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Introduction
Breast cancer as one of the most frequent diagnosed cancers at 

all, is the leading cause of cancer death among women worldwide and 
hence demands new effective therapeutic prospects [1]. Numerous 
studies characterized the role of the PI3-K/Akt signalling pathway as a 
pivotal one in cancer progression since various up regulated pathway 
components have been observed in cancer cells and most notably since 
inhibition of the Akt signal cascade has been described as resulting in 
apoptosis, suppression of cell survival and thus inhibition of tumour 
genesis [2-9]. 

Human epidermal growth factor receptor (HER2/neu), a 
member of the epidermal growth factor receptor family (EGFR) and 
responsible for increased levels of active Akt, is a potent target for 
anticancer management [10-13]. Pharmacological applications of anti 
HER2 monoclonal antibodies like Trastzumab (Herceptin) or EGFR 
inhibitors like Erlotinib (Tarceva) have been in clinical use already and 
afford proved inhibition of cell proliferation as well as downregulation 
of PI3K/Akt pathway activity [10,14,15]. 

While recent studies presented a large number of patients who 
no longer respond to chemotherapy like Erlotinib and revealed a 
correlation to the deregulated PI3K-PTEN-Akt signal cascade [15,31], 
research on new medical options to overcome these resistance seems 
to be essential. 

The anti-apoptotic protein Lifeguard (LFG), responsible for 
inhibition of FasL-mediated programmed cell death [16,17], was 
previously analysed as structurally and functionally associated to the 
BI-1 and Bcl-2 family [18,19], but recently to the so called LFG gene 
family [20]. Several studies showed that a decreased sensitivity to 
FasL-induced apoptosis is based on a high LFG mRNA and protein 
expression rate, which was notably discovered in breast cancer cell lines. 
LFG downregulation therefore implicates an attractive therapeutic 
chance for anticancer therapy via antisense oligonucleotides or siRNA 

[21-23]. While the exact molecular mechanism of LFG regulation has 
not yet been fully understood, it is hypothesized as mediated by the 
PI3-K/Akt/LEF-1 signalling pathway because PI3-K/Akt inhibition in 
MCF-7 and MDA-MB-231 breast cancer cells leads to increased rates 
of apoptosis and reduced amounts of LFG mRNA and Protein [23,24]. 
The transcription factor LEF-1 plays a crucial part in the regulation 
of cellular development and differentiation [25,26] in breast cancer 
[27,28].

Using MCF-7 breast cancer cells, we investigated the impact of LFG 
and LEF-1 suppression on cell proliferation, viability and apoptosis. 

Materials and Methods
Cell lines

Human breast carcinoma cell lines MCF-7 (ATCC, Manassas, 
USA) were used in this study and grown in Dulbecco`s modified 
Eagle`s medium (DMEM, PAA, Cölbe, Germany) supplemented 
with 10% FCS (Biochrom, Berlin, Germany) and 50 mg/ml penicillin-
streptomycin. Cultures were maintained at 37°C with 5% carbon 
dioxide in a humidified atmosphere. The medium was changed every 
2 to 3 days, and cells were subcultured by treatment with 0.25% 
Trypsin/0.53 mM ethylenediaminetetraaceticacid (EDTA) (Biochrom, 
Berlin, Germany) solution.
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Abstract
Introduction: Lifeguard (LFG) is an anti-apoptotic protein that inhibits programmed cell death mediated by 

Fas in tumour cells. The exact mechanism of action and the molecular function from LFG in the carcinogenesis of 
human breast cells is not clear. But the expression of LFG mRNA correlates with LEF-1 transcription factor activity. 

Methods: In the present study, chemotherapeutic-induced apoptotic effects were studied using MCF-7 cells as 
an in vitro test model. Molecular (Western blot and RT-PCR) techniques were used to investigate LFG expression. 
To investigate the breast cancer cell proliferation in presence of siRNA-LFG we performed fluorescent cell viability 
assays. 

Results: The results indicated that, a decrease of LFG expression using siRNA correlates with an increased 
sensitivity to Trastzumab and Erlotinib. Moreover, cell cycle analysis of LEF-1 siRNA-transfected human breast 
cancer cells revealed a significant arrest in G2 phase. 

Conclusion: Taken together, our results indicate a pivotal role of LFG in the regulation of apoptosis in MCF-7 
breast cancer cells.
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Real-time polymerase chain reaction

Total RNA was isolated from cultured cells using the NucleoSpin 
RNAII Kit (MN Macherey-Nagel, Duren, Germany) according to 
the manufacturer`s protocol. RNA concentration was measured by 
photometry at NanoDrop (PeqLab, Erlangen, Germany). The quality 
of total RNA was verified by the integrity of 18S/28S ribosomal RNA in 
1% ethidium bromide-stained agarose gels. Reverse transcription (RT) 
was performed with 1 µg total RNA using iScriptTM cDNA Kit (Bio-
Rad Laboratories, Hercules, CA). Real-time polymerase chain reaction 
(Q-PCR) reaction was carried out in 20 µl samples with 5ng cDNA and 
10 pmol of each forward and reverse primer and 2x SYBR green Sensi-
Mix DNA Kit (Quantace, London, U.K.). Relative gene expression was 
determined by the fluorescence intensity ratio of the target gene to ß2-
Microglobulin. The primers used in the real-time PCR reaction were 
designed based on information from the human genomic data base. 
The following primer sequences were used:

human LFG: forward: 5`-gactcatcctggccatcctcctac-3` 

            reverse: 5`-ggcgtcggttacccatcagc-3`;

human. LEF-1: forward: 5`agagaaaggagcag-3`,

            reverse: 5`-attgtctcttgcag-3`,

ß2-Microglobulin: forward: 5`-atgagtatgcctgccgtgtga-3` 

            reverse:5`-ggcatcttcaaacctccatg-3`.

The initial denaturation step at 94°C for 4 min. was followed by 40 
cycles of denaturation for 30 s, annealing at 65°C for 30 s, extension 
at 72°C for 1 min., and final extension step at 72°C for 10 min. All 
experiments were carried out in triplicate and repeated at least at three 
independent times. The specificity of the Q-PCR products was proven 
by the appropriate melting curves (specific melting temperature).

Western blot analysis 

For Western blot analysis, cells were lysed in RIPA buffer 
containing 0.3M NaCl, 1% sodium desoxycholate, 0.1% sodium 
dodecyl sulfate (SDS), 1% Triton-X-100, 20 mM Tris-HCL (pH 8), 1 
mM EDTA, and 1 mM phenylmethyl sulfonyl fluoride. 25 µg of protein 
were fractionated by 15% SDS-PAGE and transferred to polyvinylidene 
fluoride (PVDF) membranes (Millipore Corporation, Bedford, USA), 
then blocked in Odyssey buffer for 1 hr. Protein expression levels 
were determined by immunoblotting with the following antibodies: 
anti-hLFG (1:200 dilution) (IMGENEX, San Diego, CA), monoclonal 
anti-LEF-1 (at 1:500) purchased from Abcam, Cambrige, UK, and anti-
goat-ß-Actin (at 1:1000) (Abcam, Cambrige, UK), at 4°C overnight. 
For quantification of protein expression levels, Odyssey 680/800 nm 
secondary conjugates were used and PVDF membranes were analysed 
using the Odyssay Infra-Red Imaging System and software (Li-Cor 
BioSciences, Lincoln, Nebraska, USA).

Small interfering RNA

In this study, we transfected MCF-7 cells with siRNA 
LFG-5`gggcaaagaaacattctatgt-3`, control siRNA LFG-
5`ggaatctcattcgatgcatac-3` (designed by SuperArray Bioscience 
Corporation, USA) and with siRNA LEF-1-5`guugcugaguguacucuaa-3`, 
control siRNA LEF-1-5`uuagaguacacucagcaa-3` (designed by Ambion, 
USA). The cells were seeded at 1×104 cells and incubated at 37°C, 5% 
CO2 in humidified atmosphere for 48 hrs before being analysed. 

Caspase assay

Activation of caspase-3/7 was determined using the Apo-One 

Homogeneous Caspase-3/7 Assay (Promega, Madison, WI) following 
the protocol provided by the manufacturer. Briefly, 1×104 MCF-7 breast 
cancer cells were seeded per well of a 96 well plate and transfected 
with siRNA LFG and control siRNA, for 48 hrs. After 48 hrs cells 
were incubated with 0.25 mg/ml, 0.5mg/ml or 1mg/ml of Trastzumab 
(Hercetin®, Roche) or Erlotinib (Tarceva®, Roche) for 2 hrs and 4hrs, 
respectively. After treatment, cells were mixed with the same volume of 
Apo-One Homogeneous Caspase-3/7 reagent and incubated at room 
temperature for 2 hrs. Caspase-3/7 activation was estimated from 
sample fluorescence at the excitation wavelength of 492 nm and the 
emission wavelength of 521 nm using a fluorescence plate reader Tecan 
GENios (TECAN, Männedorf, Switzerland).

Cell viability assay 

Metabolic activity was determined by Cell Titer Blue cell viability 
assays (Promega, Madison, USA). Briefly, 1×104 cells from MCF-7 
breast cancer cells were seeded, 1×105 cells per well of a 96 well plate 
and transfected with siRNA LEF-1 and control siRNA, for 48 hrs 
(HiPerFect Transfection Reagent; Fa. Qiagen). Relative numbers of 
viable cells were measured in comparison to the untreated control and 
the solvent control according to the manufacturer’s instructions at 
560Ex/590Em nm in a fluorescence plate reader TecanGENios (TECAN, 
Männedorf, Switzerland).

Cell cycle analysis by flow cytometry

Viability analysis of the cells was performed in a Vi-CELL Series 
Cell Viability Analyzer (Beckman Coulter GmbH, Krefeld, Germany). 
For distinct cell cycle phase distribution, about 106 breast cancer cells 
were analysed. Thus, the cells were harvested and fixed in 70% (v/v) 
ice-cold ethanol and kept at 4°C for 24 h. Thereafter, the fixed cells 
were stained with CyStain DNA 2 step kit (Partec GmbH, Münster, 
Germany) and filtered through a 50 µm filter. These samples were 
then analyzed in Galaxy flow cytometer (Dako, Hamburg, Germany) 
using FloMax analysis software (Partec) and the MultiCycle cell cycle 
software (Phoenix Flow Systems Inc., San Diego, CA, USA).

Results
Downregulation of LFG and LEF-1 expression by siRNA 
transfection

In order to demonstrate the impact of LFG and LEF-1 protein 
in breast cancer, MCF-7 cells were transfected as described in 
experimental procedures, with designed LFG specific siRNA and with 
designed LEF-1 specific siRNA, respectively. After 48 h, quantitative 
RT-PCR and Western blot analysis were performed to determine 
successful gene silencing. While the transfected cells exhibited 
decreased levels of LEF-1 and LFG mRNA respectively (Figures 1A 
and B), we also found, as expected, reduced amounts of LEF-1 and 
LFG protein (Figure 1C) compared to the si-Control and untreated 
Control cells.To examine the effect of LFG and LEF-1 downregulation 
on the apoptosis and viability in breast carcinoma cells, we transfected 
MCF-7 cells with siRNA LFG or siRNA LEF-1as before. Appropriate 
vitality measurements demonstrated reduced cell viability in LEF-1 
siRNA transfectants as compared to control siRNA and untreated cells 
after 48 h (Figure 2A). Moreover, proliferative effects of LEF-1 down-
modulation were assayed by cell cycle analysis. Following transfection 
of MCF-7 breast cancer cells with LEF-1 siRNA for 48  h, cell cycle 
phases were determined by flow cytometry analysis. Thus, LEF-1 siRNA 
transfection of MCF-7 demonstrated a significantly reduced amount of 
S phase cells and a marked accumulation of cells in G2 phase (Figure 
3). Quantitative analysis of the cell cycle phases revealed a similar 
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cell cycle distribution in MCF-7 control cells and the population’s 
transfected with a control siRNA reaching about about 10.2% to 10.6% 
of cells in S phase and about 20.7% to 14.3% of cells in G2/M phase, 
respectively. In contrast, down-modulation of LEF-1 after 48 h of LEF-
1 siRNA transduction was associated with a significant decline of the 
S phase to about 7.5% respectively (Figure 3). Conversely, a significant 
accumulation of cells in G2/M phase to about 26% detectable in 48 h 
LEF-1 siRNA transfectants (Figure 4B).

Furthermore, we found significant increased levels of activated 
caspase-3/7 in MCF-7 cells with downregulated expression of LFG 
compared to control siRNA and untreated cells after 48 h (Figure 2B). 
Consequently we demonstrated that downregulation of LFG correlates 
with an increased sensitivity to chemotherapeutical treatment 
measured by increased rates of apoptosis.

Sensitisation of MCF-7 cells against chemotherapeutical 
treatment in consequence of LFG gene suppression

To corroborate our hypothesis, that downregulated expression of 
LFG has direct effects on the chemotherapeutic given of breast cancer 
cells, we transfected MCF-7 cells with LFG specific siRNA and treated 
them with 0.25 mg/ml; 0.5 mg/ml or 1 mg/ml of the cytostatic drugs 
“Erlotinib” or “Trastzumab” respectively. Following 2h and 4h of 

Figure 1: Downregulation of LFG and LEF-1 gene expression. A. The 
human breast carcinoma cell line MCF-7 were transfected with siRNA LEF-1 
for 48 h and analysed for relative LEF-1 mRNA ratio compared to the control 
using RT-PCR, and B. MCF-7 cells were transfected with siRNA LFG for 48 
h and analysed for relative LFG mRNA ratio compared to the control using 
RT-PCR. The data are the means ± SD of triplicate determinations which 
were repeated in three separate experiments. *p<0.05 vs. control. C. MCF-7 
cells were transfected with siRNA (a: siRNA LEF-1 or siRNA LFG; b: siRNA-
control; c: nontransfected cells ) for 48 h and then cell lysates were subjected 
to Western blotting to detect the quantity of expressed LEF-1 (LFG).  Actin 
was used for normalization.

Figure 2: �����of LFG and LEF-1 on proliferation and apoptosis. A.  
MCF-7 cells were transfected with siLEF-1 for 48h and the cell viability was 
determined using the cell viability assay. B. MCF-7 cells were transfected 
with siLFG, for 48h and analysed for activated levels of caspase 3 using the 
Caspase Assay. Data are the means ± SD of triplicate determinations which 
were repeated in three separate experiments. *p<0.05, ***p<0.001 vs. the 
control.

Figure 3: Effects of LEF-1 gene suppression on the cell cycle of MCF-7 
breast cancer cells. MCF-7 cells were transfected with LEF-1 specific siRNA 
for 48h and then analysed for cell cycle phase distribution by flow cytometry, 
compared to the nontransfected cells and the control siRNA.
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Cognition of the oncogenic potential from HER2 that is based 
on aberrant overexpression correlating with tumorigenesis and poor 
clinical outcome in breast cancer reveals the role of anti HER2 therapy 
[10-12]. Trastzumab is a humanized monoclonal antibody, which 
binds directly on the extracellular domain of the HER2 to initiate 
several mechanisms include the PI3K/Akt pathway and the MAPK 
pathway whereas Erlotinib, a small molecular EGFR inhibitor, targets 
the ATP-binding site of EGFR. Thereby, activity of the tyrosin kinase 
gets depressed and results in promoting inhibition of proliferation and 
induction of apoptosis in cancer cells [15,37,38]. Both drugs interfere 
with the crucial PI3K-PTEN-Akt signal cascade, which is moreover 
determined to be deregulated in breast cancer cell and hence responsible 
for drug resistance [10,14,29-31,39,40]. LFG an antiapoptotic protein 
with potential involvement in cancer progression and previously well 
described [16-21], is the target gene of the AKT/LEF-1 pathway are for 
this studies one potential regulator of apoptosis in tumour cells [23,24].

After treatment of MCF-7 breast cancer cells with LFG-specific 
siRNA, successful downregulation of LFG expression was proved by 
analysing the amount of mRNA and protein (Figures 1A and C), we 
demonstrated that this kind of gene silencing affects a significant raised 
level of activated caspase-3/7, which indicates an increased rate of 
apoptosis (Figure 2B). 

Investigating clinical possibilities given by these findings, we 
detected here for the first time convincing evidence that LFG gene 
suppression sensitizes breast cancer cells to chemotherapeutical 
treatment (Figure 4). Following LFG gene silencing via specific siRNA 
transfection in MCF-7 breast cancer cells, our data clearly revealed 
significantly increased levels of activated caspase-3/7 after incubation 
with cytostatic drugs (e.g. Erlotinib or Trastzumab), compared to the si-
Control and nontransfected cells. To contrast this results with the rate 
of apoptotis in LFG downregulated cells without chemotherapeutical 
treatment, we even showed a fivefold advance, which indicate the 
combined use of siRNA and chemotherapy as an enhanced effective 
strategy (Figure 2A and 4).  Our findings are congruent with studies 
focused on other anti-apoptotic proteins like bcl-2, bcl-xl or p53 [32-
36], and demonstrated as well favourable prospects using siRNA to 
overcome chemoresistance by inhibiting protein expression. 

Our results displayed a slightly more potent treatment of Erlotinib 
to initiate apoptotic processes in LFG downregulated MCF-7 cells as 
compared with Trastzumab treated ones (Figure 4). This effect possibly 
originated from their different mechanism of inhibition, but still needs 
to be further elucidated. In both experimental parts the level of activated 
caspase-3/7 raised up on the sevenfold already 2h after treatment with 
lowest dose of 0.25 mg/ml, whereas an increasing concentrations on 
the double or fourfold no increased apoptosis proportional of the used 
chemotherapeutic concentration shows. This considerable suggest the 
high potential of sensitising.

LEF-1, member of the TCF/ LEF family and hence a regulatory 
participant in cell maturation and development [25,26], was identified 
as a LFG controlling transcription factor [24] and is therefore an 
important part of our studies. In the present study we demonstrated 
the critical role of LEF-1 on viability and proliferation in MCF-7 breast 
cancer cell. siRNA mediated downregulation of LEF-1 mRNA and 
protein (Figure 1A and C) led to an obvious reduction of cell viability 
in general (Figure 2A) and to an inhibition of proliferation caused by 
an increased accumulation of cells in the G2 phase of cell cycle (Figure 
3). Based on previous reports, which have described the upregulation 
or aberrant activation of LEF-1 during cancer progression [28,41,42], 

incubation we detected a significantly increased levels of caspase 3/7 
in the LFG siRNA transfectants compared the si-Control and non-
transfected cells (Figure 4). The activation of apoptosis demonstrated 
the potential of LFG gene silencing for sensitisation of MCF-7 breast 
cancer cells towards chemotherapeutical treatment.

Discussion
In addition to the fact that breast cancer is still the leading cause 

of cancer death in women worldwide [1], numerous studies have 
described the occurrence of resistances to conventional chemotherapy 
in cancer cells [14,29-33] and therefore underline the importance 
of understanding expression, regulation and function of signalling 
pathways. Dysfunction of this cell death system is contributed to 
several deregulations of antiapoptotic proteins like Bcl-2, Bcl-xl or BI-1 
[19,39,40]. 

Figure 4: The impact of LFG suppression on the apoptosis of MCF-7 cells 
after chemotherapeutical treatment with “Erlotinib” and “Trastzumab”. 
A. MCF-7 breast cancer cell was transfected with siRNA LFG. Following 
transfection the cells were treated with the chemotherapeutic agent “Erlotinib” 
using different times (2h; 4h) and concentrations (0,25mg/ml; 0,5mg/ml; 1mg/
ml). These stimulated cells were analysed for activated level of caspase 3 
using the Apo-One assay and compared to the nontransfected cells and 
the control. B. MCF-7 breast cancer cell were transfected with siRNA LFG. 
Following transfection the cells were treated with the chemotherapeutic agent 
“Trastzumab” using different times (2h; 4h) and concentrations (0,25mg/ml; 
0,5mg/ml; 1mg/ml). These stimulated cells were analysed for activated level of 
caspase 3 using the Caspase Assay and compared to the nontransfected cells 
and the control. Data are the means ± SD of duplicate determinations which 
were repeated in two separate experiments. *p<0.05, **p<0.01, ***p<0.001 
vs. the control.
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our findings indicated that LEF-1 may be suited as a new target in 
anticancer management. 

In conclusion the present study corroborates the essential role 
of LFG and its regulatory transcription factor LEF-1 as well as its 
regulatory mechanisms. Moreover demonstrates here for the first time 
sensitisation of breast cancer cells to chemotherapeutics, caused by LFG 
gene suppression. In prospective, our results have to be tested in context 
with other resistant types of cancer plus different chemotherapeutics 
and finally proved in preclinical in vivo experiments.
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