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Historical background

The variational inequality theory was introduced by Stampacchia 
[1] has become a rich source of inspiration and motivation for the
study of a large number of problems arising in economics, finance, 
transportation, networks, structural analysis and optimizations [2-5]. 
It should be pointed that almost all the results regarding the existence 
and iterative scheme for solving variational inequalities and related 
optimization problems are being considered in the convex setting. 
Consequently all the techniques are based on the properties of the 
projection operators are convex sets which may not hold in general 
when the sets are nonconvex. It is known that the uniformly r-prox 
regular sets are nonconvex and included the convex sets as a special 
cases [6-9].

Over the last decade there has been increasing interest in studying 
the sensitivity analysis of variational inequalities and variational 
inclusions. Sensitivity analysis for variational inclusions and 
inequalities have been studied extensively [2,3,10-13].

The techniques suggested so far vary with the problems being 
studied. Dafermos used the fixed point formulation to considered 
the sensitivity analysis of the classical variational inequalities. These 
techniques have been modified and extended by many authors for 
studying the sensitivity analysis of the other classes of variational 
inequalities and variational inclusions. It is known that the variational 
inequalities are equivalent to Wiener-Hopf equations [14]. This 
alternative equivalence formulation has been used by Noor [15-17] 
to developed the sensitivity analysis frame work for various classes of 
(quasi) variational inequalities.

In this paper we develop the general frame work of sensitivity 
analysis for general non-linear nonconvex variational inequalities. First 
we establish the equivalence between the parametric general nonlinear 
nonconvex variational inequalities and the parametric general Wiener-
Hopf equations by using the projection techniques. By using the 
fixed point formulation, we obtain an approximate rearrangement 
of the Wiener-Hopf equations. We use this equivalence to developed 
the sensitivity analysis for general nonlinear nonconvex variational 
inequalities without assuming the differentiability of the given data.

Preliminaries
Let H be a real Hilbert space whose inner product and norm are 

denoted by .,.  and || . ||  respectively. Let K be a nonempty closed 
subset of H.

Definition 2.1 The proximal normal cone of K at a point u Î  H 
with u Ï  K is given by k(u) = { H : u P (u )p

kN x axÎ Î + for some 0}a>

Where 0a>  is a constant and

k(u) {v k : d (u) || u v ||}kP = Î = -

Where dK(.) or d(.;K) is the usual distance function to the subset 
of K, that is

(u) inf || u v || .kd = -

The proximal normal cone p
kN (u) has the following 

characterizations:

Lemma 2.2 Let K be a nonempty closed subset in H. Then 
(u)p

kNV Î  if and only if there exists a constant ( , u) 0a a V= >  such that
2, || v u || ,v u v kV a- £ - " Î

Lemma 2.3 Let K be a nonempty closed and convex subset in H. 
Then (u)p

kNV Î  

, 0,v u v kV - £ " Î

The Clarke normal cone denoted by (u)c
kN  is defined by

(u) co[N (u)]c p
k kN =

where co mean the closure of the convex hull.

Clearly N (u) Np c
k kÍ  but the converse is not true in general. Note 

that (u)c
kN  is always closed and convex cone where as (u)c

kN is convex 
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but may not be closed, see [5, 12].

Definition 2.4 For any given (0, ]r Î +¥  a subset Kr of H is said to 
be normalized uniformly r-prox regular (or uniformly r-prox regular) 
if and only if every nonzero proximal normal to Kr can be realized by 
an r-ball that is for all ru kÎ  and 0 (u)p

krNV¹ Î  with || || 1V =  
21, || v u || ,

2 rv u v k
r

V - £ - Î

Lemma 2.5 A closed set K Í  H is convex if and only if it is 
proximally smooth of radius r for every r>0:

If r=1 then uniformly r-prox regularity of Kr is equivalent to the 
convexity of K: If Kr is uniformly r-prox regular set, then the proximal 
normal cone p

krN  (u) is closed as a set valued mapping. If we take 
1
2

n
r

=  it is clear that r ®¥  then n=0:

Proposition 2.6 [12] For r>0, let Kr be a nonempty closed and 
uniformly r-prox regular subset of H. Set

{u h : 0 d (u) r}kru = Î £ <

Then the following statements are holds:

for all , (u)kru u pÎ ¹Æ

for all (0, r), pkrr ¢ Î  is a Lipschitz continuous mapping with constant 
r

r r
d=

¢-
 on 

{u h : 0 d (u) r }kru ¢= Î £ <

(i)	 the proximal normal cone is closed as a set valued mapping.

Assume that F; T : H ! 2H are set valued mappings, g; h : H ! H the 
nonlinear single valued mappings such that (h)rk gÍ  and N : H X H 
®  H the mapping. For any constants n>0 and p>0, we consider the 
problem of finding , (u), y F(u)u h x TÎ Î Î  such that (u) k rh Î  and

2(x, y) h(u) g(u), v h(u) || v h(u) || 0, rpN n v k+ - - + - ³ " Î

The equation (2.1) is called general nonlinear nonconvex variational 
inequalities. Now we consider the problem of solving general Wiener-
Hopf equations. To be more precise, let QKr = I – h-1PKr where PKr 
is the projection operator, h-1 is the inverse of nonlinear mapping h 
and I is an identity mapping. For given nonlinear mappings T; F; h; g; 
consider the problem of finding , , (u), y F(u)z u h x TÎ Î Î  such that 

1(x, y) 0rN p Qk z-+ = is called general Wiener-Hopf equations.

Lemma 2.7 r, (u), y F(u), h(u) ku H x TÎ Î Î Î  is a solution of 

(2.1) if and only if r, (u), y F(u), h(u) ku H x TÎ Î Î Î  satisfies the 

relation h(u) = PKr [g(u) _N(x; y)] where PKr is a projection of H onto 
the uniformly r-prox regular set Kr:

Lemma 2.7 implies that the general nonlinear nonconvex 
variational inequality (2.1) is equivalent to the fixed point problem 
(2.3).

Now we consider the parametric version of equations (2.1), (2.2) 
and (2.3). To for- mulate the problem, let W  be an open subset of H 
in which parameter l  takes values. Let , : 2hT F XHW ®  be the set 
valued mappings, N : H X H ®  and g; h : W  _ H ®  H the nonlinear 
single valued mappings such that (h)rK gÍ  and N : H X H ®  H the 

mapping. For any constants n>0 and p>0, we consider the problem of 
finding , (u), y F(u)u H x TÎ Î Î  such that r(u) Kh Î  and

2(x, y) h(u) g(u), v h(u) || (u) || 0, rpN n v h v K+ - - + - ³ " Î

The equation (2.1) is called general nonlinear nonconvex variational 
inequalities. Now we consider the problem of solving general Wiener-
Hopf equations. To be more precise, let 1

Kr KrQ I h P-= -  is the 
projection operator, h-1 is the inverse of nonlinear mapping h and I 
is an identity mapping. For given nonlinear mappings T; F; h; g; 
consider the problem of finding , , (u), y F(u)z u H x TÎ Î Î  such that 

1(x, y) P 0krN Q Z-+ = is called general Wiener-Hopf equations.

Lemma 2.7 r, (u), y F(u), h(u) Ku H x TÎ Î Î Î  is a solution of 

(2.1) if and only if r, (u), y F(u), h(u) Ku H x TÎ Î Î Î  satisfies the 
relation

kr(u) P [g(u) pN(x, y)]h = -  			                 (2.3)

where PKr is a projection of H onto the uniformly r-prox 
regular set Kr: the single valued mappings. We define 

(u) g(u, ), h (u) h(u, ), x (u) x(u, ) T (u), y (u) (u, ) F (u)g yl l ll l l l l l l= = = Î = Î   
unless otherwise specified. The parametric general 
non-linear nonconvex variational inequality is to find 

r(u, ) HX , x (u) T (u), y (u) F (u), h (u) Kl l l ll lÎ W Î Î Î  such that 

(x (u), y (u)) h (u) g (u), v h (u)) 0, rPN v Kl ll l l+ - - ³ " Î  (2.4)

We also assume that for some l ÎW  problem has a unique 
solution u   Related to the parametric general nonlinear nonconvex 
variational inequality (2.4), we consider the parametric general 
Wiener-Hopf equation. We consider the problem of finding 
(z, u, ) HXHC , x (u) T (u) F (u)l ll lÎ W Î Î  such that

1(x (u), y (u)) p 0krN Q Zl l
-+ =  		                               (2.5)

where p > 0 is a constant and QKr (z) is define on the set (z, )l  with 
lÎW  and takes values in H. The equation (2.5) is called parametric 
general Wiener-Hopf equation.  

Lemma 2.8 If H is a real Hilbert space. Than the 
following two statements are equivalent: an element 

r, (u) T (u), y (u) F (u), h (u) Ku H xl l l l lÎ Î Î Î  is a solution of (2.4), the 
mapping kr(u) u h (u) P [g (u) pN(x (u), y (u))]El l l l l= - + -  has a fixed 
point.

One can established the equivalence between (2.4) and (2.5), by 
using the projection techniques, see Noor [10,11].

Lemma 2.9 Parametric general nonlinear nonconvex variational 
inequality (2.4) has a Solution (u, ) Hx , x (u), y (u) F (u)l l l lÎ W Î  
if and only if parametric general Wiener-Hopf equation (2.5) has a 
solution  (z, u, ) HxHx , x (u) T (u), y (u) F (u)ll l l lÎ W Î Î

krz(u) Phl =  					                  (2.6)

(u) pN(x (u), y (u))z gl l l= -  			              (2.7)

From Lemma 2.9, we see that Parametric general nonlinear 
nonconvex variational inequalities (2.4) and parametric general 
Wiener-Hopf equations (2.5) are equivalent. We use these equivalence 
to study the sensitivity analysis of general nonlinear non-convex 
variational inequalities. We assume that for some l ÎW  problem 
(2.5) has a solution Z  and X is a closure of a ball in H centered at Z . 
We want to investigate those conditions under which for each l  is a 
neighbourhood of l  then (2.5) has a unique solution ( )z l  near z  
and the function ( )z l  is (Lipschitz) continuous and differentiable.

Definition 2.10 For u; v ,H lÎ ÎW  the mapping :N HXH H®  
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is said to be ( , )j y  relaxed cocoercive with respect to first argument 
and :g XH HW ®  with constants 0, 0,j y> >  and Lipschitz 
continuous with respect to first and second argument if there exists a 
constants 0, 0a b> >  such that 

2(x (u), y (u)) N(x (v)),g (u) g (v) || N(x (u), y (u)) N(x (v), y (v)) ||N l l l l l ll l j l- - ³- -

2|| g (u) g (v) ||y l l+ -

And
|| (x (u), y (u)) N(x (v), y (v)) || || x (u) x (v) || || y (u) y (v) ||N l l l l a l l b l l- £ - + -

(u) T (u), x (v) T (v), y (u) F (u), y (v) F (v)xl l l l l l l l" Î Î Î Î

Definition 2.11 A single valued mapping :g HX HW®  is said to 
be Lipschitz continuous if there exists a constant 0g>  such that 

|| (u) g (v) || || u v ||, u, v Hgl l g- £ - " Î

Definition 2.12 The set valued mapping : 2HT HXW®  is said to 
be D-Lipschitz continuous if there exists a constant v > 0 such that

(T (u),T (v)) v || u v ||, u, v H,D l l l£ - " Î ÎW

where D is the Hausdorff metric.

Definition 2.13 Let :h XH HW ®  be a single valued mapping. 
Then hl  is said to be x -relaxed cocoercive if there exists a constant 

0x<  such that
2(u) h (v), u v || (u) h (v) ||h hl l x l l- - ³ -

and Lipschitz continuous if there exists a constant 0m>  such that 

|| h (u) h (v) || || u v ||, u, v H,l l m l- £ - " Î ÎW

Main Results
In this section, we consider the case when the solution of the 

parametric general Wiener-Hopf equations (2.5) lies in the interior of 
X. We consider the map

(z) Pkrz pN(x (u), y (u)) g (u) pN(x (u), y (u)), (z, ) XEl l l l l l l= - = - " Î W  (3.1)

Where

r(u) Pk zhl =  				              (3.2)

We have to show that the map (z)El  has a fixed point which is a 
solution of parametric general Wiener-Hopf equations (2.5). First of 
all we prove the map (z)El  defined by (3.1) is a contraction map with 
respect to z uniformly in lÎW  by using the techniques of Noor [10].

Lemma 3.1 Let krP  be a Lipschitz continuous operator with 

constant 
1

r
r r

d=
-

 Let :N H H H´ ®  be the Lipschitz continuous 

with first argument and second argument with Constants 0, 0a b> >  
respectively. Let h; g : H H´W® be the Lipschitz continuous 
with constants 0, 0m g> >  respectively and hl  be the x  relaxed 
cocoercive with respect to the constant x < 0: Let T; F :W´  H® 2H 
be the D-Lipschitz continuous with constants v; x > 0; respectively. Let 
N be the ( , )j y  relaxed cocoercive with respect to first argument and 
gl  with constants , 0j y>  respectively. We have 

1 2 1 2|| (z ) E (z ) || || z ||E zl l q- £ -

Where
2 2 2 22 ( ( v x) p ( v x)

1
p

k
g j a b a b

q d
- - + + +

=
-

 	               (3.3)

2 21 2 , 0k xm m d= - + >  (3.4)

For
2 2 2 2 2 2 2 22 2

2 2

( ( v x) ) ( v x) ( (1 k) )( v x)| |
( v x) ( v x)

p
d yg j a b a b d gyg j a b

a b d a b
- + - + - -- +

- <
+ +

2 2( ( v x) ) ( v x) ( 1 k)( 1 k)d yg j a b a b dg dg- + > + - + + -

2 2( ( v x) ) ( v x)d yg j a b a b- + > +

2 2( v x)yg j a b> +  				                 (3.5)

Proof. For all z1; z2 ,x lÎ ÎW  from (3.1) we have

1 2|| (z ) E (z ) || || g (u) g (u) g (v) p(x (u), y (u)) N(x (v), y (v))) ||El l l l l l l l l- = - - - -  (3.6)

Now

2

2

2 2

|| (u) g (v) p(N(x (u), y (u)) N(x (v), y (v))) ||

|| (u) g (v) || 2 (x (u), y (u)) N(x (v), y (v)),g (u) g (v)

|| (x (u), y (u)) N(x (v), y (v), y (v)) ||

g
g p N

p N

l l l l l

l l l l l l l l

l l l l l

l - - -

£ - - - -

+ -

 (3.7)

Since N is Lipschitz continuous with respect to _rst and second 
argument and T; F are D-Lipschitz continuous with constants v; x > 0 
respectively, we have

|| (x (u), y (u)) N(x (v), y (v)) || || x (u) x (v) || || y (u) y (v) ||
(T (v)) D(F (u) y (u),F (v))
|| || || ||

( ) || ||

N
D
v u v x u v
v x u v

l l l l l l l l

l l l l

a b
a b
a b
a b

- £ - + -

£ + -

£ - + -
£ + -

 (3.8)

And

|| (u) g (v) || || u v ||gl l g- £ -  			             (3.9)

From the ( , )j y  )-relaxed cocoercive mapping of N with respect to 
first argument and gl  we have

2

2

2 2 2 2

2 2 2

(x (u), y (u)) N(x (v), y (v)),g (v) || (x (u), y (u)) N(x (v), y (v)) ||

|| (u) g (v) ||

( v x) || || || ||
( ( v x) ) || u v ||

N N

g
u v u v

l l l l l l l l l

l l

j

y

j a b yg

j a b yg

- ³- -

+ -

>- + - + -

³ - + + -

 (3.10)

Hence from (3.7)-(3.10), we have

2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

|| (u) g (v) p(N(x (u), y (u)) N(x (v))) || || || ||

2 ( ( v )) || u v || ( v x) || ||
( 2p( ( v x) p ( v x) || u v ||

g u v
p p p u v

l l l l l g g

j a yg a b

g j a b a b

- - - £ -

- - + - + + + -

£ - - + + + -
   (3.11)

Therefore from (3.6) and (3.11), we have

2 2 2 2 2
1 2|| (z ) E (z ) || 2 ( ( v x) ) p ( v x) ||E p u vl l g j a b yg a b- £ - - + + + + -  (3.12)

Also from (3.2) and Lipschitz continuity of projection mapping 
PKr with constant d; we

Have

kr 1 kr 2

1 2

|| || || (h (u) h (v)) || || p (z ) p (z ) ||
|| u v (h (u) h (v)) || || z ||

u v u v
z

l l

l l d
- £ - - - + -

£ - - - + -
 	           (3.13)

Since h is Lipschitz continuous with constant 0m>  and x  relaxed 
cocoercive with constant x <0 we have
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2 2 2

2 2 2

2 2 2 2 2

|| (h (u) h (v)) || || || 2 (v), u v || (u) h (v) ||

|| || 2 || (u) h (v) || || (u) h (v) ||

|| || 2 || || || ||
|| (h (u) h (v)) ||| k || u v ||

u v u v h h

u v h h
u v u v u v
u v

l l l l l

l l l l

l l

x

xm m

- - - £ - - - + -

£ - - - + -

£ - - - + -
£ - - - £ -

 (3.14)

Where 2 21 2k xm m= - +  From (3.13) and (3.14) we have

1 2|| || || 2 ||
1

u v z
k

d
- £ -

-
         (3.15)

Combining (3.12),(3.15) and using (3.3) we have

1 2 n 1 2

2 2 2 2

n 1 2

n 1 2 1 2

|| (z ) E (z ) || (1 ) || z ||

2 ( ( v x) p ( v x)
||

1
(1 ) || z || || ||n

E z

p
z z

k
z z z

l l s

g j a b a b
s d

s s q

- £ - -

- - + + +
+ -

-
= - - + -

        (3.16)

Where
2 2 2 2 22 ( ( v x) ) p ( v x)

1
p

k
g j a b yg a b

q d
- - + + + +

=
-

From (3.5) it follows that 1q<  and consequently the map (z)El  
de_ne by (3.12) is a contraction map and has a fixed point ( )z l  which 
is the solution of parametric general Wiener-Hopf equations (2.5).

Remark 3.2 From Lemma 3.1, we see that the map (z)El  define
by (2.1) has a unique fixed point ( )z l  that is ( )z l  (z)El= Also by 
assumption the function z  for l l=  is a solution of parametric 
general Wiener-Hopf equations (2.5). Again by Lemma 3.1 we see that 
z  for l l=  is a fixed point of (z)El  and it is also a fixed point of 

(z)El
 Consequently, we conclude that ( ) z (z( ))z Ell l= = .

Using Lemma 3.1 we can prove the continuity of the solution 
( )z l  of parametric general Wiener-Hopf equations (2.5). However 

for the sake of completeness and to convey the idea of the techniques 
involved, we give the proof.

Lemma 3.3 Assume that the mappings (.), F (.)Tl l  are
D-Lipschitz continuous and (.), h (.)gl l are Lipschitz continuous
with respect to the parameter l  If the mapping N is Lipschitz 
continuous with first and second argument respectively, and the map 

(z), T (u), F (u), (u), (u)krp g hl l l l ll l l l® ® ® ® ®  are continuous 
(or Lipschitz continuous), the function ( )z l  satisfying the (2.3) is 
Lipschitz continuous at l l=

Proof. For all lÎW  invoking Lemma 3.1 and the triangle 
inequality, we have

|| ( ) z( ) || || E (z( )) E (z( )) || || E (z( )) E (z( )) ||

|| z( ) z( ) || || E (z( )) E (z( )) ||

z l l l l

l l

l l l l l l

q l l l l

- £ - + -

£ - + -
   (3.17)

From (3.1) and the fact that the mapping , , ,N T F hl l l  and gl  are 
Lipschitz continuous with respect to the parameter l  we have

|| (z( )) E (z( )) || || g (u( )) p(N(T (u( )), F ( ( ))) ( (u( )),F (u( )))) ||

|| || ( || T (u( )) || || F (u( )) ||)

|| || ( || || x || ||)
( ( )) || ||

E u N T

p

p v
p v x

l l ll l l l

l l

l l l l l l l

g l l a l b l

g l l a l l b l l

g a b l l

- = - -

£ - + +

£ - + - + -

£ + + -

   (3.18)

Combining (3.17) and (3.18), we obtain

( p( v x))|| ( ) z( ) || || ||, ,
1

z g a b
l l l l l l

q
+ +

- £ - " ÎW
-

from which the required results follows.

We now state and prove the main result of this paper which is 
motivation of the next result.

Theorem 3.4 Let u  be a solution of parametric general nonlinear 
nonconvex variational inequalities (2.4) and n be the solution of 
parametric general Wiener-Hopf equations (2.5) for l l= . Let 

(u)hl  be x _-relaxed cocoercive mapping and Lipschitz continuous 
mapping, and (u),F (u)Tl l  be the D-Lipschitz continuous mappings
and N be ( , )j y  )-relaxed coco-ercive mapping with respect to first
argument and gl and gl be the Lipschitz continuous for all ,u v xÎ  If 
the map (z), T (u), (u), (u), (u)krp F g hl l l ll l l l l® ® ® ® ®  are Lipschitz 
(continuous) mappings at l l=  then there exists a neighbourhood 
M  of W  of l  such that for MlÎ  parametric general Wiener-
Hopf equation (2.5) has a unique solution ( )z l  in the interior of 

, ( ) z( )x z l l=  and z( )l  is (Lipschitz) continuous at l l= .

Proof. Its proof follows from Lemma 3.1, 3.3 and Remark 3.2.
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