

Securing WSN Routing: Efficiency, Resilience and Trust

Rania Mahmoud*

Department of Intelligent Sensor Networks, Levant Institute of Technology, Beirut, Lebanon

Introduction

Wireless Sensor Networks (WSNs) are increasingly deployed for a variety of applications, from environmental monitoring to industrial control. However, their inherent characteristics, such as limited computational power, energy constraints, and distributed nature, make them susceptible to various security threats. Addressing these vulnerabilities is paramount to ensure the reliability and trustworthiness of data collected and transmitted by WSNs. This field of research has seen significant development in recent years, with a strong focus on designing robust security mechanisms that integrate seamlessly with existing networking protocols. Early work in this area explored the fundamental challenges of securing WSNs, recognizing the need for protocols that are both effective and efficient. The introduction of security-aware routing protocols has been a pivotal development, aiming to embed security considerations directly into the process of establishing and maintaining communication paths. These protocols strive to protect sensitive data from unauthorized access, modification, or denial of service, which are critical concerns in many WSN deployments. By analyzing the unique architecture and operational constraints of WSNs, researchers have developed a range of innovative solutions. These solutions often involve a delicate balance between security strength and resource consumption, as WSN nodes are typically battery-powered and possess limited processing capabilities. The goal is to achieve comprehensive security without compromising the network's operational lifespan or performance metrics. The subsequent literature provides a deep dive into specific advancements and methodologies employed in this critical area of network security. Early research laid the groundwork by identifying key vulnerabilities inherent in WSNs and proposing foundational security concepts. For instance, the development of security-aware routing protocols specifically designed for WSNs addresses the unique challenges posed by these networks, such as limited resources and distributed node architectures. These protocols aim to integrate security mechanisms directly into the routing decision-making process, thereby enhancing data confidentiality, integrity, and availability against a spectrum of attacks. Such attacks can range from eavesdropping and jamming to node compromise, all of which can significantly disrupt network operations and compromise data integrity. A key consideration in designing these protocols is the imperative to achieve these security objectives without imposing an undue burden on network lifetime or overall performance, a common trade-off in network security design. Further advancements have focused on creating lightweight security frameworks suitable for resource-constrained sensor nodes. The integration of trust management and intrusion detection systems into routing protocols has emerged as a promising approach. These systems dynamically adapt to changing network conditions and detect malicious activities, ensuring reliable data delivery while minimizing the overhead associated with security measures. The core idea is to empower distributed trust evaluation alongside secure path discovery, making the network more resilient to internal and external threats. The evolution of secure routing protocols also

highlights a focus on energy awareness. Balancing security needs with energy efficiency is a crucial challenge, as prolonged network lifespan is a primary objective in many WSN applications. By proposing distributed security mechanisms, researchers aim to prolong network operational life by optimizing resource utilization for security functions. These protocols often ensure data integrity and confidentiality without relying on a central authority, thereby enhancing resilience against single points of failure. The impact of malicious nodes on routing protocols has also been a significant area of investigation. Secure, distributed intrusion detection and prevention mechanisms have been developed to identify and isolate compromised nodes, thereby maintaining network connectivity and data trustworthiness. The lightweight and efficient design of these mechanisms is essential for their suitability in typical sensor nodes, which have limited processing and memory resources. Specific attack vectors, such as black hole and gray hole attacks, have also been targeted by proposed secure and energy-efficient routing schemes. These schemes enhance existing protocols by incorporating trust-based approaches and anomaly detection to identify and isolate malicious nodes, thereby improving network security and extending operational life. The effectiveness of these protocols is often validated through simulations, demonstrating their capability to mitigate specific threats. Another critical aspect explored is the development of lightweight, secure, and energy-efficient routing protocols designed to protect against a variety of security threats. The integration of secure multi-path routing and anomaly detection mechanisms is a common strategy. These protocols prioritize minimal computational overhead and energy consumption, which are crucial for the longevity of sensor networks. The challenges of securing routing paths against jamming attacks have also been addressed, with proposals for robust secure routing protocols incorporating distributed jamming detection and mitigation mechanisms. These mechanisms aim to ensure reliable data communication even under adversarial conditions, maintaining network connectivity and data integrity with minimal impact on energy resources. The need for enhanced data privacy and integrity in WSNs has led to the development of security-aware routing protocols that utilize advanced cryptographic techniques. The application of attribute-based encryption and secure multi-path routing helps protect sensitive data from unauthorized access and modification, while maintaining efficiency by minimizing communication overhead and computational costs. Finally, the development of secure routing protocols also focuses on detecting and mitigating node failures and malicious attacks through distributed reputation systems and proactive routing updates. These mechanisms ensure network reliability and data authenticity, with a continued emphasis on lightweight and energy-efficient designs suitable for the resource constraints of sensor nodes. The objective is to provide a comprehensive overview of the current landscape of secure routing in WSNs, highlighting the diverse approaches and ongoing advancements in this critical research domain. This ongoing research effort is vital for unlocking the full potential of WSNs in various sensitive and critical applications. The continuous evolution of threats necessitates a parallel evolution in defensive strategies, ensuring that WSNs can operate securely and reliably in an increasingly complex environment.

Future work will likely focus on further optimizing these protocols for even greater efficiency and scalability, as well as addressing emergent threats. The integration of artificial intelligence and machine learning techniques may also play a role in enhancing detection and mitigation capabilities. The interdisciplinary nature of WSN security, bridging networking, cryptography, and systems design, promises continued innovation in the years to come. The exploration of novel attack vectors and the development of corresponding countermeasures will remain a central theme. The establishment of standardized security frameworks for WSNs is also an important long-term goal. As WSNs become more ubiquitous, ensuring their security and integrity will be paramount. The research presented in the following sections offers valuable insights into the current state-of-the-art and potential future directions for securing these vital networks. The advancements discussed underscore the proactive efforts of researchers to create resilient and trustworthy WSN infrastructures. The culmination of these efforts aims to bolster confidence in WSN technology across diverse application domains. The critical need for robust security solutions in WSNs drives ongoing innovation and collaboration within the research community. The insights gained from studying these protocols will be instrumental in designing next-generation WSNs that are inherently secure and dependable. This foundational understanding is essential for anyone involved in the deployment and management of WSNs in security-sensitive environments. The continuous refinement of these security measures ensures that WSNs can adapt to evolving threat landscapes. The research community's dedication to addressing WSN security challenges is evident in the breadth and depth of the work presented. The pursuit of lightweight yet effective security solutions remains a central theme in this field of study. [1].

This paper introduces and analyzes security-aware routing protocols designed for Wireless Sensor Networks (WSNs). It details how these protocols address vulnerabilities inherent in WSNs, such as limited resources and the distributed nature of nodes, by incorporating security mechanisms directly into the routing decision process. The focus is on enhancing data confidentiality, integrity, and availability against various attacks, including eavesdropping, jamming, and node compromise, without significantly impacting network lifetime or performance [1].

This research presents a novel secure routing protocol that leverages trust management and intrusion detection to protect WSNs. It focuses on creating a lightweight security framework suitable for resource-constrained sensor nodes. The protocol dynamically adapts to network conditions and malicious activities, ensuring reliable data delivery while minimizing overhead. The key insight is the integration of distributed trust evaluation with secure path discovery [2].

This article explores the challenges of securing routing paths in WSNs against various attacks, particularly focusing on energy-aware security. It proposes a distributed security mechanism that balances security needs with energy efficiency, aiming to prolong network lifespan. The protocol ensures data integrity and confidentiality without relying on a central authority, making it resilient to single points of failure [3].

This paper investigates the impact of malicious nodes on routing protocols in WSNs and introduces a secure, distributed intrusion detection and prevention mechanism. It highlights how to identify and isolate compromised nodes to maintain network connectivity and data trustworthiness. The protocol is designed to be lightweight and efficient, suitable for the constraints of typical sensor nodes [4].

The study proposes a secure and energy-efficient routing scheme for WSNs that addresses black hole and gray hole attacks. It enhances existing routing protocols by incorporating a trust-based approach and anomaly detection to identify and isolate malicious nodes. The protocol's effectiveness is evaluated through simulations, demonstrating its capability to improve network security and prolong its operational life [5].

This paper presents a lightweight, secure, and energy-efficient routing protocol (LSERP) for WSNs. It aims to protect against various security threats, including selective forwarding and sinkhole attacks, by integrating secure multi-path routing and anomaly detection. The protocol's design prioritizes minimal computational overhead and energy consumption, crucial for the longevity of sensor networks [6].

This work addresses the critical issue of security in WSNs by proposing a novel secure routing protocol that enhances resilience against jamming attacks. It incorporates a distributed jamming detection and mitigation mechanism to ensure reliable data communication even under adversarial conditions. The protocol's design aims to maintain network connectivity and data integrity with minimal impact on energy resources [7].

This paper introduces a security-aware routing protocol that emphasizes data privacy and integrity in WSNs. It utilizes attribute-based encryption and secure multi-path routing to protect sensitive data from unauthorized access and modification. The protocol is designed to be efficient, minimizing communication overhead and computational costs to suit the limitations of sensor nodes [8].

This research proposes a novel security-aware routing protocol for WSNs that focuses on detecting and mitigating node failures and malicious attacks. It employs a distributed reputation system and a proactive routing update mechanism to ensure network reliability and data authenticity. The protocol is designed to be lightweight and energy-efficient, suitable for the resource constraints of sensor nodes [9].

This paper presents a secure and efficient routing protocol for WSNs that addresses security vulnerabilities with a focus on both confidentiality and integrity. It introduces a lightweight cryptographic mechanism and a distributed key management scheme to protect data in transit. The protocol is designed to be energy-efficient and resilient to common attacks, ensuring the reliable operation of WSNs [10].

Description

Security-aware routing protocols for Wireless Sensor Networks (WSNs) are designed to address the inherent vulnerabilities present in these networks. These protocols focus on integrating security mechanisms directly into the routing decision-making process to enhance data confidentiality, integrity, and availability. They aim to protect against a wide range of attacks, including eavesdropping, jamming, and node compromise, while ensuring that network lifetime and performance are not significantly impacted. The limited resources and distributed nature of WSN nodes necessitate the development of lightweight and efficient security solutions [1].

A novel secure routing protocol has been developed that leverages trust management and intrusion detection to safeguard WSNs. This protocol establishes a lightweight security framework appropriate for sensor nodes with constrained resources. It dynamically adjusts to network conditions and identifies malicious activities, thereby guaranteeing reliable data transmission with minimal overhead. A key innovation is the synergistic integration of distributed trust assessment with secure path discovery [2].

The complexities of securing routing paths in WSNs against diverse threats are explored, with a particular emphasis on energy-aware security. A distributed security mechanism is proposed to strike a balance between security requirements and energy conservation, with the objective of extending the network's lifespan. This protocol ensures the integrity and confidentiality of data without reliance on a centralized authority, enhancing its resilience to single points of failure [3].

The detrimental effects of malicious nodes on routing protocols within WSNs are investigated, leading to the introduction of a secure, distributed system for intru-

sion detection and prevention. This mechanism effectively identifies and isolates compromised nodes, thereby preserving network connectivity and ensuring data trustworthiness. The protocol's design prioritizes a lightweight and efficient approach, making it well-suited for the typical resource limitations of sensor nodes [4].

A secure and energy-efficient routing scheme is proposed for WSNs, specifically targeting black hole and gray hole attacks. This scheme enhances existing routing protocols by incorporating a trust-based methodology and anomaly detection techniques to identify and isolate compromised nodes. Simulation-based evaluations demonstrate the protocol's efficacy in bolstering network security and extending its operational lifespan [5].

A lightweight, secure, and energy-efficient routing protocol, identified as LSERP, is presented for WSNs. This protocol is engineered to provide protection against a variety of security threats, including selective forwarding and sinkhole attacks, through the integration of secure multi-path routing and anomaly detection. The design philosophy emphasizes minimizing computational overhead and energy consumption, critical factors for ensuring the longevity of sensor networks [6].

The critical issue of security in WSNs is addressed through the proposal of a novel secure routing protocol designed to improve resilience against jamming attacks. This protocol incorporates a distributed mechanism for detecting and mitigating jamming, thereby ensuring dependable data communication even in the presence of adversarial actions. The protocol's architecture aims to sustain network connectivity and data integrity with minimal expenditure of energy resources [7].

A security-aware routing protocol is introduced that prioritizes data privacy and integrity within WSNs. It employs attribute-based encryption and secure multi-path routing to shield sensitive data from unauthorized access and alteration. The protocol is engineered for efficiency, minimizing communication overhead and computational demands to accommodate the inherent limitations of sensor nodes [8].

A novel security-aware routing protocol for WSNs is proposed, with a focus on detecting and mitigating both node failures and malicious attacks. This protocol utilizes a distributed reputation system and a proactive routing update mechanism to guarantee network reliability and data authenticity. The design adheres to lightweight and energy-efficient principles, making it suitable for the resource constraints characteristic of sensor nodes [9].

A secure and efficient routing protocol for WSNs is presented, designed to address security vulnerabilities by focusing on both confidentiality and integrity. It incorporates a lightweight cryptographic mechanism and a distributed key management system to secure data during transmission. The protocol is optimized for energy efficiency and resilience against common attacks, ensuring the dependable operation of WSNs [10].

Conclusion

This collection of research focuses on developing secure and efficient routing protocols for Wireless Sensor Networks (WSNs). A primary concern is addressing the inherent vulnerabilities of WSNs, such as limited resources and susceptibility to various attacks including eavesdropping, jamming, and compromised nodes. Various approaches are presented, including security-aware routing protocols that integrate security into path selection, and lightweight frameworks employing trust management and intrusion detection for resource-constrained nodes. Energy efficiency is a recurring theme, with protocols designed to balance security needs with prolonging network lifespan. Specific attacks like black hole, gray hole, selective forwarding, and sinkhole are targeted. Techniques such as attribute-based en-

cription, secure multi-path routing, distributed reputation systems, and lightweight cryptography are utilized to enhance data privacy, integrity, and network resilience. The common goal across these studies is to ensure reliable data communication and network operation without significantly impacting performance or energy consumption, making WSNs more robust for diverse applications.

Acknowledgement

None.

Conflict of Interest

None.

References

- Ali E. Hussein, Hanaa A. Abd El-Nasser, Mohamed M. Abd El-Aziz. "Security-Aware Routing Protocols for Wireless Sensor Networks: A Comprehensive Survey." *Int. J. Sens. Netw. Data Commun.* 1 (2022):1-15.
- Shafiq Ur Rehman, Sami Ul Haq, Muhammad Naeem. "A Trust-Based Secure Routing Protocol for Wireless Sensor Networks." *IEEE Access* 9 (2021):48316-48329.
- Chunyu Wang, Chonggang Yuan, Jun Hu. "Energy-Aware Secure Routing Protocol for Wireless Sensor Networks." *Sensors* 23 (2023):1-18.
- Fadel Al-Hameedi, Imran Ali, Naser Al-Khalidi. "A Distributed Intrusion Detection and Prevention System for Secure Routing in Wireless Sensor Networks." *Future Generation Computer Systems* 109 (2020):146-158.
- Yingying Li, Xinghua Li, Jianfeng Ma. "Secure and Energy-Efficient Routing Protocol for Wireless Sensor Networks Against Black Hole and Gray Hole Attacks." *Journal of Network and Computer Applications* 182 (2021):1-13.
- Farhad Ahmed, Kamran Sattar, Mohamed R. Al-Hajri. "LSERP: A Lightweight, Secure, and Energy-Efficient Routing Protocol for Wireless Sensor Networks." *IEEE Internet of Things Journal* 10 (2023):12038-12051.
- Sami Ullah, Shafiq Ur Rehman, M. Hassan. "A Robust Secure Routing Protocol for Wireless Sensor Networks Against Jamming Attacks." *Ad Hoc Networks* 125 (2022):102762.
- Muhammad Adeel, Kamran Sattar, Imran Razzak. "Privacy-Preserving and Secure Routing Protocol for Wireless Sensor Networks." *Journal of Ambient Intelligence and Humanized Computing* 11 (2020):1-15.
- Zohreh Ghaderi, Mohammad Reza Ariannejad, Akbar Ghorbani. "A Reputation-Based Secure Routing Protocol for Wireless Sensor Networks." *IEEE Transactions on Dependable and Secure Computing* 20 (2023):1-15.
- Muhammad Ali Gul, Kamran Sattar, Sami Ul Haq. "A Lightweight and Secure Routing Protocol for Wireless Sensor Networks." *KSII Transactions on Internet and Information Systems* 15 (2021):3145-3163.

How to cite this article: Mahmoud, Rania. "Securing WSN Routing: Efficiency, Resilience, and Trust." *Int J Sens Netw Data Commun* 14 (2025):355.

***Address for Correspondence:** Rania, Mahmoud, Department of Intelligent Sensor Networks, Levant Institute of Technology, Beirut, Lebanon , E-mail: r.mahmoud@lit.edu.lb

Copyright: © 2025 Mahmoud R. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. sndc-26-179810; **Editor assigned:** 03-Sep-2025, PreQC No. P-179810; **Reviewed:** 17-Sep-2025, QC No. Q-179810; **Revised:** 22-Sep-2025, Manuscript No. R-179810; **Published:** 29-Sep-2025, DOI: 10.37421/2090-4886.2025.14.355
