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Introduction
The object of the present work is to investigate the hydro-magnetic 

(MHD) stability of annular fluid jet. The MHD stability of full fluid 
cylinder pervaded by uniform magnetic field has been documented 
by Chandrasekhar [1]. Kendall performed experiments to obtain and 
examine the stability of annular fluid jet. Moreover, he did attract and 
draw the attention for investigating the stability of this model in general 
for its crucial astrophysical applications. The classical of the capillary 
instability of a gas cylinder submerged into a liquid are given for first 
time by Chandrasekhar for axisymmetric perturbation [1]. Hasan and 
Abdelkhalek, Elazab et al., and Drazin and Reid gave the dispersion 
relation valid for all axisymmetric and non-ax symmetric modes [2-4]. 
Cheng discussed the instability of a gas jet in an incompressible liquid 
for all modes of perturbation. However, we have to mention here that 
the results given by Cheng [5]. Kindall [6] performed experiments with 
modern equipment to check the breaking up of that model. Barakat HM 
study the magneto hydrodynamic (MHD) Stability of Oscillating Fluid 
Cylinder with Magnetic Field [7]. Barakat [8] discuss the axisymmetric 
magneto-hydrodynamic (MHD) self-gravitating stability of fluid 
cylinder. Mehring and Sirignano [9] discuss the axisymmetric capillary 
waves on thin annular liquid sheets. The aim of the present study the 
self-gravitating stability of a fluid cylinder embedded in a bounded 
liquid, pervaded by magnetic field, for all symmetric and asymmetric 
perturbation modes.

Formulation of the problem

Consider a gas cylinder of radius (a) surrounded by a bounded 
liquid of cylindrical shape of radius (qa) where 1<q<∞. Both of the 
two fluids are pervaded by a uniform magnetic field H0=(0, 0, α H0). 
The density of the gas is assumed to be ρ(1) while that of the bounded 
liquid is ρ(2). The gas and the liquid are assumed to be incompressible, 
non-viscous, perfectly conducting and streaming with velocity U0=(0, 
0, U). This bounded gas-core liquid jet surrounded by a self-gravitating 
medium. Each of the two fluids is acting upon by the self-gravitating, 
electromagnetic field and it is pressure gradient force. Surrounding 
medium is acted upon by self-gravitating force only. For the problem 
at hand these equations are given by
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In the medium surrounding the gas-core bounded liquid, we have 

∇2 V(i)=0 (6)

The gas medium superscript (1), while for the liquid have 
superscript (2).

Where (u) and (P) are the fluid velocity vector and kinetic pressure 
respectively, (H) is the magnetic field intensity, (V) the self-gravitating 
potential and (G) the self-gravitating constant. The system of basic 
equation (1)- (6) are solved for the unperturbed state. Consequently, 
the relation relating the magnetic, surface and fluids kinetic pressures 
is given by 

(1) (1) (1) 2
0 0 0 1 V ( )   

2
P H Cµρ α= − +    (7)

(2) (2) (2) 2
0 0 0 2 V ( )

2
P H Cµρ α= − +        (8)
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Applying the balance of the pressure across the fluid interface r=a, 
and r=qa, we find

( ) ( ) ( ) ( )2 22 (2) 2 (2) (1) 2 (1) (2) 2
1 0 (2 ( ) ln 1

2
C H Ga q Ga qµ α ρ π ρ ρ π ρ ρ = − − + + −  

     (9)

( )2 2 (2) (1) 2 (2) 2 2
1 0 ( )(1 ln ) (1 ln )

2
C H Ga q q qµ α π ρ ρ ρ= + + − − +         (10)

Perturbation analysis

For small departure from the unperturbed state, every physical 
quantity Q(r,φ,z,t) could be expressed as

Q(r,φ,z,t)=Q0(r)+ε0(t) Q1(r,φ,z)+⋯                                                       (11)

Where Q stands for u(i), P(i), H(i), V(i)  the amplitude of perturbation 
ε(t) at time t is

ε(t)=ε0exp(σ t)                                                            	               (12)

Where σ is the growth rate of the instability or rather the oscillation 
frequency if (σ=iw with i= √(-1)) is imaginary. The perturbed radii 
distances f the gas cylinder is given by

r=a+ε0a1  where a1=a exp(σt+i(km+mφ))                                       (13)

Where (k) is the longitudinal wave number and (m an integer) 
is the transverse wave number. The linearized perturbation equation 
deduced from the fundamental equations (1) - (7) are given by 
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And   2 (3)
1 0V∇ =                                             		                (17)

Based on the linear perturbation technique and stability 
theory, every perturbed quantity Q1 (r,φ,z,t) could be expressed as 
exp(σt+i(km+mφ)) times an amplitude function of r,

( ) ( )( )1 1Q r,  ,  z,  t  q (r)exp t i km mσ ϕϕ = + +                    	                (18)

By an apple to expansion (18), the relevant perturbation equation 
(14)-(17) are solved.

Finally, the non-singular solution is given by 
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( ) ( )3
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Where Im(kr) and Km(kr) are the modified Bessel function of first 
and second kind of order m, a while A1, A2, B1, B2, C1, C2, and D are 
constant of integration to be determined by the appropriate boundary 
condition and ( )( )i

AΩ is the Alfven wave frequency defined in terms of 
H0 by 

( )

2 2
( ) 0( )i
A i

H kµ
ρ

Ω =            				               (26)

Boundary condition

The solutions of equation for the unperturbed system and 
perturbed system must satisfy certain boundary condition across the 
fluid interface at (r=a, and r=qa). These boundary conditions are given 
as follows:

1) The normal component of the velocity vector (1)
1u  must be 

compatible with the velocity of the gas-liquid interface particles across 
the surface at (r=a) i.e., 

( )1
1r t

u r∂
=
∂

                                         			                  (27)

2) The radial component ( )1
1u of the gas velocity vector u(1) must 

equal that of the liquid ( )2
1ru at r=a i.e.,  

( ) ( )1 2
1 1r ru u=                                                         		               (28)

3) The normal component ( )2
1ru of the velocity vector u(2) of the 

liquid region vanishes across the liquid-tenuous medium at (r=qa)  i.e.,    
( )2
1 0ru =                                                           		                  (29)

4) The self-gravitating potential of the gas and the liquid and their 
derivatives are continuous across the gas-liquid interface at (r=a)   i.e., 
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                      	                (31)

5) The self-gravitating potential of the liquid and tenuous medium 
and their derivatives must be continuous at  (r=qa)   

6) The normal component of the magnetic field must be continuous 
across the gas-liquid interface at (r=a)

Upon applying the foregoing boundary-condition at (r=a) and 
(r=qa), the constant of integration are identified as follows:
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( ) ( )2 2
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( ) ( )( )1 2 2
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Where (x=ka and y=qx) are the dimensionless longitudinal wave-
numbers.

By resorting to the foregoing solution of equations for the 
unperturbed and perturbed state and by applying the compatibility 
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condition, that the normal component of the total stress must be 
continuous across the gas-liquid interface at (r=a), the following 
stability criterion can be derived state 

( )2 [ ]iku F Q Sσ + = +                                 		                  (39)
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Discussion
Equation (39) is the desired relation of the present model of a gas 

cylinder volume embedded into a bounded liquid subjected to a self-
gravitating, pressure-gradient and magneto-dynamic force. It relates 
the growth rate σ with the modified Bessel function I0(x) and K0(x) 
and their derivative, the wave number m and x, the amplitude U of 
the streaming velocity, Ω the oscillation frequency of the oscillating 
streaming, α is the parameter of the magnetic field in the gas cylinder 
and with the parameters T, ρ, a, µ and H0 of the problem. One has to 

mention here that the relation (39) contain 
2
0

(1) 2

H
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 and 
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ρ
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 
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as a 

unit of (time)-2. The denisities (ρ(1)
, ρ

(2)) of the gas and liquid region, the 
gas-liquid radii ratio q, the magnetic field intensity and permeability 
H0 and μ, the self-gravitating constant G for the gas radius a. The 
dispersion relation (39) is the linear combination of a of a dispersion 
relation of the same model being acted upon by the self-gravitating 
force only. In the latter work, Chandrasekhar utilized the technique 
of presenting the solenoidal vectors in terms of poloidal and toroidal 
quantities which are valid only for the m=0. This linear combination is 
also true if the acting force is the capillary and electromagnetic force 
whether the model is full fluid cylinder [10].

Stability discussion

Before we discuss the ordinary stability, marginal stability and 
instability of the system under consideration, it is desirable to study 
the behaviors of the Bessel functions and also those of the compound 
functions contained in the relation (39).

In view of the recurrence relations (see Abramowitz and Stegun 
[1] [11])
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Because Im(x) is monotonic increasing and positive definite Im(x) 
> 0 for all modes of perturbation m ≥ 0 and nonzero values of x ≠ 0, 
while Km(x) is monotonically decreasing but never negative, i.e., Km(x) 
> 0 we may show that 

I m̀(x) > 0,       Km ̀(x) < 0                                       		                 (45)

Also for, m ≥ 1 for all values of x ≠ 0, we have 

2Im(x) Km(x) < 1                                             		               (46)

In order to discuss the stability and instability states region of the 
present models, the dispersion relation (39). One has to refer here that 
if we suppose that (m=0) the dispersion relation yields
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And we use the relation

K0 ̀(x)=-K1(x),    I0 ̀(x)=I1(x)                                                                               (48) 

With the Wronskian relation
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The dispersion relation (39) reduce to
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Limiting cases

Some previous reported works could be obtained as limiting cases 
for the present general dispersion relation (41). A lot of approximation 
(ρ(2)=0, Ho=0,  u=0 and m=0) are required for the criterion (52), to obtain
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             	               (51)

The relation (52) was derived for the first time by Chandrasekhar 
and Fermi [12] using a different technique from that which is used here. 

If we assume that (ρ(2)=0, Ho=0,  u=0 and m ≥ 0)
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m m
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                    	             (52)

This corroborates the relation derived by Chandrasekhar [1] 
using the normal-mode analysis. If we suppose that the fluids are not 
conducting and (H0=0) we obtain from (39)

( )2   F . Mikuσ + =    				                (53)

Where F and M are defined by equations (40), (41). Equation (53) 
is the dispersion relations for the present model under the effect only 
the self-gravitating force in the gas and liquid. If we suppose that t 
(G=0) we obtain from (39)

( )2   F . Sikuσ + =                             			                  (54)

Where F and S are defined by equations (40), (43). Equation (54) 
is the dispersion relations for the present model under the effect only 
the electromagnetic force due to the existence of the uniform magnetic 
field in the gas and liquid. 

Conclusion
1- The self-gravitating force is destabilizing only in the symmetric 
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mode (m=0) for a small range of wave numbers, but it is stabilizing for 
all other perturbation.

2- The electromagnetic force due to the pervading uniform magnetic 
field in the gas and the liquid wave a strong stabilizing influence for all 
short and long wavelengths in all symmetric and asymmetric modes of 
perturbation.

3- The liquid-gas radii ratio has stabilizing tendency and that is
valid for all x ≠ 0 and m ≥ 0 values.   

4- The liquid-gas densities ratio a strong destabilizing effect
for all wavelengths in all the symmetric and asymmetric modes of 
perturbation.
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