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Abstract
Selenium has received considerable attention as a cancer preventive agent. But the puzzling, disquieting results of 

the Selenium and Vitamin E Cancer Prevention Trial (SELECT) have called into question how much is really understood 
about the biology behind selenium and cancer risk. This predicament should provide researchers with a renewed 
stimulus for exploring mechanisms of selenium anti-carcinogenesis. One such line of inquiry is homeostatic 
housecleaning — that selenium can preferentially eliminate DNA-damaged cell populations through apoptosis, 
consistent with the decreased DNA damage and increased apoptosis observed in the prostate of selenium-replete 
dogs after receiving additional dietary selenium supplementation. Because growing experimental evidence suggests 
the anti-carcinogenic effects of selenium on prostatic cells are form-dependent and apoptosis is a DNA damage 
response, the aim of this research was to determine whether selenite, a form of selenium that induces DNA damage, 
possesses potent homeostatic housecleaning activity. To test this hypothesis, we exposed human and canine prostate 
cancer cells to non-cytotoxic concentrations of hydrogen peroxide (H2O2) to create cell populations with higher levels 
of oxidant-induced DNA damage, and then evaluated the extent to which oxidant damage sensitizes prostate cancer 
cell populations to selenite-triggered apoptosis compared to apoptosis triggered by methylseleninic acid (MSA), 
a non-DNA damaging methylselenol precursor we previously showed to have strong homeostatic housecleaning 
activity. In this brief communication, we report that non-cytotoxic oxidant-induced damage does not sensitize prostate 
cancer cell populations to selenite-triggered apoptosis. Intensity of apoptosis triggered by MSA in H2O2-damaged 
prostate cancer cells was 3 times higher than undamaged cell populations not exposed to H2O2 (P ≤ 0.01). In contrast, 
neither human nor canine prostate cancer cells with oxidant-induced damage had a significant increase in intensity 
of selenite-triggered apoptosis compared to undamaged cells. The divergent results between MSA and selenite in 
our experiments contribute to a growing catalogue of observations that suggest there are important form-dependent 
differences in the extent to which selenium can impact the emergence of prostate cancer. By carefully documenting the 
form-dependent biological effects of selenium and other nutrients, we commit ourselves to more precisely qualifying 
the implications of laboratory results and to more carefully designing and interpreting the results of large-scale 
human trials.
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Introduction
Personalizing nutrition for disease prevention — minimizing 

the risk for diseases such as prostate cancer by optimizing nutrient 
intake — remains one of the major challenges that scientists and 
health professionals face today. Emerging data on the relationship 
between selenium intake and human health point to a U-shaped dose 
response, suggesting that more selenium is not necessarily better [1-4]. 
Moreover, careful evaluation of the relationship between selenium 
status and cancer risk suggests that the anticancer benefit of selenium 
supplementation in humans and animals cannot be explained simply 
by antioxidant protection, because it occurs at selenium levels at which 
selenium-dependent antioxidant enzymes are already maximized [3,5-8]. 
More than ever before, investigators are motivated to explore 
new mechanisms of selenium anti-carcinogenesis [9-11]. 

Our work is pointing to a new idea of how selenium might diminish 
prostate cancer risk — by sweeping away damaged prostatic cells, rather 
than by protecting cells from damage. This line of reasoning was 
set in motion by the results of a randomized feeding trial in dogs, the 
only non-human species to frequently develop prostate cancer during 

aging [12]. In that study [8], dietary selenium supplementation 
lowered prostatic DNA damage but increased apoptosis, 
leading to the hypothesis that selenium might exert its cancer-
preventive effect by selectively increasing apoptosis in the most 
highly DNA-damaged cells. In order to achieve a significant 
lowering of DNA damage level in the prostate, selenium would have 
to preferentially eliminate populations of damaged cells, because 
a non-selective triggering of apoptosis would not explain the overall 
reduction in DNA damage observed in the prostate of selenium-
supplemented dogs.
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Pursuing this line of reasoning, in a recent paper [13] we documented 
the ability of selenium to preferentially sweep away damaged 
cells — a process we call homeostatic housecleaning — using an in vitro 
assay so that DNA damage level could be more carefully controlled in 
human and canine prostate cancer cell populations. We showed that 
non-cytotoxic oxidant-induced damage sensitizes prostate cancer cell 
populations to apoptosis triggered by methylseleninic acid (MSA), 
a proximal precursor of methylselenol [14]. Methylselenol production 
is thought to play an important role in the anti-tumorigenic 
activity of dietary selenium [10,15]. Taken together, our results 
point to a new way in which selenium might render an aging prostate 
under oxidative attack more resistant to cancer.

At the same time, work by us and others in the field of selenium and 
cancer has emphasized that the anticancer effects of selenium may be 
form-dependent [16-19]. It is plausible that a selenium compound that 
induces DNA damage might have superior homeostatic housecleaning 
activity than compounds like MSA that do not induce DNA damage. 
Here, in this brief research communication, we report our experience 
testing the hypothesis that selenite, an inorganic form of selenium that 
induces DNA damage [20], might have stronger apoptosis-triggering 
activity in oxidant-damaged cell populations. Our results comparing 
MSA and selenite add meaningfully to a growing body of experimental 
evidence that reveal mainly divergent effects of these two forms 
of selenium on prostate cancer cells.

Materials and Methods 
Cell lines and assay conditions

The human prostate cancer cell line DU-145 was purchased 
from ATCC (Manassas, VA). The canine prostate cancer cell line 
TR5P was established in our laboratory from a dog with spontaneous 
prostatic carcinoma [21]. DU-145 human and TR5P canine prostate 
cancer cells were maintained in DMEM F-12 (GIBCO, Carlsbad, CA) 
supplemented with 10% batch-matched fetal bovine serum (FBS) 
(Invitrogen, Carlsbad, CA) and RPMI-1640 supplemented with 5% 
FBS, respectively. The cell culture condition was 37ºC with a humidified 
atmosphere of 5% CO2 in air. For all experiments, cells were seeded 
at 50% confluency 18 hours before introducing treatment.

To create prostate cancer cell populations with non-cytotoxic 
oxidant damage, cells were exposed to hydrogen peroxide (H2O2) 
(Malinckrodt, Phillipsburg, NJ) for one hour and then DNA strand 
breaks were measured by Comet assay [22,23]. Dose-finding studies 
were used to determine the concentration of H2O2 that induced non-
cytotoxic oxidant damage, as previously reported [13]. In DU-145 
cells without H2O2 exposure, 23% of cells had extensive DNA damage 
(single strand breaks). One-hour exposure of DU-145 cells to 100 µM 
H2O2 yielded a cell population in which 90% of cells had extensive DNA 
damage (P<0.0001) but was non-cytotoxic — no significant increase 
in apoptosis or cell death quantified by Annexin-V-fluorescein and 
propidium iodide [24,25]. Thus, a dose of 100 µM H2O2 was chosen 
for experiments with DU-145 cells. In TR5P canine prostate cancer 
cells, 90% of cells already had extensive DNA single strand breaks 
before H2O2 exposure, whereas only 8% of cells had extensive DNA 
double strand breakage. Therefore, double strand break induction was 
a preferred criterion to select doses of H2O2 that would significantly 
increase DNA damage in TR5P cells. Exposure to 400 µM H2O2 
for one hour increased the number of cells with extensive DNA damage 
to 13.5% (P=0.001). Doses of H2O2 exceeding 400 µM were cytotoxic 
to TR5P cells. Thus, a dose of 400 µM H2O2 was chosen for experiments 
with TR5P cells. 

To assay the ability of MSA or selenite to preferentially trigger 
apoptosis in oxidant-damaged cell populations, cells were washed with 
PBS immediately after H2O2 exposure and incubated in fresh complete 
medium containing methylseleninic acid (MSA) or sodium selenite 
for 24 hours. Methylseleninic acid was chosen for these experiments 
because the metabolism of this selenium compound to the anti-
tumorigenic metabolite methylselenol does not require lyases, which 
are absent in many cell lines [14,15]. Dose-finding experiments for MSA 
and selenite identified concentrations of each selenium compound that 
enabled useful comparison of apoptosis intensity between oxidant-
damaged versus undamaged cell populations. Selenite concentrations 
exceeding 10 µM were not studied, because the level is toxic to humans 
[26]. Comet assay confirmed that at the concentrations used, exposure 
to selenite, but not exposure to MSA, induced DNA strand breaks 
as previously reported [20]. After 24 hours incubation, cells were 
harvested to determine intensity of apoptosis.

To detect apoptosis in cells, cleaved PARP [27,28] or cleaved 
caspase-3 [29,30] was measured by immunoblot. Cell lysates from both 
adherent and detached cells were collected in 1% Triton X-100 lysis 
buffer containing protease inhibitors. Protein content was quantified 
by the Bradford dye-binding assay (Bio-Red Laboratories, Richmond, 
CA). Fifty µg of total protein was used for electrophoresis on 8-12% 
mini SDS polyacrylamide gel with Tris-glycine buffer (25 mM Trizma 
base, 190 mM glycine, 0.1% SDS). Proteins were transferred in a semi-
dry condition. Membranes were developed with a chemiluminescence 
kit (Pierce, Rockford, IL) following the manufacturer’s instructions. 
Primary antibodies for immunoblot detection were purchased from 
Cell Signaling Technology (Beverly, MA). The detection of cleaved 
PARP served as an execution marker of apoptosis in DU-145 human 
prostate cancer cells. For TR5P canine prostate cancer cells, since 
primary antibody for dog cleaved PARP was not commercially 
available, cleaved caspase-3 was chosen as the apoptosis marker. 
Beta-actin was used as the loading control. Blot intensity was 
quantitated by Kodak Image Station 440CF with 1D Image Analysis 
Software (Kodak, Rochester, NY) and expressed in arbitrary units. 

Data analysis

Blot intensity of cleaved PARP and cleaved caspase-3 was used to 
determine the homeostatic housecleaning activity of MSA and selenite. 
To test each selenium compound for homeostatic housecleaning activity 
(i.e., the preferential elimination of oxidant-damaged cell populations), 
prostate cancer cells were exposed to non-cytotoxic concentrations of 
H2O2 to create cell populations with increased oxidant-induced DNA 
damage. Then we evaluated the extent to which oxidant damage sensitized 
prostate cancer cell populations to MSA-triggered or selenite-triggered 
apoptosis. For DU-145 human and TR5P canine prostate cancer cells, this 
was determined by comparing the extent to which the observed intensity 
of selenium-triggered apoptosis in oxidant-damaged cells exceeded an 
expected value, which was equal to the sum of intensities of basal apoptosis 
in untreated cells, plus apoptosis induced by H2O2 alone, and apoptosis 
induced by selenium alone. Data from three independent experiments 
were analyzed by two-tailed, independent t-test to compare differences 
between the effect of selenium treatment on blot intensity of apoptosis 
markers in oxidant-damaged versus undamaged cells. In this manuscript, 
the term “undamaged cells” refers to cell populations that were 
not exposed to H2O2. A p-value<0.05 was considered significant. 
Data are presented as mean and standard deviation (SD). All statistical 
analyses were carried out using SAS 9.2 software (SAS Institute, Cary, NC). 

Results
In DU-145 human prostate cancer cells, we evaluated whether the 
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intensity of apoptosis triggered by MSA in H2O2-damaged prostate 
cells exceeded the sum of the basal apoptosis in untreated cells plus 
apoptosis induced by MSA alone and H2O2 alone. Figure 1a shows that 
MSA at 3 µM triggered significantly greater apoptosis (3X increase, 

P=0.01) in H2O2-damaged cells than expected. A similar threefold 
increased intensity of apoptosis triggered by MSA (5 µM) was seen 
in H2O2-damaged TR5P canine prostate cancer cells compared to 
undamaged cells not exposed to H2O2 (P=0.004; Figure 1b), evidence 
of preferential elimination of oxidant-damaged cell populations 
by MSA-triggered apoptosis.

In contrast, apoptosis triggered by selenite was not higher in H2O2-
damaged cells compared with undamaged cells. Non-cytotoxic oxidant 
damage did not sensitize DU-145 cells to selenite-triggered apoptosis; 
an increase in apoptosis was not detected by PARP cleavage in either 
undamaged or H2O2-damaged DU-145 cells exposed to 10 µM selenite 
(Figure 1a). In TR5P canine prostate cancer cells, selenite at 5 µM 
induced apoptosis in undamaged cells. However, the intensity of selenite-
triggered apoptosis was not significantly higher in cell populations 
with oxidant-induced damage (P=0.18; Figure 1b). We concluded that, 
unlike for MSA-triggered apoptosis, non-cytotoxic oxidant-induced 
damage does not sensitize prostate cancer cells to selenite-triggered 
apoptosis.

Discussion
Prostate cancer is the ultimate product of dysregulated homeostasis 

within the aging prostate. Through triggering apoptosis, selenium may 
selectively eliminate DNA-damaged cells, keeping genetic instability 
low within the prostate, and consequently attenuating carcinogenesis. 
If this process of preferential elimination of DNA-damaged cell 
populations — which we have called homeostatic housecleaning [13] 
— can potentially render the prostate more resistant to cancer, 
it is important to identify the forms of selenium with the most potent 
homeostatic housecleaning activity. In this communication, we show 
that in contrast to methylseleninic acid (MSA), selenite does not 
preferentially trigger the apoptosis of oxidant-damaged prostate cancer 
cell populations. The magnitude of apoptosis triggered by selenite 
was not different between undamaged prostate cancer cell lines 
and cells after non-cytotoxic damage induced by H2O2 exposure.

These results add to a growing body of experimental evidence 
and clinical suspicion that the anti-carcinogenic effects of selenium 
are form-dependent. For example, supplementation with selenium 
in the form of selenium yeast significantly decreased prostate 
cancer incidence in the men of the Nutritional Prevention 
of Cancer Trial [5]. Yet, in the Selenium and Vitamin E Cancer 
Prevention Trial (SELECT), no such cancer-protective advantage 
of selenomethionine was observed; in fact, supplementation of men 
with the highest base l ine  se lenium status  was  associated 
with an increased risk for prostate cancer [4]. These discordant 
results raise questions whether particular forms of selenium might 
elicit superior prostatic responses. These highly publicized results 
have motivated researchers to begin to report their experience 
with dietary supplementation studies directly comparing 
se lenomethionine and se lenium yeast  [16,31] .  Clear ly , 
this  i s  only  a starting point. The interrogation of a broader range 
of prostatic responses and a more extensive array of selenium 
compounds are needed to better understand critical differences 
in the selenium form-dependent effects that may impact cancer risk.

Our initial work on selenium-triggered apoptosis and prostate cancer 
showed that non-cytotoxic oxidant damage sensitizes cells to 
MSA-triggered apoptosis [13]. We reasoned that selenite might 
have even more potent homeostatic housecleaning activity because 
selenite has been shown to induce DNA strand breaks [32], which 
might render selenite better equipped than MSA (which does not 
damage DNA) to trigger apoptosis in prostate cell populations 

(a) DU-145 Human Prostate Cancer Cells 

(b) TR5P Canine Prostate Cancer Cells 

Figure 1:  Apoptosis induced by methylseleninic acid (MSA) or selenite in 
hydrogen peroxide (H2O2)-damaged DU-145 human and TR5P canine 
prostate cancer cells. After 1-hour exposure with H2O2 to induce non-cytotoxic 
DNA damage, cells were washed with PBS and treated with MSA or selenite 
in complete medium for 24 hours, and then intensity of apoptosis was 
determined using cleaved PARP and cleaved caspase-3. Cells exposed to 
assay conditions without H2O2 or selenium served as comparisons. (a) Protein 
expression of cleaved PARP in DU-145 human prostate cancer cells exposed 
to 3 µM MSA or 10 µM selenite. (b) Protein expression of cleaved caspase-3 
in TR5P canine prostate cancer cells exposed to 5 µM MSA or 5 µM selenite. 
Blot intensities are expressed as mean (SD) in arbitrary units from three 
independent experiments. β-actin, which served as the loading control, shows 
there was equivalent loading in all lanes (using intensity of untreated cells in 
Lane 1 as reference, the relative intensity for Lane 2-6 in panel a was 0.99, 
0.98, 0.98, 0.95, 0.98, respectively; in panel b the relative intensity for Lane 
2-6 was 0.97, 0.99, 0.97, 0.98, 1.01). For MSA, homeostatic housecleaning 
activity is determined by comparing the intensity of apoptosis marker in Lane 4 
versus the sum of Lanes 1, 2, and 3. For selenite, homeostatic housecleaning 
activity is determined by comparing the intensity of apoptotic marker in Lane
6 versus the sum of Lanes 1, 2, and 5. Since under the conditions of these 
experiments there was no apoptosis signal in Lane 1 (there was no significant 
basal apoptosis in untreated cells) or Lane 2 (there was no apoptosis signal for 
H2O2 treatment alone because the H2O2 dose used was intended to be DNA-
damaging, but not cytotoxic), the comparison of interest is simplified to Lane 4 
vs. Lane 3 for MSA and Lane 6 vs. 5 for selenite. For each cell line within the 
same selenium treatment group, mean values without a common superscript
differ at P<0.05. ND: non-detectable. 
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after non-cytotoxic H2O2 exposure. Here, we show this is not so. These 
discordant results — positive homeostatic housecleaning activity with MSA, 
negative homeostatic housecleaning activity with selenite — are consistent 
with previous studies showing these two compounds exert divergent effects 
on an array of mechanisms of anti-carcinogenesis in prostatic cells as diverse 
as reactive oxygen species production [33], p53 activation [30,34], cell cycle 
arrest [35,36], androgen receptor signaling [37,38], matrix metalloproteinase 
production [39,40], and apoptosis [28,30,33,35,41]. Of particular relevance 
to the results reported here are the findings of Hu and colleagues [28] that 
MSA can potentiate apoptosis induced by chemotherapeutic drugs, whereas 
selenite cannot. Their results from evaluating MSA and selenite in a 
cancer treatment setting are complemented by our experiments, which 
evaluate the ability of MSA and selenite to trigger apoptosis following non-
cytotoxic oxidant damage, suggesting form-dependent effects of selenium 
may indeed impact the emergence of cancer in a cancer-preventive context 
— regulating the elimination of damaged epithelial cell populations in 
the aging prostate exposed to pro-oxidant pressures. Future studies might 
be directed toward defining the extent to which the expression of specific 
selenoproteins modulates selenium-induced elimination of oxidant-damaged 
prostatic cells.

Finally, as scientists and health professionals continue to collectively 
re-think the role of selenium and other nutrients in cancer prevention, 
investigators must work to carefully document the form-dependent effects 
of nutrients. By avoiding a mindset of naïve substitution — seeing one form 
of nutrient as equivalent to another — we make surer progress toward 
understanding the implications of our laboratory findings 
and side-stepping errant assumptions. Moreover, this disciplined 
approach might help us to avoid potential pitfalls in the design 
and interpretation of large-scale human trials.
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