returned inequality

11
2

α α β∧

=

+ ≤∑
n

i i
i

x x . There are no integer solutions in the solution space 

of an infeasible node. Since SLA only fathoms nodes under these two 
conditions and SLA terminates when every node is fathomed, there 

does not exist an x ∈ P such that 11
2

α α β∧

=

+ >∑
n

i i
i

x x . Consequently, 

SLA generates a valid inequality upon termination.

To show termination, observe that the IP is bounded. Thus, there 
can be at most 1( 1)=Π +n

i iu integer solutions. The branching step 
can be implemented at most 12 ( 1)=Π +n

i iu times. In such a scenario, 
the solution to every child would either be integer or infeasible. Any 
solution to an integer with value larger than β, creates an additional 
child. The solution x values of this child node must be identical to its 
parent’s solution and thus the objective value is equal to β. This new 
node is then fathomed. Thus, each node is fathomed in a finite number 
of steps and SLA terminates.

Assume SLA terminates with α1∧=∞. In such a case, no integer 
solutions were encountered in the branching tree. Thus, the solution 

to Maximize 
2
α

=
∑

n

i i
i

x subject to Ax ≤ b, x1 ≥ 1, 0 ≤ xi ≤ ui and 

1,...,+∈ ∀ =ix i n is infeasible and both Wolsey’s method and SLA 
sets α1∧=∞.

Assume SLA terminates with α1∧ being finite. Let SLA  be the integer 
solution that determined the reported value of α1∧. Since *

1  =SLAx k  an 

integer between 1 and u1, Wolsey’s method solves an integer program 

of the form Maximize
2
α

=
∑

n

i i
i

x subject to Ax ≤ b, x1 ≥ 1, 0 ≤ xi ≤ ui 

and 1,...,+∈ ∀ =ix i n . The solution to this integer program must be 
identical to *

SLAx or there is a contradiction to optimality of either an LP 

or IP. Thus, Wolsey’s coefficient is at most
*

2
* 1
1

( )β α
β α ∧

=

−
−

= =
∑

n

k i i SLA
W i

SLA

x
Z

k x
.

For contradiction, assume Wolsey’s coefficient is less than α1∧. Then 

there exists +′∈k Z such that
1

β α ∧

′−
<

′

k
WZ

k
. Let *kx ′ be the solution to 

Wolsey’s IP when x1=k’. Clearly *
1 1

2
β α α α∧ ∧

′ ′

=

′ ′< + = +∑
n

k k
W i i

i
k Z k x , 

since kx ′  is integer, this contradicts the prior argument on the validity 

of SLA. Consequently, SLA and Wolsey’s method both produce 
identical coefficients.

Finally, assume 
2
α β

=

≤∑
n

i i
i

x  defines a face of dimension r in 

0=i

IP
xP  and so there exists r+1 affinely independent points in

1
0=xP

that satisfy
2
α β

=

=∑
n

i i
i

x . Assume SLA terminates with a finite α1∧. 

Then there exists some *
SLAx that determined the reported value of α1∧. 

Furthermore, *
1 1≥SLAx and * *

11
2

α α β∧

=

+ =∑
n

SLA i i SLA
i

x x . Clearly, *
SLAx  is 

affinely independent from these other r+1 points and thus the face of 

the lifted inequality is at least r+1 and the result follows.

A few comments can now be made that describe how to improve 

SLA. Theoretically, SLA requires ∧  where 
2

.| |β α
=

> +∑
n

i i
i

M u

Thus any integer solution is larger than β and α1∧ changes. From a 
computational standpoint, if a feasible point with x1 ≥ 1 is known, then 
the starting value of α1∧ can be changed so that this feasible point satisfies 
the up lifted in equality at equality. Multiple knapsack problems (all 
nonnegative coefficients and less than or equal to constraints) provide 
an excellent example. In such problems, the point (u1, 0, 0, ..., 0) is 

always feasible and the starting value of α0 can be set equal to 
1

β

u
. In 

Example 2.2, the point (4, 0) is trivially valid and α1∧ could have been 
set to 1 to start SLA. This may reduce computational effort.

An additional advantage to SLA is that it may enable exact up 
lifting over unbounded integer programs. Wolsey’s method does not 
enable this type of lifting as solving an infinite number of IPs is not 
possible. However, SLA may not terminate for an unbounded integer 
program as a critical assumption for the finite termination proof is no 
longer valid. For instance, implementing SLA to lift x1 into x2 ≤ 0 for 

2
1 2 1 2{ : 2 0, , 0}∈ − ≤ ≥x x x x xZ would never terminate. Consequently, 

if SLA terminates for an unbounded integer program, then SLA 
determines the correct up lifting coefficient.

Sequential Down Lifting and Lifting when x1=k
∗

With a fundamental understanding of up lifting, it is now 
straightforward to modify SLA into algorithms that can down lift and 
lift over a valid inequality when x1=k∗. For brevity two new algorithms 
and theorems for these other types of lifting are not presented. Rather 
changes are described that enable the reader to trivially extend SLA to 
these other two sequential lifting types through variable substitution. An 
example of each algorithm is also provided to aid with comprehension. 

Down lifting can be viewed as substituting 1 'x  for x1 where 
1 1 1 '  = −x u x  and then up lifting 1 'x . Thus, down lifting creates a valid 

inequality of the form 1 1 1
2

( )α α β
∨

=

− + ≤∑
n

i i
i

u x x . Now as in the up lifting 

case, the left hand side of this inequality becomes the objective function, 

Maximize 1 1 1
2

( )α α
∨

=

− +∑
n

i i
i

u x x , and the constraints are the constraints of 

the integer program with the additional constraint of x1 ≤ u1-1.

When an integer solution is found that is larger than β, the 
linear relaxation point, *

LRx , is substituted into the equation 
* *

1 1 1
2

( )α α β
∨

=

− + =∑
n

LR i i
i

u x x to solve for the new estimate of α1v. 

Everything else is identical and trivial to determine with knowledge of 
this substitution. The following example provides a demonstration of 
down lifting using SLA.

Example 3.1: Returning to Example 2.2, if x1=4, then x2 ≤ 0 is a 
valid inequality that defines a face of dimension 0 due to the point (4, 
0). The down lifted branching tree is shown in Figure 2 using a depth 
first left node evaluation strategy. The first integer solution is found at 
node 2 with a Z=4M+4>0=β and x=(0, 4). Solving for α1v in α1v (4-0)+ 
4=0 results in α1v =-1.
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All objective functions are now changed to -1(4-x1)+x2.

Node 3 also is integer with Z=1>β and x=(2, 3). Solving for α1v in 

α1v (4-2)+3=0 results in 1
3

2
α ∨

−
= . Nodes 4 and 6 require branching, but 

eventually every node is either infeasible or * 0≤LRZ . Thus, SLA terminates 

with 1
3

2
α ∨

−
= . The reported valid inequality is ( )1 2

3  4     0
2
−

− + ≤x x or 

equivalently
1 2

3   6
2

+ ≤x x . Observe that this inequality has dimension 1 

because the point (2, 3) meets this inequality at equality and is affinely 
independent from (4, 0).

The attention now turns toward sequentially lifting over a valid 
inequality when x1 = k∗ where 0 < k∗ < u1, which is a combination of 
both down and up lifting. The substitution for down lifting is 1 1'    ∗= −x k x . 
The down lifting portion adds on the constraint x1 ≤ k∗-1 to the root 
note. For an integer solution larger than β, a new value of α1v is obtained 

by solving * * *
1 1

2
( )α α β

∨
=

− + =∑
n

LR i LR i
i

k x x .

In contrast, the up lifting adds on the constraint x1 ≥ k∗+1 
to the root node and results in a lifted inequality taking the 

form *
11

2
( )α α β∧

=

− + ≤∑
n

i i
i

x k x . When an integer solution is 

encountered with a * β>LRZ , a new α1∧ is obtained by solving

* * *
11

2
( )α α β∧

=

− + =∑
n

LR i LR i
i

x k x .

In contrast to up and down lifting, middle lifting may not 
produce a valid inequality. In fact, a middle lifted inequality takes 

the form *
1 1

2
( )α α β

=

− + =∑
n

i i
i

x k x . This inequality is only valid when

1 1 1
[ , ]α α α ∧

∨
∈ − . Notice that if 1 1

α α ∧
∨

− > , and then one cannot 

sequentially lift x1 using middle lifting as any such inequality would be 
invalid. The following example demonstrates these concepts.

Example 3.2: Reexamining example 2.2 and if x1=k∗=2, then x2 ≤ 3 
is valid inequality that defines a face of dimension 0 from the point (2, 
3). To find the proposed up lifted coefficient, set the objective function 
to 1 21

( 2)α ∧ − +x x  and add the constraint x1 ≥ k∗+1=3. The optimal 

integer solution occurs at (4, 0), which sets 1
3
2

α
∨
= . Any remaining 

nodes are easily fathomed. For the down lifting portion, set the 
objective function to 1 1 2(2 )α

∨
− +x x and add the constraint x1 ≤ k∗-

1=1. The optimal integer solution is (0, 4), which sets 
1

1
2

α
∨

−
= . Since

1 1

1 3
2 2

α α ∧
∨

− = < = , any inequality of the form α1x1+x2 ≤ 3+2α1 is valid 

as long as 1
1 3[ , ]
2 2

α ∈ .

To help clarify the idea that middle lifting may not result in a valid 
inequality, observe that x2 ≤ 1 is valid if x1= k∗=3. This inequality defines 
a face of dimension 0 from the point (3, 1). To find the proposed up 
lifted coefficient, set the objective function to α1∧ (x1-3)+x2 and add the 
constraint x1 ≥ k∗+1=4. The optimal integer solution is (0,4), which sets 
α1v=1. Any remaining nodes are easily fathomed. For the down lifting 
portion, the optimal integer solution is (2, 3), which sets 1 2α

∧
= − . Since 

1 12 1α α
∨ ∧

− = > = no middle lifted inequality is valid. This is easily 
verifiable in Figure 3 as the point (3,1) is not an extreme point of PIP.

Computational Results
This section demonstrates that SLA is substantially faster than 

Wolsey’s method. All computational results were performed on an 
Intel Core i7-2600 chip at a 3.4 GHz processor with 8 Gb of RAM and 
the integer programs were solved using CPLEX 10.0 [35] at its default 
settings.

The problems chosen for this study were generated from random 

multiple knapsack polytope 
1

{ : }+
=

∈ ≤∑

n
n

ij j i
i

x a x b . The aij were integers 

selected uniformly between 25 and 1, 000. (Note: When aij<25, then 
the ui’s became extremely large and Wolsey’s could not finish in a 
reasonable time. So each aij ≥ 25.) The slackness, s, of the constraint 

determines the right hand side, *
=

= ∑
n

i ij
i j

b s a . Various values of n were 
chosen as shown in Table 1.

The computational study starts with the valid inequality x1 ≤ u1 and 
sequentially up lifts every other variable until the inequality becomes 
facet-defining. Fifty random knapsack instances are created for each 
problem size. Table 1 reports the total time in seconds required to lift 
all of the variables. Thus, when n=10, the total time columns represent 
the time required to sequentially up lift 9 variables for each of the 50 
problems or 450 variables with either Wolsey’s Algorithm or SLA. In 

Figure 2: Graphically Lifting x1 in Example 2.2.

Figure 3: Branching tree to down lift x1 into x2 ≤ 0.
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addition, the total number of integer programs that Wolsey’s method 
solved is also reported.

Table 1 shows the computational superiority of SLA. On average 
SLA lifted variables eleven times faster than Wolsey’s method. SLA was 
at least as fast in every instance. As expected, the larger the average 
upper bound the greater improvement of SLA. For instance, the largest 
bounds occurred with the slack coefficient of 2 and when there are fifty 
variables. The average of these 150 instances shows that SLA is about 
25 times faster than Wolsey’s method. Some additional computational 
results [36] demonstrate SLA’s superiority over Wolsey’s method.

Conclusion and Future Research
Since Wolsey’s paper in 1975 and prior to this work, there has 

only been one method to perform exact sequential lifting. This existing 
method requires solving ui+1 integer programs where ui is the upper 
bound for variable xi. This paper presents a new technique, SLA, to 
perform exact sequential lifting of bounded integer programs. SLA 
requires solving a single branching tree for both up and down lifting, 
and only two branching trees for middle lifting. SLA, under reasonable 
assumptions, becomes the first method for sequential lifting of 
unbounded integer programs.

A computational study compared the amount of computational 
effort required to sequentially up lift many variables using both 
Wolsey’s method and SLA. SLA performed 11 times faster than 
Wolsey’s method. Thus, SLA is both theoretically and computationally 
superior to the existing method. It is recommended that researchers 
performing sequential lifting implement SLA instead of Wolsey’s 
method.

The creation of SLA also raises several important research 

questions. Can SLA’s new method and theory be extended to 
perform exact simultaneous lifting? Can the concepts behind SLA be 
extended into a new method to obtain approximate lifting coefficients 
(terminating SLA prior to each node being fathomed)? Can polynomial 
time methods be developed to create sequentially lifted inequalities?
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