
Research Article Open Access

Easton and Gutierrez, Ind Eng Manage 2015, 4:2
DOI: 10.4172/2169-0316.1000158

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

Industrial Engineering & ManagementIn
du

st
ria

l E
ngineering & Managem

ent

ISSN: 2169-0316

Keywords: Integer Programming; Lifting; Polyhedral theory; Facets

Introduction
Define a bounded integer program (IP) as max cTx subject to Ax

≤ b, 0 ≤ x ≤ u, nx∈ . IPs are NP-complete [1] and IPs are typically
solved by branch and bound [2], which has an exponential run time.
A common method that typically decreases the computational effort
of branch and bound involves the addition of valid inequalities to
the IP formulation. This paper presents a new technique to perform
exact sequential lifting, which modifies a weak valid inequality into a
stronger valid inequality.

First, define an IP’s feasible region to be
 : , 0 { }= ∈ ≤ ≤ ≤

nP x Ax b x u . (If x ≥ l, then through translation
one may assume x ≥ 0.) Let the convex hull of solutions be denoted
as PIP=conv(P). Define the restricted space of P when xi=k to be

 }: {= = ∈ =
ix k iP x P x k and ().

= =
=

i i

IP IP
x k x kconvP P For convenience, this

restricted space definition can be extended to any number of equalities
or inequalities in the obvious manner. That is, let { }|1 | , ..., = ⊂  F

FK k k
and F ⊂ N where N={1,...,n}, then the restricted space of P when xj=kj
for all j ∈ F is PF =K{x ∈ P: xj=kj for all j ∈ F} with P =

IP
F K as the respective

convex hull.

 An inequality 1
 α β

=
≤∑n

i ii
x is said to be valid for PIP if and only

if every x ∈ P satisfies this inequality. A valid inequality induces a face
of dimension r in PIP if and only if the maximum number of affinely
independent points in P that satisfy 1

 α β
=

≤∑n
i ii
x is r+1. A face of

dimension r is a facet if the dimension of PIP is equal to r+1. Nemhauser
and Wolsey [3] provide more information about polyhedral theory
with respect to integer programs.

Generating a weak valid inequality is trivial. Lifting, introduced by
Gomory [4], is a technique used to modify a weak inequality into a
stronger inequality. Numerous researchers have used lifting to create
useful cutting planes for various problems. A small subset of these
articles is [4-25]. Briefly, let E ⊆ N={1, 2 . . .n} and F ⊆ N\E be any
nonempty set. Now let α α β∈ ∈+ ≤∑ ∑i F i i i E i ix x be a valid inequality
of PIP where 0 ≤ kj ≤ uj for all j ∈ F. Lifting seeks to create a valid
inequality of PIP, which takes the form α α β∈ ∈

′+ ≤′∑ ∑i F i i i E i ix x .

There are various types of lifting, such as sequential, simultaneous,
approximate and exact, up, middle and down lifting techniques. For
distinction, α∧ and α∨ denote the coefficients that are obtained through
up and down lifting, respectively, and α represents a lifted coefficient
that is either up or down lifted.

Of these lifting techniques, sequential up lifting is the most widely

*Corresponding author: Todd Easton, Industrial and Manufacturing Systems
Engineering, Kansas State University, 2037 Durland Hall, Manhattan, Kansas
66506, USA, Tel: 785 532-3478; E-mail: teaston@ksu.edu

Received February 18, 2015; Accepted May 12, 2015; Published May 14, 2015

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer
Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Copyright: © 2015 Easton T, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Sequential Lifting of General Integer Variables for Integer Programs
Todd Easton1* and Talia Gutierrez2

1Industrial and Manufacturing Systems Engineering, Kansas State University, 2037 Durland Hall, Manhattan, Kansas 66506, USA
2XTO Energy, Kansas State University, 2037 Durland Hall, Manhattan, Kansas 66506, USA

Abstract
Lifting integer variables is a widely used technique to create strong cutting planes. In 1975, Wolsey introduced

a method to compute the exact sequential lifting coefficients of bounded integer variables by solving many integer
programs. This paper presents a new technique to perform exact sequentially up and down lifting of general integer
variables. The technique requires solving only a single branching tree. Some computational results demonstrate that this
new sequential lifting technique performed approximately 11 times faster than Wolsey’s technique.

used technique [7, 8, 25-29]. Sequential lifting requires |F |=1 and up
lifting assumes α β∈ ≤∑ i E i ix is valid inequality for

1 0=

IP

xP where kj=0 for

all j ∈ F. Therefore, sequential up lifting assumes that
2
α β

=
≤∑n

i ii
x

is valid for
1 *=

IP

x kP and seeks to create an inequality of the form

1 1 2
.α α β∧ =

+ ≤∑n
i ii

x x

Sequential down lifting assumes 2
 α β

=
≤∑ ii i

n x is valid for
1 1=

IP

x uP
and obtains and inequality of the form 1 2

 α α γ∨ =
+ ≤∑n

i ii
x x where γ

is typically equal to 1 1 β α ∨− u . There is also a sequential lifting when

2
 α β

=
≤∑n

i ii
x is valid for

1 *=

IP
x kP where k∗∈ {1... u1-1}, which is roughly

a combination of both up and down lifting.

Lifting can be approximate or exact. Exact lifting finds the strongest
'α and/or 'β possible. Thus, exact sequential up lifting finds the

maximum value of α1∧ that still maintains the validity of the inequality.
If such a value of α1∧ is obtained, then the dimension of the face
induced by the sequentially lifted inequality increases by at least 1 in
the unrestricted polyhedron.

Approximate lifting techniques obtain coefficients that maintain
valid inequalities, but at times these coefficients could be strengthened.
These approximate lifting techniques do not necessarily increase the
dimension of the induced face, but rather trade the computational effort
required for exact lifting for a theoretically weaker inequality. Some
such approximate lifting results include sequential up lifting [7] and
sequence independent lifting [6,30-32]. Other work has used a linear
relaxation or just a portion of the original problem to approximate the
lifting coefficients [29,33].

Simultaneous lifting requires |F | ≥ 2. Zemel [34] provided an exact
technique to simultaneously up lift sets of binary integer variables.
This technique solves an exponential number of integers programs
and then finds extreme points of the polar created from the solutions
to these integer programs. This method yields numerous inequalities,

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 2 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

but is computationally intensive. Recently, [17] created a linear-time
algorithm that exactly up lifts sets of binary variables into a cover
inequality generated from a single binary knapsack constraint (a single
nonnegative less than or equal to constraint, {x ∈ {0, 1}n:ax ≤ b, a ≥
0}). Observe that the aforementioned sequence independent lifting
references could also be viewed as an approximate method to up lift
sets of integer variables.

Prior to this research Wolsey [29] provided the only known
technique to exactly perform sequential lifting of general integer
variables. His method requires the solution to u1 integer programs.
This paper presents a new technique to perform exact sequential lifting
of general integer variables. This new technique requires the solution
to only a single branching tree for both up and down lifting and two
branching trees if lifting over a valid inequality when x1=k∗ where k∗ ∈
{1, ..., u1-1}.

The remainder of the paper is organized as follows. Section 2
presents the new technique to sequentially up lift integer variables and
compares this to Wolsey’s existing technique. Some computational
results are contained in Section 3 that demonstrate that this new method
is faster than Wolsey’s method. A conclusion and some directions for
future research are discussed in Section 4.

Up Lifting Integer Variables
Wolsey [29] introduced a method to exactly lift general integer

variables. This technique is derived directly from his theorem which
states:

Theorem 2.1: Given a general integer programming instance, let

2
 α β

=
≤∑n

i ii
x be a valid inequality when x1=k∗ where k∗ is integer and

0 ≤ k∗ ≤ u1. For each 0 ≤ k ≤ u1 and k k∗≠ define

2

1

Maximize

Subject to

0 and 1,..., .

α
=

+

=

≤
=

≤ ≤ ∈ ∀ =

∑



n
k
W i i

i

i i i

Z x

Ax b
x k

x u x i n

If, for a specific k, the problem is infeasible, then let = ∞k
WZ . Now

let

1 1
 or if α α∧ ∧= = ∞ =

k k
min k u

k k
and

*
*

1 1* or if 0.βα α
∨ ∨<

−
= = −∞ =

−

k
W

k k

Zmin k
k k

The sequentially lifted inequalities are *
1 1 1

2
α α β α

=

+ ≤ +∑
n

i i
i

x x k

and such an inequality is valid for any α1 such that 1 1 1
α α α ∧

∨
≤ ≤ .

Furthermore, if
2
α β

=

≤∑
n

i i
i

x defines an r dimensional face of *
1

IP

x k
P

=
then

*
1 1 1

2
α α β α

=

+ ≤ +∑
n

i i
i

x x k defines a face of dimension at least r+1 as long as α1

is finite and 1 1α α
∨

= or 1
α ∧

As mentioned in the introduction, of the many possible values of
k∗ the most frequently used is k∗=0, which is called up lifting. That is,
a valid inequality is obtained when x1=0, and x1 is up lifted into this
inequality. From Theorem 2.1 it is easy to see that Wolsey’s up lifting
method requires the solution to u1 integer programs and the right hand
side β does not change.

Now the attention turns toward the purpose of this paper, which
produces a new technique to up lift general integer variables. The
algorithm creates an inequality that increases the dimension of the face,
but may not necessarily be a valid inequality (guess too high of a value
for α1∧). A modifiable branching tree is then used to check to see if the
inequality is valid. If the inequality is not valid or equivalently there
exists a point violating the proposed inequality, then α1∧ is decreased
according to this feasible point and the objective function is reset with
this new α1∧. This process continues until all nodes are fathomed.

The input to the Sequential Lifting Algorithm (SLA) is composed
of the constraints and bounds of a general integer program and an

inequality
2
α β

=

≤∑
n

i i
i

x that is valid for
1 0=
IP

xP . SLA up lifts x1 by finding an

α1∧ that is the maximum value such that 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x is valid for PIP.

The Sequential Lifting Algorithm (SLA)

Set α1∧:=M where
2
| |β α

=

> +∑
n

i i
i

M u

Begin a modified branch and bound tree by letting the following LP
be the unfathomed root node of the tree.

11
2

1

Maximize

Subject to
1

0 and 1,..., .

α α∧

=

+

+

≤
≥

≤ ≤ ∈ ∀ =

∑



n

i i
i

i i i

x x

Ax b
x
x u x i n

While there exist unfathomed nodes in the branch and bound tree,
begin. Select an unfathomed node and solve the linear relaxation with
the solution denoted by *

LRZ and *
LRx .

If * β≤LRZ or the linear relaxation is infeasible, then fathom the
node

If the solution to the node is an integer solution with * β>LRZ then
begin

Let

*

2
*1

1

:
β α

α ∧
=

−
=

∑
n

i LR i
i

LR

x

x

Change x1’s objective coefficient in every pendant node to α1∧.
Create a single child constraint with no additional constraints.

end if

 If * β>LRZ and x∗ is non-integer, then begin

Create two new children nodes by branching on any *
LR ix that is

non-integer.

One node has the parent’s LP with the added inequality * ≤  i LR ix x

The other child’s node has the parent’s LP and adds the inequality
* ≥  i LR ix x .

end if

end while

Output

If α1∧= M, then α1∧:=∞.

Report 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x , a valid inequality for PIP.

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 3 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

The following example demonstrates this algorithm and provides
some fundamental insights into the differences between Wolsey’s
method and SLA. The branching tree is explored according to a depth
first left strategy.

Example 2.2: Consider an integer program with feasible region
defined by

1 2

1 2

1 2

6 5 27
5 6 28

, .+

+ ≤
+ ≤

∈

x x
x x
x x

First observe that x2 ≤ 4 is a valid inequality of
1

IP
xP that defines a face

of dimension 0 from the point (0, 4). Figure 1 provides the branching
tree to exactly up lift x1. SLA begins with the root node given by the LP

1 2

1 2

1 2

1 2

6 5 27
5 6 28

, .+

+
+ ≤
+ ≤

∈

Max Mx x
x x
x x
x x

Solving this LP results in * 4.5=LRZ M and * (4.5,0)=LRx . Two new
child nodes are created. One adds on the constraint x1 ≤ 4 and the other
x1 ≥ 5. The second node’s solution is * 4 .6= +LRZ M and * (4,.6)=LRx .
Two new nodes are added, one with the constraint x2 ≤ 0 and the other
with x2 ≥1. The LP solution to the left node, node 3, is * 4=LRZ M and

* (4,0)=LRx . This is an integer solution and 4M>β=4. So α1∧ is changed
so that 4 × α1∧+0=4 and α1∧=1. The objective function of all remaining
LPs is changed to x1+x2. Unlike branch and bound, this node is not
fathomed; instead a single child node is added with the same LP as
its parent, but with the updated objective value. The solution to node
4 is * 4=LRZ and * (4,0)=LRx . This node is fathomed, not because it is
integer, but because * 4≤LRZ .

Node 5’s solution is * 5 4= >LRZ and * (2,3)=LRx . The α1∧ is updated

so that 2 × α +3=4 and 1

1
2

α ∧ = . All remaining nodes have the new

objective of 1 2
1
2

+x x and a single child node is added. The complete tree

is shown in Figure 1. The final value of
1

1
2

α ∧ = sequentially up lifted

inequality being 1 2
1 4
2

+ ≤x x .

Figure 1 provides a graphical view of lifting x1 into x2 ≤ 4 and is
used to discuss the difference between this new technique and Wolsey’s
technique. Wolsey’s method uses a single IP to find the maximum

value of
2
α β

=

≤∑
n

i i
i

x for each x1=k for k=1, 2... u1. In this example the

points that give the optimal solutions are (1, 3), (2, 3), (3, 1) and (4,
0). Wolsey’s method uses this point to obtain the candidate α1∧ where
this point would meet the new inequality at equality. In this case,
the candidate α1∧ values would have been 1, 1

2
, 1 and 1, respectively.

The method then takes the minimum of these values as α1∧=1, which
guarantees a valid inequality and increases the dimension by at least
1. In Figure 1, x1=1, x1=3 and x1=4 all have identical candidate α1∧
values, because they are on the same line. Essentially, Wolsey’s method
checks every possible extreme point and accepts the best α1∧ value that
maintains validity. Clearly some work is typically waisted.

In contrast, SLA begins by starting with an objective function that is
nearly parallel to the x2 axis. As soon as an integer solution is discovered
with value larger than 4, α1∧ is changed to intersect this point. In this
case, it happens at node 4 with the point (4, 0). The inequality now
tested for validity is x1+x2 ≤ 4, which intersects (4,0). If no integer
solutions satisfy x1+x2 ≤ 4, then the inequality is valid. However, node
5 finds such a violating point (2,3) and the objective function changes

to 1 2
1 4
2

+ ≤x x . Observe that (2, 3) meets this inequality at equality.

Eventually, the tree is fathomed and there are no integer solutions with
a value larger than 4 to the objective function. Thus, the inequality is
valid.

Essentially SLA maintains inequalities that guarantee to increase
the dimension of the face (an additional point meets the inequality
at equality), but may not necessarily be valid. Once the algorithm
terminates, the inequality is clearly valid since there does not exist a
feasible point with a value larger than β. Since α1∧ is calculated from
a feasible point, the dimension of the lifted inequality’s face also
increases in the unrestricted polyhedron. SLA seeks to obtain the lifting
coefficient by coming through the inside of the polyhedron; whereas,
Wolsey’s method seeks to obtain the lifting coefficient by identifying all
extreme points.

One may attempt to incorrectly argue that SLA is Wolsey’s
method. The erroneous argument states that the root node should have
u children with each branch having xi set to a different integer between
0 and u. Such an IP would only generate a single objective function.
This single IP could not accurately calculate the lifting coefficient. Thus,
SLA is not merely an extension of Wolsey’s method, but a new method
to perform sequential lifting.

The main theoretical result of the paper, which states that SLA
terminates with a valid inequality, can now be presented. Furthermore,
this inequality results in the same coefficient as Wolsey’s method,
and, under a feasibility assumption, the dimension of the inequality
increases over the non-restricted polyhedron.

Theorem 2.3: Let
2
α β≤∑

=

n
xi ii

be a valid inequality of
1 0=
IP

xP . Given a

bounded integer program, the Sequential Lifting Algorithm terminates

and reports a valid inequality, 11
2

α α β∧

=

+ ≤∑
n

i i
i

x x , of PIP. Furthermore,

the coefficient α1∧ returned from SLA is the equal to the α1∧ generated

from Wolsey’s method. If
2
α β

=

≤∑
n

i i
i

x defines a face of dimension r in

1 0=
IP

xP , then 11
1

α α β∧

=

+ ≤∑
n

i i
i

x x defines a face of dimension at least r+1

in PIP as long as α1∧ is finite.

Figure 1: Branching tree to up lift x1 into x2 ≤ 4.

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 4 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

Proof: Assume a node in the branching tree has an integer solution

with z>β. Then
β α

∧

∑ i LR i

LR

. Clearly, this new value of α1∧

is strictly less than the previous value of α1∧. Thus, the values of α1∧
monotonically decrease as the branching tree progresses.

Due to the monotonically decreasing nature of the α1∧, any
integer solution contained in the feasible solution space of a node
that is fathomed because z ≤ β satisfies the returned inequality

11
2

α α β∧

=

+ ≤∑
n

i i
i

x x . There are no integer solutions in the solution space

of an infeasible node. Since SLA only fathoms nodes under these two
conditions and SLA terminates when every node is fathomed, there

does not exist an x ∈ P such that 11
2

α α β∧

=

+ >∑
n

i i
i

x x . Consequently,

SLA generates a valid inequality upon termination.

To show termination, observe that the IP is bounded. Thus, there
can be at most 1(1)=Π +n

i iu integer solutions. The branching step
can be implemented at most 12 (1)=Π +n

i iu times. In such a scenario,
the solution to every child would either be integer or infeasible. Any
solution to an integer with value larger than β, creates an additional
child. The solution x values of this child node must be identical to its
parent’s solution and thus the objective value is equal to β. This new
node is then fathomed. Thus, each node is fathomed in a finite number
of steps and SLA terminates.

Assume SLA terminates with α1∧=∞. In such a case, no integer
solutions were encountered in the branching tree. Thus, the solution

to Maximize
2
α

=
∑

n

i i
i

x subject to Ax ≤ b, x1 ≥ 1, 0 ≤ xi ≤ ui and

1,...,+∈ ∀ =ix i n is infeasible and both Wolsey’s method and SLA
sets α1∧=∞.

Assume SLA terminates with α1∧ being finite. Let SLA be the integer
solution that determined the reported value of α1∧. Since *

1 =SLAx k an

integer between 1 and u1, Wolsey’s method solves an integer program

of the form Maximize
2
α

=
∑

n

i i
i

x subject to Ax ≤ b, x1 ≥ 1, 0 ≤ xi ≤ ui

and 1,...,+∈ ∀ =ix i n . The solution to this integer program must be
identical to *

SLAx or there is a contradiction to optimality of either an LP

or IP. Thus, Wolsey’s coefficient is at most
*

2
* 1
1

()β α
β α ∧

=

−
−

= =
∑

n

k i i SLA
W i

SLA

x
Z

k x
.

For contradiction, assume Wolsey’s coefficient is less than α1∧. Then

there exists +′∈k Z such that
1

β α ∧

′−
<

′

k
WZ

k
. Let *kx ′ be the solution to

Wolsey’s IP when x1=k’. Clearly *
1 1

2
β α α α∧ ∧

′ ′

=

′ ′< + = +∑
n

k k
W i i

i
k Z k x ,

since kx ′ is integer, this contradicts the prior argument on the validity

of SLA. Consequently, SLA and Wolsey’s method both produce
identical coefficients.

Finally, assume
2
α β

=

≤∑
n

i i
i

x defines a face of dimension r in

0=i

IP
xP and so there exists r+1 affinely independent points in

1
0=xP

that satisfy
2
α β

=

=∑
n

i i
i

x . Assume SLA terminates with a finite α1∧.

Then there exists some *
SLAx that determined the reported value of α1∧.

Furthermore, *
1 1≥SLAx and * *

11
2

α α β∧

=

+ =∑
n

SLA i i SLA
i

x x . Clearly, *
SLAx is

affinely independent from these other r+1 points and thus the face of

the lifted inequality is at least r+1 and the result follows.

A few comments can now be made that describe how to improve

SLA. Theoretically, SLA requires ∧ where
2

.| |β α
=

> +∑
n

i i
i

M u

Thus any integer solution is larger than β and α1∧ changes. From a
computational standpoint, if a feasible point with x1 ≥ 1 is known, then
the starting value of α1∧ can be changed so that this feasible point satisfies
the up lifted in equality at equality. Multiple knapsack problems (all
nonnegative coefficients and less than or equal to constraints) provide
an excellent example. In such problems, the point (u1, 0, 0, ..., 0) is

always feasible and the starting value of α0 can be set equal to
1

β

u
. In

Example 2.2, the point (4, 0) is trivially valid and α1∧ could have been
set to 1 to start SLA. This may reduce computational effort.

An additional advantage to SLA is that it may enable exact up
lifting over unbounded integer programs. Wolsey’s method does not
enable this type of lifting as solving an infinite number of IPs is not
possible. However, SLA may not terminate for an unbounded integer
program as a critical assumption for the finite termination proof is no
longer valid. For instance, implementing SLA to lift x1 into x2 ≤ 0 for

2
1 2 1 2{ : 2 0, , 0}∈ − ≤ ≥x x x x xZ would never terminate. Consequently,

if SLA terminates for an unbounded integer program, then SLA
determines the correct up lifting coefficient.

Sequential Down Lifting and Lifting when x1=k
∗

With a fundamental understanding of up lifting, it is now
straightforward to modify SLA into algorithms that can down lift and
lift over a valid inequality when x1=k∗. For brevity two new algorithms
and theorems for these other types of lifting are not presented. Rather
changes are described that enable the reader to trivially extend SLA to
these other two sequential lifting types through variable substitution. An
example of each algorithm is also provided to aid with comprehension.

Down lifting can be viewed as substituting 1 'x for x1 where
1 1 1 ' = −x u x and then up lifting 1 'x . Thus, down lifting creates a valid

inequality of the form 1 1 1
2

()α α β
∨

=

− + ≤∑
n

i i
i

u x x . Now as in the up lifting

case, the left hand side of this inequality becomes the objective function,

Maximize 1 1 1
2

()α α
∨

=

− +∑
n

i i
i

u x x , and the constraints are the constraints of

the integer program with the additional constraint of x1 ≤ u1-1.

When an integer solution is found that is larger than β, the
linear relaxation point, *

LRx , is substituted into the equation
* *

1 1 1
2

()α α β
∨

=

− + =∑
n

LR i i
i

u x x to solve for the new estimate of α1v.

Everything else is identical and trivial to determine with knowledge of
this substitution. The following example provides a demonstration of
down lifting using SLA.

Example 3.1: Returning to Example 2.2, if x1=4, then x2 ≤ 0 is a
valid inequality that defines a face of dimension 0 due to the point (4,
0). The down lifted branching tree is shown in Figure 2 using a depth
first left node evaluation strategy. The first integer solution is found at
node 2 with a Z=4M+4>0=β and x=(0, 4). Solving for α1v in α1v (4-0)+
4=0 results in α1v =-1.

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 5 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

All objective functions are now changed to -1(4-x1)+x2.

Node 3 also is integer with Z=1>β and x=(2, 3). Solving for α1v in

α1v (4-2)+3=0 results in 1
3

2
α ∨

−
= . Nodes 4 and 6 require branching, but

eventually every node is either infeasible or * 0≤LRZ . Thus, SLA terminates

with 1
3

2
α ∨

−
= . The reported valid inequality is ()1 2

3 4 0
2
−

− + ≤x x or

equivalently
1 2

3 6
2

+ ≤x x . Observe that this inequality has dimension 1

because the point (2, 3) meets this inequality at equality and is affinely
independent from (4, 0).

The attention now turns toward sequentially lifting over a valid
inequality when x1 = k∗ where 0 < k∗ < u1, which is a combination of
both down and up lifting. The substitution for down lifting is 1 1' ∗= −x k x .
The down lifting portion adds on the constraint x1 ≤ k∗-1 to the root
note. For an integer solution larger than β, a new value of α1v is obtained

by solving * * *
1 1

2
()α α β

∨
=

− + =∑
n

LR i LR i
i

k x x .

In contrast, the up lifting adds on the constraint x1 ≥ k∗+1
to the root node and results in a lifted inequality taking the

form *
11

2
()α α β∧

=

− + ≤∑
n

i i
i

x k x . When an integer solution is

encountered with a * β>LRZ , a new α1∧ is obtained by solving

* * *
11

2
()α α β∧

=

− + =∑
n

LR i LR i
i

x k x .

In contrast to up and down lifting, middle lifting may not
produce a valid inequality. In fact, a middle lifted inequality takes

the form *
1 1

2
()α α β

=

− + =∑
n

i i
i

x k x . This inequality is only valid when

1 1 1
[,]α α α ∧

∨
∈ − . Notice that if 1 1

α α ∧
∨

− > , and then one cannot

sequentially lift x1 using middle lifting as any such inequality would be
invalid. The following example demonstrates these concepts.

Example 3.2: Reexamining example 2.2 and if x1=k∗=2, then x2 ≤ 3
is valid inequality that defines a face of dimension 0 from the point (2,
3). To find the proposed up lifted coefficient, set the objective function
to 1 21

(2)α ∧ − +x x and add the constraint x1 ≥ k∗+1=3. The optimal

integer solution occurs at (4, 0), which sets 1
3
2

α
∨
= . Any remaining

nodes are easily fathomed. For the down lifting portion, set the
objective function to 1 1 2(2)α

∨
− +x x and add the constraint x1 ≤ k∗-

1=1. The optimal integer solution is (0, 4), which sets
1

1
2

α
∨

−
= . Since

1 1

1 3
2 2

α α ∧
∨

− = < = , any inequality of the form α1x1+x2 ≤ 3+2α1 is valid

as long as 1
1 3[,]
2 2

α ∈ .

To help clarify the idea that middle lifting may not result in a valid
inequality, observe that x2 ≤ 1 is valid if x1= k∗=3. This inequality defines
a face of dimension 0 from the point (3, 1). To find the proposed up
lifted coefficient, set the objective function to α1∧ (x1-3)+x2 and add the
constraint x1 ≥ k∗+1=4. The optimal integer solution is (0,4), which sets
α1v=1. Any remaining nodes are easily fathomed. For the down lifting
portion, the optimal integer solution is (2, 3), which sets 1 2α

∧
= − . Since

1 12 1α α
∨ ∧

− = > = no middle lifted inequality is valid. This is easily
verifiable in Figure 3 as the point (3,1) is not an extreme point of PIP.

Computational Results
This section demonstrates that SLA is substantially faster than

Wolsey’s method. All computational results were performed on an
Intel Core i7-2600 chip at a 3.4 GHz processor with 8 Gb of RAM and
the integer programs were solved using CPLEX 10.0 [35] at its default
settings.

The problems chosen for this study were generated from random

multiple knapsack polytope
1

{ : }+
=

∈ ≤∑

n
n

ij j i
i

x a x b . The aij were integers

selected uniformly between 25 and 1, 000. (Note: When aij<25, then
the ui’s became extremely large and Wolsey’s could not finish in a
reasonable time. So each aij ≥ 25.) The slackness, s, of the constraint

determines the right hand side, *
=

= ∑
n

i ij
i j

b s a . Various values of n were
chosen as shown in Table 1.

The computational study starts with the valid inequality x1 ≤ u1 and
sequentially up lifts every other variable until the inequality becomes
facet-defining. Fifty random knapsack instances are created for each
problem size. Table 1 reports the total time in seconds required to lift
all of the variables. Thus, when n=10, the total time columns represent
the time required to sequentially up lift 9 variables for each of the 50
problems or 450 variables with either Wolsey’s Algorithm or SLA. In

Figure 2: Graphically Lifting x1 in Example 2.2.

Figure 3: Branching tree to down lift x1 into x2 ≤ 0.

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 6 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

addition, the total number of integer programs that Wolsey’s method
solved is also reported.

Table 1 shows the computational superiority of SLA. On average
SLA lifted variables eleven times faster than Wolsey’s method. SLA was
at least as fast in every instance. As expected, the larger the average
upper bound the greater improvement of SLA. For instance, the largest
bounds occurred with the slack coefficient of 2 and when there are fifty
variables. The average of these 150 instances shows that SLA is about
25 times faster than Wolsey’s method. Some additional computational
results [36] demonstrate SLA’s superiority over Wolsey’s method.

Conclusion and Future Research
Since Wolsey’s paper in 1975 and prior to this work, there has

only been one method to perform exact sequential lifting. This existing
method requires solving ui+1 integer programs where ui is the upper
bound for variable xi. This paper presents a new technique, SLA, to
perform exact sequential lifting of bounded integer programs. SLA
requires solving a single branching tree for both up and down lifting,
and only two branching trees for middle lifting. SLA, under reasonable
assumptions, becomes the first method for sequential lifting of
unbounded integer programs.

A computational study compared the amount of computational
effort required to sequentially up lift many variables using both
Wolsey’s method and SLA. SLA performed 11 times faster than
Wolsey’s method. Thus, SLA is both theoretically and computationally
superior to the existing method. It is recommended that researchers
performing sequential lifting implement SLA instead of Wolsey’s
method.

The creation of SLA also raises several important research

questions. Can SLA’s new method and theory be extended to
perform exact simultaneous lifting? Can the concepts behind SLA be
extended into a new method to obtain approximate lifting coefficients
(terminating SLA prior to each node being fathomed)? Can polynomial
time methods be developed to create sequentially lifted inequalities?

Acknowledgment

The authors would like to thank Ricardo Fukasawa for some critical insight
into down lifting.

References

1. Karp RM (1972) Reducibility among combinatorial problems. Complexity of
Computer Com- putations. The IBM Research Symposia Series 85-103.

2. Land A, Doig A (1960) An automatic method of solving discrete programming
problems. Econometrica 28: 497-520.

3. Nemhauser GL, Wolsey LA (1999) Integer and combinatorial optimization,
John Wiley and Sons, New York.

4. Gomory R (1969) Some polyhedra related to combinatorial problems. Linear
Algebra and it Applications 2: 451-588.

5. Atamtürk A (2003) On the facets of the mixed-integer knapsack polyhedron.
Mathematical Programming 98: 145-175.

6. Atamtürk A (2004) Sequence independent lifting for mixed-integer programming.
Operations Research 52: 487-490.

7. Balas E (1975) Facets of the knapsack polytope, Mathematical Programming
8: 146-164.

8. Balas, E. and E. Zemel (1978). “Facets of the knapsack polytope from minimal
covers,” SIAM Journal of Applied Mathematics 34: 119-148.

9. Balas E, Zemel E (1984) Lifting and complementing yields all facets of positive
zero- one programming polytopes. In: Cottle RW (ed.) Proceedings of the
International Conference on Mathematical Programming, pp. 13-24.

Table 1: Comparing Up Lifting Techniques.

Wolsey’s Method SLA
Num

of
Var

Num
of

Cons

Slack
Coef

Num
Var

Lifted

Avg
Upper
Bound

Total
Time
Sec.

Total
IPs

Solved

Total
Time
Sec.

Proportion SLA
Time

Improvement

10
30
50

1
1
1

.5

.5

.5

225
725

1,225

8.4
28.9

48.25

.405
54.32

11,697.44

1,901
20,985
59,114

.143
7.23

2,215.6

.353

.133

.189

10
30
50

1
1
1

1
1
1

225
725

1,225

17.3
58.5

110.6

1.06
981.21

2,141.95

3,907
42,442

124,474

.211
38.55

397.12

.208
.0393
.1854

10
30
50

1
1
1

2
2
2

225
725

1,225

33.6
116.7
193.2

19.69
510.52

14,243.12

7,559
84,609

236,673

4.42
7.72

46.52

.224
.0151
.0033

10
30
50

10
10
10

.5

.5

.5

225
725

1,225

2.2
8.0

13.6

.121
11.26
41.22

498
5,763

16,603

.121
3.46
4.56

0
.307
.111

10
30
50

10
10
10

1
1
1

225
725

1,225

5
16.4
27.9

.432
27.71

286.46

1,125
11,902
34,197

.133
2.98
4.12

.308

.108
.0144

10
30
50

10
10
10

2
2
2

225
725

1,225

10.7
33.3
80.5

1.08
80.10

11,132.75

2,400
24,136
98,619

.16
5.95

1,058.42

.148

.074

.095

10
30
50

25
25
25

.5

.5

.5

225
725

1,225

2.0
7.2

11.7

.206
9.71

44.23

448
5,226

14,278

.156
2.98
4.56

.757

.307

.103

10
30
50

25
25
25

1
1
1

225
725

1,225

4.1
9.6

24.3

.403
13.78
650.0

927
6,931

29,766

.144
1.65

79.56

.357

.120

.122

10
30
50

25
25
25

2
2
2

225
725

1,225

9.3
30.2
51.1

1.04
66.17

1,060.2

2,099
21,882
62,563

.221
2.54
34.9

.213
.0383
.0329

Average 725 36 1,596 34,112 145 .091

http://link.springer.com/chapter/10.1007%2F978-1-4684-2001-2_9#page-1
http://link.springer.com/chapter/10.1007%2F978-1-4684-2001-2_9#page-1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.7332&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.7332&rep=rep1&type=pdf
http://www.amazon.com/Integer-Combinatorial-Optimization-Laurence-Wolsey/dp/0471359432
http://www.amazon.com/Integer-Combinatorial-Optimization-Laurence-Wolsey/dp/0471359432
http://www.sciencedirect.com/science/article/pii/0024379569900172
http://www.sciencedirect.com/science/article/pii/0024379569900172
http://link.springer.com/article/10.1007%2Fs10107-003-0400-z#page-1
http://link.springer.com/article/10.1007%2Fs10107-003-0400-z#page-1
http://www.jstor.org/stable/30036598?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/30036598?seq=1#page_scan_tab_contents
http://link.springer.com/article/10.1007%2FBF01580440#page-1
http://link.springer.com/article/10.1007%2FBF01580440#page-1
http://epubs.siam.org/doi/abs/10.1137/0134010
http://epubs.siam.org/doi/abs/10.1137/0134010

Citation: Easton T, Gutierrez T (2015) Sequential Lifting of General Integer Variables for Integer Programs. Ind Eng Manage 4: 158. doi:10.4172/2169-
0316.1000158

Page 7 of 7

Volume 4 • Issue 2 • 1000158Ind Eng Manage
ISSN: 2169-0316, IEM an open access journal

10. Balas E, Ng SM (1989) On the set covering polytope. II, Lifting the facets with
coefficients in 0,1,2. Mathematical Programming 45: 1-20.

11. Balas E, Fishetti M (1993) Lifting procedure for the asymmetric traveling
salesman polytope and a large new class of facets. Mathematical Programming
58: 325-352.

12. Carr R (1996) Separating over classes of TSP inequalities defined by 0 node-
lifting in polynomial time Integer Programming and Combinatorial Optimization.
5th International IPCO Conference Proceedings, pp. 460-474.

13. Cho CD, Padberg MW, Rao MR (1983) On the uncapacitated plant location
problem. II. Facets and lifting theorems. Mathematics of Operations Research
8: 590-612.

14. Dahan X, Maza MM, Schost. E, Wu W, Xie Y (2005) Lifting techniques for
triangular decompositions. Proceedings of the 2005 International Symposium
on Symbolic and Algebraic Computation ISSA 05.

15. De Farias IR JR, Johnson EL, Nemhauser GL (2002) Facets of the
complementarity knap- sack polytope. Mathematics of Operations Research
27: 210-226.

16. De Simone C (1990) Lifting facets of the cut polytope. Operations Research
Letters 9: 341-344.

17. Easton T, Hooker K (2008) Simultaneously lifting sets of variables and scaled
multiple cover inequalities for knapsack polytopes. To appear in Discrete
Optimization 5: 254-261.

18. Felici G, Gentile C (2003) Zero-lifting for integer blocks structured problems.
Journal of Combinatorial Optimization 7: 161-167.

19. Gu Z, Nemhauser GL, Savelsbergh MWP (1998) Lifted cover inequalities for
0-1 integer programs: computation. Journal of Computing 10: 427-437.

20. Gu Z, Nemhauser GL, Savelsbergh MWP (1999) Lifted cover inequalities for
0-1 integer programs: computation. Mathematical Programming 85: 439-467.

21. Koster A, Hoesel S, Kolen A (1998) The partial constraint satisfaction problem:
Facets and lifting. Operations Research Letters 23: 89-98.

22. Nemhauser GL, Vance PH (1994) Lifted cover facets of the 0-1 knapsack
polytope with GUB constraints. Operations Research Letters 16: 255-263.

23. Park K (1997) Lifting cover inequalities for the precedence-constrained
knapsack problem. Discrete Applied Mathematics 72: 219-241.

24. Richard J, De Farias I, Nemhauser G (2003) Lifted inequalities for 0-1 mixed
integer programming: Superlinear lifting Integer Programming 98: 115-143.

25. Zemel E (1989) Easily computable facets of the knapsack polytope.
Mathematics of Operations Research 14: 760-764.

26. Hammer P, Johnson E, Peled U (1975) Facets of regular 0-1 polytopes.
Mathematical Programming 8: 179-206.

27. Padberg M (1973) On the facial structure of set packing polyhedral.
Mathematical Programming 5: 199-215.

28. Wolsey LA (1975) Faces for a linear inequality in 0-1 variables. Mathematical
Programming 8: 165-178.

29. Wolsey LA (1975b) Facets and strong valid inequalities for integer programs.
Operations Research 24: 367-372.

30. Gu Z, Nemhauser GL, Savelsbergh MWP (2000) Sequence independent lifting
in mixed integer programming. Journal of Combinatorial Optimization 4: 109-129.

31. Shebalov S, Klabjan D (2006) Sequence independent lifting for mixed integer
programs with variable upper bounds. Mathematical Programming 105: 523-561.

32. Wolsey LA (1977) Valid inequalities and superadditivity of 0/1 integer programs.
Mathematics of Operations Research 2: 66-77.

33. Santanu SD, Jean-Philippe PR (2006) Linear programming based lifting and its
application to primal cutting plane algorithms. School of Industrial Engineering,
Purdue University.

34. Zemel E (1978) Lifting the facets of 0-1 polytopes. Mathematical Programming
15: 268-277.

35. The CPLEX Solver on IBM’s Home Page

36. Gutierrez T (2007) Sequential lifting and simultaneous up lifting of integer
variables, Kansas State University, Manhattan, Kansas.

http://dl.acm.org/citation.cfm?id=70487
http://dl.acm.org/citation.cfm?id=70487
http://link.springer.com/article/10.1007%2FBF01581274#page-1
http://link.springer.com/article/10.1007%2FBF01581274#page-1
http://link.springer.com/article/10.1007%2FBF01581274#page-1
http://link.springer.com/chapter/10.1007%2F3-540-61310-2_34
http://link.springer.com/chapter/10.1007%2F3-540-61310-2_34
http://link.springer.com/chapter/10.1007%2F3-540-61310-2_34
http://pubsonline.informs.org/doi/abs/10.1287/moor.8.4.590?journalCode=moor
http://pubsonline.informs.org/doi/abs/10.1287/moor.8.4.590?journalCode=moor
http://pubsonline.informs.org/doi/abs/10.1287/moor.8.4.590?journalCode=moor
http://www.jstor.org/stable/3690670?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/3690670?seq=1#page_scan_tab_contents
http://www.jstor.org/stable/3690670?seq=1#page_scan_tab_contents
http://dl.acm.org/citation.cfm?id=2296732
http://dl.acm.org/citation.cfm?id=2296732
http://dl.acm.org/citation.cfm?id=2296732
http://link.springer.com/article/10.1023%2FA%3A1024423013607#page-1
http://link.springer.com/article/10.1023%2FA%3A1024423013607#page-1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.2535
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.119.2535
http://link.springer.com/article/10.1007%2Fs101070050067#page-1
http://link.springer.com/article/10.1007%2Fs101070050067#page-1
https://ideas.repec.org/p/unm/umamet/1997004.html
https://ideas.repec.org/p/unm/umamet/1997004.html
http://www.sciencedirect.com/science/article/pii/0167637794900388
http://www.sciencedirect.com/science/article/pii/0167637794900388
http://www.sciencedirect.com/science/article/pii/0166218X95001136
http://www.sciencedirect.com/science/article/pii/0166218X95001136
http://link.springer.com/article/10.1007%2Fs10107-003-0399-1#page-1
http://link.springer.com/article/10.1007%2Fs10107-003-0399-1#page-1
http://cgm.cs.mcgill.ca/~avis/courses/567/notes/ez.pdf
http://cgm.cs.mcgill.ca/~avis/courses/567/notes/ez.pdf
http://link.springer.com/article/10.1007%2FBF01580442#page-1
http://link.springer.com/article/10.1007%2FBF01580442#page-1
http://link.springer.com/article/10.1007%2FBF01580121#page-1
http://link.springer.com/article/10.1007%2FBF01580121#page-1
http://link.springer.com/article/10.1007%2FBF01580441#page-1
http://link.springer.com/article/10.1007%2FBF01580441#page-1
http://link.springer.com/article/10.1023%2FA%3A1009841107478#page-1
http://link.springer.com/article/10.1023%2FA%3A1009841107478#page-1
http://link.springer.com/article/10.1007%2Fs10107-005-0664-6#page-1
http://link.springer.com/article/10.1007%2Fs10107-005-0664-6#page-1
http://www.researchgate.net/publication/242929516_Valid_Inequalities_and_Superadditivity_for_0-1_Integer_Programs
http://www.researchgate.net/publication/242929516_Valid_Inequalities_and_Superadditivity_for_0-1_Integer_Programs
http://www2.isye.gatech.edu/~sdey30/LPLifting.pdf
http://www2.isye.gatech.edu/~sdey30/LPLifting.pdf
http://www2.isye.gatech.edu/~sdey30/LPLifting.pdf
http://link.springer.com/article/10.1007%2FBF01609032
http://link.springer.com/article/10.1007%2FBF01609032
http://www.ilog.com/
http://www2.imse.ksu.edu/~teaston/students.php
http://www2.imse.ksu.edu/~teaston/students.php

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Up Lifting Integer Variables
	The Sequential Lifting Algorithm (SLA)
	Sequential Down Lifting and Lifting when x1=k∗
	Computational Results
	Conclusion and Future Research
	Acknowledgment
	Figure 1
	Figure 2
	Figure 3
	References

