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Abstract
The pathogenic fungus Candida albicans causes disseminated candidiasis with a poor prognosis in 

immunocompromised hosts. Secreted aspartyl protease (Sap) from the microorganism acts as a hydrolase to facilitate 
invasion into host tissues. Inhibition of Candida Sap activity could be a new treatment strategy for candidiasis. In the 
present study, we screened compounds from an FDA-approved drug library, Screen-Well™, for their ability to inhibit 
Candida Sap activity. Sixteen compounds (piroxicam, carbidopa, nisoldipine, cerivastatin, fluvastatin, mycophenolic 
acid, rapamycin, bleomycin, bortezomib, 5-fluorouracil, floxuridine, fumagillin, pentamidine, albendazole, fenbendazole, 
and amprenavir) inhibited Sap activity in a dose-dependent manner in vitro, although strain differences in the activity 
of the compounds were observed. Our study shows that existing drug compounds have the potential to inhibit Sap 
activity.
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Introduction
Although the yeast-like fungus Candida albicans colonizes mucosal 

surfaces in healthy individuals, it is capable of causing disseminated 
candidiasis from mucosal infection in immunocompromised hosts. 
Disseminated candidiasis is life-threatening and its prognosis is very 
poor [1-3]. To cause an infection, the pathogen invades host tissues. 
C. albicans secretes aspartic protease (Sap) as a hydrolase into the host
tissue [4-5]. C. albicans Sap plays an important role in not only host
tissue invasion but also inactivation of complement, defensin, and
lactoferrin, which are involved in host defense.

C. albicans has 10 Saps (Sap1 to Sap10). Sap1, Sap2, Sap3, Sap8,
Sap9, and Sap10 are produced mainly by the yeast form, while Sap 4, 
Sap5, and Sap6 are produced mainly by the hyphal form [6,7]. Their 
optimal pH range is 3 to 5. In an animal model, the survival rate of 
animals infected with SAP gene-disrupted cells was significantly higher 
than that of those infected with wild-type cells [8]. Therefore, it is 
obvious that Sap is a major virulence factor in C. albicans.

Antifungal drugs—including amphotericin B, azole derivatives, 
and echinocandin—have been widely used to treat candidiasis; 
however, the number of antifungal drugs is small compared to that of 
antibacterial or antiviral drugs. As fungi are eukaryotic organisms, like 
humans, achievement of selective toxicity against fungal cells is more 
difficult compared to bacteria or viruses. In addition, the number of 
drug-resistant C. albicans clinical isolates has increased [9-11].

During the last decade, various drugs targeted to virulence factors 
of fungi have been developed. The structure of C. albicans Sap2 and 
HIV protease are similar, which likely explains the fact that adhesion 
of C. albicans to tissues was reduced by HIV protease inhibitors (PIs) 
[12].

In the present study, we identified compounds in an FDA-approved 
drug library that function as Sap inhibitors.

Materials and Methods
Strains examined

Four C. albicans strains (J2-36, J2-40, J2-73, and J2-80) were 
examined in this study. They were isolated from the blood of 

candidiasis patients and are resistant to fluconazole, itraconazole, and 
voriconazole. Strains were maintained on Sabouraud dextrose agar (2% 
glucose, 1% polypeptone, 0.5% yeast extract, 1.5% agar) at 37°C.

Reagents

An FDA-approved drug library, Screen-Well™, Japanese version 
(Cosmo-Bio, Tokyo, Japan), was used for the screening study. The 
drugs were dissolved in dimethyl sulfoxide (DMSO) and adjusted to a 
concentration of 1 mg/mL. The library consists of 635 drugs, which are 
listed in Table 1.

Screening of sap inhibitors 

Extracellular proteinase activity was measured using a 
spectrophotometric method [13]. Yeasts and drugs were incubated 
in YYG medium (1.17% yeast carbon base, 0.01% yeast extract, 0.27% 
glucose) at 37°C for 48 h. Then, 0.1 mL of supernatant was added to 
0.9 mL of 0.1 M citrate buffer (pH 3.2) containing 0.2% bovine serum 
albumin (BSA) and incubated at 37°C for 48 h. The reaction was 
terminated after 3 min by adding 5% trichloroacetic acid. The mixture 
was centrifuged, and the absorbance at 280 nm of the supernatant 
was measured. Cell-free and drug-free controls were included. The 
experiment was conducted in triplicate. The supernatants were also 
analyzed by SDS-PAGE.

Drug susceptibility testing

If a compound inhibited the growth of C. albicans, its Sap 
inhibitory activity could not be evaluated. Therefore, the MIC of each 
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drug against C. albicans strains was determined according to the CLSI 
27A3 guidelines [14].

Results
Inhibitory effect

Fifteen antifungal drugs included in the library of 640 FDA-
approved drugs were excluded. The tested concentration was chosen 
on the basis of information from Kaneko et al. [15] and our MIC 
testing. Sixteen compounds that showed an inhibitory effect of >0.2 
are shown in Table 1. They showed dose-dependent Sap inhibitory 
activities (Figure 1). The tested concentration of each compound is also 
shown in Table 1. We confirmed that the tested concentration of each 
compound did not inhibit the growth of C. albicans. Strain differences 
were observed in the inhibition of Candida Sap activity. For example, 
the immunosuppressive agent rapamycin had an inhibitory effect of 
0.9 on the Sap activity of two strains, and an inhibitory effect of 0.1 on 
that of two other strains (Figure 1). The Sap inhibitory effects of the 
compounds were confirmed by SDS-PAGE. A representative image of 
an SDS-PAGE gel is shown in Figure 2. Fenbendazole inhibited BSA 
degradation in a dose-dependent manner. No BSA fragments were 
detected in the drug-free supernatant.

Discussion
The number of antifungal drugs is limited and the number of 

antifungal drug-resistant fungi is increasing. Also, the number of 
immunocompromised patients has increased despite improvements in 
medical technology. Thus, development of new drugs based on novel 
mechanisms is required. During the last decade, treatments targeting 
virulence factors of pathogenic fungi have been investigated. The 
most intensively investigated such drug target is Sap. Since HIV PIs 
can also inhibit or reduce Candida Sap activity, Sap inhibitors may 
represent new antifungal drugs [16-20]. Ritonavir, saquinavir, and 
amprenavir inhibited Sap activity, whereas indinavir and nelfinavir did 
not. Amprenavir had particularly strong activity (85 to 100% at 6.25 to 
200 mol/L) [21]. The FDA-approved drug library includes three HIV 
PIs: amprenavir, atazanavir, and nelfinavir. The latter two compounds 
showed no inhibitory effect, however. Our study also confirmed 
that amprenavir had inhibitory activity at 10 μg/mL (17.6 μM). HIV 
PI screening has been performed using a library of small-molecule 
peptidomimetics [22]. 

Figure 1: Sap inhibitory effect against four C. albicans strains. 
The inhibitory effect was evaluated at 48 h and calculated as follows: Inhibitory 
effect = (A280 B - A280 C) / (A280 D - A280 C), where A280 is the absorbance at 280 
nm, B is cells plus compound, C is compound only (no cells), and D is cells 
only (no compound). Red circle, strain J2-36; blue square, strain J2-40; green 
diamond, strain J2-73; green triangle, strain J2-80.

MIC (ug/mL)a) Concentration used in this 
study Therapeutic category

>10 10, 1, 0.1 Anfi-inflamatory drug, NSAID
>10 10, 1, 0.1 Anti-Parkinson drug
>10 10, 1, 0.1 Anti-hypertensive drug

5 5, 0.5, 0.05 Anti-hyperlipidemia drug
>10 10, 1, 0.1 Anti-hyperlipidemia drug
>10 10, 1, 0.1 Immunosuppresive drug

>0.15 0.1, 0.01, 0.001 Immunosuppresive drug
>1.25 0.1, 0.01, 0.001 Anti-tumor drug
>10 10, 1, 0.1 Anti-tumor drug
>10 10, 1, 0.1 Anti-tumor drug
>10 10, 1, 0.1 Anti-tumor drug
>10 10, 1, 0.1 Anti-amebic dysentery drug
5-10 1, 0.1, 0.01 Anti-protozoal drug
>10 10, 1, 0.1 Anti-echinococcosis drug
>10 10, 1, 0.1 Anti-nebatode drug
>10 10, 1, 0.1 Anti-virus drug

Table 1: Compounds that showed Sap inhibitory activity against C. albicans strains.



Volume 3 • Issue 5 • 1000126

Citation: Cho O, Shiokama T, Ando Y, Aoki N, Uehara C, et al. (2014) Screening of Compounds from an FDA-Approved Drug Library for the Ability 
to Inhibit Aspartic Protease Secretion from the Pathogenic Yeast Candida albicans. Pharmaceut Reg Affairs 3: 126. doi:10.4172/2167-
7689.1000126

Page 3 of 3

Pharmaceut Reg Affairs, an open access journal
ISSN: 2167-7689

The present study revealed that in addition to one HIV PI, 15 other 
chemically and pharmacologically diverse compounds had inhibitory 
effects on Candida Sap activity. As there is no structural similarity 
between these 15 compounds and HIV PIs, the inhibitory mechanism of 
these 15 compounds may differ from that of HIV PIs. Our preliminary 
study indicated that in the presence of fenbendazole Sap2p was not 
detected in supernatants by western blotting analysis using an anti-
Sap2p monoclonal antibody, suggesting that fenbendazole inhibits 
production of Sap2p (unpublished data).

The increasing number of antifungal drug-resistant C. albicans 
strains is clinically problematic. Virulence inhibitors—such as those 
active against Sap—are required to be effective against antifungal drug-
resistant strains; therefore, we used azole-resistant strains in this study.

In conclusion, we identified compounds other than HIV PIs that 
inhibited Candida Sap activity in an FDA-approved drug library. 
Although these compounds are not immediately useful for treatment 
of candidiasis because of inadequate knowledge of the appropriate 
dosage and administration routes and possible interactions with 
other medicines, they may be used as lead compounds to develop new 
antifungal agents targeting virulence factors.
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