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Background
Many genomics investigations using expression arrays take the 

form of searching for genes whose expression level is different across 
experimental conditions or phenotypes. The list of gene transcripts 
produced by a microarray analysis is usually the starting point 
for extensive additional biological work, including independent 
validation, and both in-silico and laboratory work on sequences and 
proteins related to the transcripts selected. In this context, microarray 
experiments are screening, not testing, experiments. Because of the wide 
range of important questions that can be explored using these arrays, 
and the costs involved, comparisons across conditions are often made 
using a limited number of replications. Efficient use of data is critical 
in improving a laboratory’s ability to correctly identify important 
biological hypotheses and proceed to test them by appropriate further 
experimentation. 

Specific screening goals vary with the study. Two simple but 
representative situations are the selection of genes that are changed by 
a large amount, and the selection of genes that are changed by a reliably 
measured amount. In either case, the comparison of gene expression 
across two conditions based on replicated experiments requires a trade-
off of signal, the variation of expression across the two conditions, 
versus noise, the variation of expression within each condition. 
Therefore the problem is statistical in nature [1-3]. In this paper we 
discuss a Bayesian multilevel framework for developing screening tools 
that adapt to the goals of the analysis and to the genomic distributions 
of signal and noise. We evaluate a representative set of these tools using 
both extensive simulations and controlled biological experiments in 
which the set of altered genes is known.

A variety of approaches for selecting differentially expressed genes 
have been proposed [4] for a review and Murie et al. [5]. The simplest 
and still the most widely used is to set a threshold on a measure of signal 
alone, for example an estimated fold–change. This can be motivated 

by the desire to identify large changes, although often it is used by 
simple analogy with other gene expression essays that have much less 
noise. Upper and lower thresholds of two and one half are often seen 
in applications.

One limitation of this approach is that it does not consider how 
reliably gene-specific changes are measured. That is, it implicitly 
assumes that all genes are subject to the same level of noise. This may 
not be the case because even after appropriate preprocessing of the data, 
the within–gene variation in expression can be highly gene–dependent.

A straightforward way to account for both signal and noise is to 
select genes based on statistics motivated by two–sample testing, such 
as the T–ratio or the Wilcoxon statistic. For each gene, the T–ratio is 
an estimate of the signal–to–noise ratio. Because it requires estimating 
two or three parameters instead of one, when the number of replicates 
is small, the T–ratio does not necessarily perform better than fold–
change, even when the goal is point-null-like. Gains in efficiency over 
both fold–change and T–ratios can be obtained by considering the 
ensemble of gene expression measures at once, rather than each gene in 
isolation. This occurs for at least two reasons. First, genes measured on 
the same array type in the same laboratory are all affected by a number 
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Abstract
Screening for changes in gene expression across biological conditions using high throughput technologies is now 

common in biology. In this paper we present a broad Bayesian multilevel framework for developing computationally fast 
shrinkage-based screening tools for this purpose. Our scheme makes it easy to adapt the choice of statistics to the 
goals of the analysis and to the genomic distributions of signal and noise. We empirically investigate the extent to which 
these shrinkage-based statistics improve performance, and the situations in which such improvements are larger. Our 
evaluation uses both extensive simulations and controlled biological experiments. The experimental data include a so-
called spike-in experiment, in which the target biological signal is known, and a two-sample experiment, which illustrates 
the typical conditions in which the methods are applied.

Our results emphasize two important practical concerns that are not receiving sufficient attention in applied work in 
this area. First, while shrinkage strategies based on multilevel models are able to improve selection performance, they 
require careful verification of the assumptions on the relationship between signal and noise. Incorrect specification of 
this relationship can negatively affect a selection procedure. Because this inter-gene relationship is generally identifiable 
in genomic experiments, we suggest a simple diagnostic plot to assist model checking. Secondly, no statistic performs 
optimally across two common categories of experimental goals: selecting genes with large changes, and selecting 
genes with reliably measured changes. Therefore, careful consideration of analysis goals is critical in the choice of the 
approach taken.
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of common sources of noise. Secondly, many changes in expression are 
part of common biological mechanisms.

A widely used approach that uses genome–wide information 
is “significance analysis of microarrays” or SAM [6]. SAM involves 
transforming the signal–to–noise ratios so that they are approximately 
independent of noise across genes. The type of transformation used 
by SAM is designed to protect against false discoveries generated by 
very small denominators in the T–ratios. The denominators that are 
really small are highly likely to be so by chance, because genes share 
many sources of variability, and a certain amount of variation is to be 
expected from all of them.

More broadly, joint estimation of many related quantities is often 
approached by multilevel modeling, and the associated Empirical 
Bayesian [7,8] and Hierarchical Bayesian [9] estimation techniques. 
See Carlin and Louis [10] for a detailed discussion. In genomics, these 
may represent variation in two stages. The first stage defines summaries 
at the gene level, for example test statistics, or estimates of fold change 
and noise. These describe variability of samples within each gene.

The second stage posits a “genomic” distribution for these 
gene–level summaries. Such multilevel modeling provides tools for 
borrowing strength from other genes when making inference on each 
gene. Some examples of implementations in microarrays are provided 
by Baldi and Long [11], Newton et al. [12], Efron et al. [13], L¨onnstedt 
and Speed et al. [14], Ibrahim et al. [15], Parmigiani et al. [16], Wright 
and Simon [17] among others.

In practice, a question often raised by genomics practitioners is 
the extent to which simple, real-time, shrinkage statistics motivated by 
multilevel models would outperform single-gene-at- a-time analysis or 
SAM. In this paper we set out to systematically address this question. 
To this end, we found it necessary to develop a general framework for 
developing and evaluating these fast shrinkage statistics. Our answer 
will turn out to be that shrinkage can furnish substantial improvement 
over single-gene-at-a-time analysis or SAM, provided that the statistics 
chosen will a) take into account the goals of the screening experiments 
and b) will be chosen based on examination of the properties of the 
genomic distribution of signal and noise. Even though we considered 
an extensive collection of statistics, the goal was not that of providing 
an exhaustive comparison of all approaches that have been proposed, 
but rather that of highlighting the critical role of the signal–to–
noise trade–off and of providing tools to choose among alternative 
approaches based on the genome–wide behavior of signal and noise. 
We compared the performance of these statistics using both extensive 
simulations and real data sets in which fold changes were known.

Methods
Multilevel models for two-group comparisons

We consider a design in which two biological types are compared 
on a microarray that probes G genes. Each type is measured on n arrays 
using either technical or biological replicates. Here technical replicates 
refer to experiments that have multiple aliquots of the same RNA, while 
biological replicates refer to experiments that have multiple subjects 
from a population. Each situation requires a different interpretation 
of the array-to-array variability, but the formal structure is the same. 
We do not consider both levels of replication at the same time here. 
We denote by X1gj the expression for gene g in sample j in the first 
group, and by X2gj the expression for gene g in sample j in the second 
group. Expression levels are assumed to be centered around an overall 
experiment-wise mean.

 Recall our interest lies in studying approaches for selecting 
genes that are differentially expressed between groups. We begin by 
describing an additive group effect and independent Gaussian errors. 
That is we assume that the observed expressions are conditionally 
independent draws from

2 2
1

1| , , ,
2gj g g g g g gX Nµ σ δ µ δ σ ∼ − 

 

2 2
2

1| , , , .
2gj g g g g g gX Nµ σ δ µ δ σ ∼ + 

 

Here, δg is the difference in expression level for gene g across groups, 
μg is an overall expression level for gene g, also referred to as abundance, 
or intensity, and 2

gs− is the variance of expression level for gene g in 
both groups. We refer to δg as true signal, and to σg as true noise. In a 
multilevel setting, our parameterization is different from that assuming 
E{X1gj}=μgE{X2gj}=μg+δg, which would lead to two different marginal 
variances in the two groups.

The fit of the normal distribution can often be improved by a 
suitable transformation of the data. Departures from normality, equal 
variances, and additivity may occur but are not considered in this 
manuscript.

Multilevel models postulate a distribution for the abundance, signal, 
and noise parameters across genes. A common assumption to many of 
the multilevel models used in microarray analysis is that of conjugate 
distributions for the second stage of the statistical model, in short a 
“conjugate model”. In the case of Gaussian data, the conjugate model 
implies that the gene–specific signal–to–noise ratios and abundance-
to-noise ratios are independent of the corresponding gene–specific 
noise [18,19]. This assumption leads to convenient mathematical 
representations for many of the steps required by the data analysis, and 
is sometimes adopted solely for this reason. In practice, however, some 
microarray experiments follow this independence pattern closely, while 
others depart from it substantially. The loss of efficiency of screening 
based on the conjugate model in the latter case can be large.

Here we broaden the conjugate scheme and we investigate four 
model varieties, that result from the combination of two factors: (i) 
whether the gene-specific signal is independent of the gene-specific 
noise, (ii) whether the gene-specific abundance is independent of the 
gene-specific noise. Formally, for (i) the independence models assumes 
that δg and σg are independent, while the conjugate model assumes that 
δg/σg and σg are independent.

The remainder of our distributional assumptions are standard for 
normal multilevel models [9,20]. The models are summarized in Table 1.

We use the notation dg for the mean difference of expression across 
two groups, ag for the overall mean expression, and sg for the pooled 
estimate of the standard deviation. Notationally:

( )1 2
1a
2g g gX X= +

2 1g g gd X X= −

2 2 2
1 1 2 2

1 1

RSS 1 1( ) ( ) .
1 1 1

n n

g gj g gj g
j j

s X X X X
n n n= =

= = + + −
− − −∑ ∑

In all four models of Table 1, these statistics are independent 
conditional on gene-specific parameters and have distributions

21a ,
2g g gN

n
µ σ ∼  
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22,g g gd N
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n s χ
σ −
−

∼

conditional on gene-specific parameters. All four combinations of Table 
1 occur commonly in practice. For example, our two experimental data 
sets show two markedly different relationships between signal and 
noise.

The vector of unknown genome-wide parameters will be denoted 
by ξ=(ν,β,λ,τ). There are several estimation approaches available 
for models of this kind. State-of-the art, computationally intensive 
approaches are usually based on MCMC [21]. Instead we focus on a 
faster and simpler empirical Bayesian approach based on estimating 
ξ by method of moments from the empirical distributions of 2

gs− , dg’s. 
The resulting estimators are computationally cheap and may include 
shrinkage of the signal, of the noise, or both. Several method of 
moments alternatives are available, and results can be strongly affected 

by this choice. For example, in our experience, the method of moments 
applied to the distribution of 

2
gs , which is inverse gamma, performs 

poorly, while the same applied to performs well.

We approach the task of generating a list of candidate genes by 
ranking genes according to a one-dimensional statistic, and then 
selecting all genes whose statistic is above a certain cutoff. This is the 
norm in practice. While more general decision theoretic approaches 
evaluating the trade-off between false and missed discoveries are 
available [22,23], these are complex, and would have been prohibitive 
in our extensive simulation study. The cutoff is often determined by 
the ability of a laboratory to perform validatory analyses, or, more 
inferentially, by false discovery rates [24-27]. In our presentation, 
to simplify the comparison of approaches, we focus on the ranking 
of genes implied by the statistics, and the ability of each statistic of 
identifying the top g genes.

Throughout, we draw a distinction between the selection of genes 
that are changed by a large amount, and genes that are changed by a 
reliably measured amount. Accordingly we consider two broad families 
of statistics, ones that estimate the signal, δg, and ones that estimate the 
signal-to-noise ratio, δg/σg. Because we use statistics as ranking devices 
and compare them based on ROC curves, we only need to define 
statistics up to constants that are not gene-specific. A proportionality 
sign will indicate omission of such constants. Table 2 summarizes the 
statistics we examined, organizing them by goal and motivating model 
structure. Table 3 summarizes the expressions of statistics motivated 
by multilevel models.

Statistics

In this subsection we enumerate and briefly comment on each of 
the statistics we considered. The remainder of this section is provided 
as a reference for future sections. Details of the derivations are given in 
the Appendix.

Difference in Expression (F): This is the observed average 
difference dg. Usually expression data are analyzed in the logarithmic 
scale, in which case F corresponds to an estimate of the log fold change 
across conditions.

T–statistic (T): This is the common statistics T ∝ dg/sg used for 
testing the null hypothesis of δg=0 one gene at the time.

Significance Analysis of Microarrays (SAM): This was proposed by 
Tusher et al. [6] and is based on the change of gene expression relative 
to an adjusted standard deviation. For the two group case considered 
here, the SAM statistic for gene g is

0

SAM = g

g

d
s s+

where s0 is the so-called “exchangeability factor”. This factor is estimated 
using information from the entire set of genes to transform the values 
of SAM so that noise and SAM are approximately independent.

Statistics for the Complete Conjugacy (CC) Model: In the 
Complete Conjugacy model the conditional posterior distribution of δg 
given hyperparameters ξ can be written as

2
2

2 2

2| , , ,1 1
2 2

σ
δ σ ξ

 
 

∼  
 + +

λ λ 

g g
g g g

n d
d N n n                       (1)

A set of computationally cheap statistics is derived by considering 

Data Level

    2 2
1

1| , , ,
2gj g g g g g gX Nµ σ δ µ δ σ ∼ − 

 
    

     2 2
2

1| , , , .
2gj g g g g g gX Nµ σ δ µ δ σ ∼ + 

 
  

II. Independence

2 2| (0, )g Nµ τ τ∼

2 2| (0, )δ λ ∼ λg N
2| , ( , )g Gaσ ν β ν β− ∼

CI. Independence of Signal and Noise

2 2 2 2| , (0, )g g gNµ τ σ σ τ∼

2 2| (0, )δ λ ∼ λg N
2| , ( , )g Gaσ ν β ν β− ∼

IC. Independence of Abundance and Noise

2 2| (0, )g Nµ τ τ∼

2 2| , ( , )δ σ ν βλ ∼g g Ga
2| , ( , )g Gaσ ν β ν β− ∼

CC. Complete Conjugacy

2 2 2 2| , (0, )g g gNµ τ σ σ τ∼

2 2 2 2| , (0, )δ σ σλ ∼ λg g gN
2 | , ( , )g Gaσ ν β ν β− ∼

Table 1: The four classes of multilevel models investigated. The array-to-array 
variation is modeled in the same way in all four cases. In all cases, j = 1, 2, . . . , n 
and g = 1, 2, . . . ,G. All quantities denoted by Greek letters are unknown. A further 
set of prior distributions for the hyperparameters is described in the text.

MOTIVATING MODEL
ANALYSIS GOAL

Large change Reliably measured change
Independence/Normality 
of Genes

Difference in 
Expression (F) T–statistic (T)

Exchangeability of Genes Significance Analysis of Microarray (SAM)

Complete Conjugacy
Signal (CC.F) Standardized Signal (CC.T)
Tail probability (CC.TP) Bayes factor (CC.BF)

Independence of 
Abundance and Noise

Signal (CI.F) Standardized Signal (CI.T)
Tail probability (CI.TP) Bayes factor (CI.BF)

Independence of Signal 
and Noise

Signal (IC.F) Standardized Signal (IC.T)
Tail probability (IC.TP) Bayes factor (IC.BF)

Independence
Signal (II.F) Standardized Signal (II.T)
Tail probability (II.TP) Bayes factor (II.BF)

Table 2: Summary of statistics examined, by goal and motivating model structure.
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empirical Bayes estimates of this distribution, obtained by replacing 
hyperparameters ξ with an estimate ξ̂ . A regularized estimate of signal 
δg is

2

2CC.F = .1
ˆ 2

∝
+

λ

g

g

n d
dn

Regularization is independent of the gene, so for any given 
experiment CC.F will be proportional to F. For this reason we only 
consider F, although we keep this correspondence in mind when 
interpreting the results.

A standardized estimate of signal is derived as the ratio of 
the conditional posterior mean and standard deviation of δg from 
expression (1),

2
CC.T .

ˆ
g

g

d

σ
∝

The denominator incorporates a linear shrinkage estimate of 
the gene-specific variance with gene-varying coefficients, penalizing 
more heavily genes whose signal or abundance are outlying. For this 
reason, it is critical that the conjugacy assumption be checked, or 
very valuable information may be lost. On the other hand, when the 

Model Statistics
F T             BF                  TP
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Table 3: Summary of functional forms of all the statistics motivated by multilevel models. For the complete conjugacy case (CC) we consider both statistics that use analytic 
integration with respect to σg (labelled CC.m) and statistics that use plug-in estimates of σg (labeled CC.c).
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assumption is met, an increase in efficiency is gained from estimating 
the denominator.

An empirical Bayes estimate of the Bayes factor [28] for the null 
hypothesis of no gene-specific differential expression, δg = 0, is:

( )

( )

ˆ( )2

2 2

2

2 2

2

2 2

11 21 ˆ 12 4 ˆ
2

CC.BF .
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a
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T
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n
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Finally, we consider the empirical Bayes approximation,
2 ˆCC.TP = ( | , , , ),g g g gPr D d a sδ ξ>

of the probability that the true change δg exceeds D [29]. Here, D 
represents a target change across conditions. This tail probability 
reflects the observed change, its variability and the likely magnitude of 
biologically significant changes.

Statistics for the Independence of Abundance and Noise (IC) 
Model: In this model the posterior distribution of δg given σg and 
hyperparameters ξ can be written as

2
2

2 2

2| , , ,1 1
2 2

σ
δ σ ξ

 
 

∼  
 + +

λ λ 

g g
g g g

n d
d N n n

    (2)

Unlike in the complete conjugate case, a closed form marginalization 
with respect to σ is not possible. Therefore we derive results assuming 

2
gσ is known. In the actual calculations, to obtain a real-time statistics,
2
gσ is estimated by the posterior mode of the distribution of 2

gσ | 2
gs , ξ.

Then our estimate of the normalized signal is

2

2IC.F = .1
ˆ2

∝
+
λ

g

g

n d
dn

As with CC.F, IC.F is proportional to F, so we only consider F in 
our results section.

A standardized estimate of signal based on regularized estimates 
of signal is the ratio of the marginal posterior mean and standard 
deviation of δg from expression (2), that is

2
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ˆ
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σ
∝

The Empirical Bayes estimate of the Bayes factor, conditional on 
gene specific variance is:
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Finally, we consider the empirical Bayes tail probability

2 ˆˆIC.TP = ( | , , ).g g gPr D dδ σ ξ>

Statistics for the Independence of Signal and Noise (CI) Model: In 
this model the posterior distribution of δg given σg and hyperparameters 
ξ can be written as
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2 2

σ
δ σ ξ

σ σ

 
 
 ∼
 + + λ λ 

g

g
g g g

g g
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Again, to obtain a real-time statistic we develop results conditional 
on 2

gσ and estimate it with its posterior mode in actual calculation. The 
estimate of the signal is

2
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ˆ2
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ˆˆ2
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σ
+
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A standardized estimate of signal based on regularized estimates 

of signal is the ratio of the marginal posterior mean and standard 
deviation of δg from expression (3), that is
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The Empirical Bayes estimate of the Bayes factor is:
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while the tail probability approximation is

( )2 ˆˆCI.TP = | , , .g g gPr D dδ σ ξ>

Statistics for the Complete Independence (II) Model: In this 
model the posterior distribution of δg given σg and hyperparameters ξ 
can be written again as

2
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2 2

σ
δ σ ξ
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A regularized estimate of δg, motivated by the independence model 
is obtained by replacing ξ with ξ̂ and 2

gσ with its conditional posterior 
mode evaluated at ξ̂ , and approximating the posterior mean by

2

2 2

ˆ2
II.F = .1

ˆˆ2

σ

σ
+
λ

g

g

g

nd

n

Unlike IC.F and CC.F, both II.F and CI.F imply a linear shrinkage 
which depends on the genomic variability of the signal. Dividing II.F 
by the square root of the variance of δg, and approximating as before, 
we obtain
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that careful checking of the multilevel modeling assumptions is carried 
out, and iii) no statistics is optimal for both the identification of large 
δg and large δg/σg.

Design of simulation study

Our goal was to generate a large and diverse number of scenarios, 
depending on sample size, conjugagy assumptions, and hyperparameter 
choices. We considered three sample sizes: 3, 10 and 100 per group. 
Use of samples as small as 3 is a common scenario in the gene screening 
experiments taking place during the routine activities of many 
laboratories, while 10 per group is a common scenario in comparisons 
across conditions for population genomic studies. Sample size as large 
as 100 per group are rare and considered here mostly as a check.

For each combination of conjugacy assumption (CC, IC, CI and 
II) and sample size, we simulated data from 2009 hyperparameter 
combinations, resulting in a total of 24108 datasets. The 2009 
combinations of hyperparameters are based on the grid:

2 1 1 1, , ,1,5,25,100
100 25 5gE σ −    ∈     

2 21 1 1var , , ,1,5,25,100
100 25 5g gEσ σ− −    ∈      

2 21 1 1, , ,1,5,25,100
100 25 5 gEλ σ −   ∈     

2 21 1 1, , ,1,5,25,100
100 25 5 gEτ σ −   ∈     

For each combination we derive ν and β from 2
gE σ − 

  and 
2

gvar σ − 
  . Here the total number of combinations is 2009 rather than 

the full 2401 because some expectation/variance combinations lead to 
unrealistic settings for _ yielding numerically unstable results.

Simulation results

Mining the massive information generated by the thousand 
datasets required drastic summarization. Here, we present one detaset 
in detail, and then provide the following summaries: scatterplots in 
which each deatset/statistic combination is represented by a single 
point, summaries of pairwise comparisons of statistics by model/goal/
sample size, and summaries of best performing statistics by model/
goal/sample size.

Figure 1 shows the ROC curves for a single simulation. Data are 
generated from the II model and the ROC is based on identifying 
genes with large signal. In this data set, we see a clear separation in 
the performance of the statistics, both within and across conjugacy 
structures. The tail probability statistics perform best irrespective of the 
motivating model, stressing the importance of correctly specifying the 
analysis goal.

To summarize this type of comparison for all 2009 simulated 
data sets, we display pair scatterplots of areas under the ROC curves 
(AUC). Figure 2 summarizes results for II data with three replicates. 
We focus on T, SAM and on the three shrinkage-based statistics that 
perform best in II data. Whiskers at the top of the graphs for the T 
statistics indicate that, for a subset of simulation for which other 
statistics achieve a perfect separation, the T is can still miss a fraction 
of differentiated genes. The reciprocal situation does not occur, 
suggesting a substantial inefficiency in the use of the T statistic. For 

2

2 2

ˆ2
II.T .

1
ˆˆ2

σ

σ

=
+
λ

g

g

g

nd

n

The Empirical Bayes estimate of the Bayes factor is:
2 2

2 2 2

22 2
2ˆ2 ˆˆ2

2

2 ˆˆ
II.BF ,

ˆ

σ σ
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σ

− +
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 ∝
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n d d

g
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while the empirical Bayes approximation to the tail probability is
2 ˆˆII.TP Pr( | , , ).g g gD dδ σ ξ= >

Notice that the definitions of statistics for the CI and II cases would 
be the same if 2

gσ was known. Hence the only difference in practice is 
the posterior mode for 2

gσ . It should not then be a surprise that the 
performance of these two are very close. For the same reason, this is 
also true for statistics in the CC and IC settings conditional on 2

gσ .

The empirical Bayes estimators, both standardized and not, have 
functional similarities to the SAM score, although shrinkage of the 
noise in the denominators are determined differently. In empirical 
Bayes analyses, the shrinkage is driven by the parameters of the 
genomic distributions of signal and noise, in a form that depends 
on whether or not conjugacy is assumed. In SAM one applies linear 
shrinkage to the standard deviation rather than the variance, and the 
shrinkage intercept s0 is chosen to approximate independence of SAM 
ratios from noise.

Simulation Results
Overview

In this section we study the performance of the real time shrinkage 
statistics on a large number of data sets simulated from each of the four 
models in Table 1. We evaluate each statistic on the basis of the implied 
ranking of genes, and the ability of each statistic of identifying the top 
g genes. In the analyses presented here we considered two alternative 
goals: in one the genes of interest are the top genes by absolute change 
δg. In the other the genes of interest are the top genes by signal-to noise 
ratio δg/σg. We considered the top 1%, 2% and 10% for each goal. For 
each cutoff we create a binary indicator of whether the true parameter 
is in the top list, and use this indicator as the true class assignment to be 
predicted. We evaluate performance by an ROC curve [13,30], which is 
the graph of the true positive fraction versus the false positive fraction 
for varying thresholds.

As summaries, we consider the overall area under the ROC 
curve [31] and the partial area under the ROC corresponding to false 
positive fractions smaller than 20%. We prefer these measures to 
others incorporating explicitly δg and δg/σg for two reasons: the goal 
of the microarray experiments we are focusing on is screening rather 
than estimation; interest usually lies in a relatively small fraction of 
important findings.

Based on these criteria, our simulations suggest three general 
conclusions about the alternative approaches for identifying differential 
genes: i) simple, real-time, shrinkage statistics motivated by multilevel 
models can outperform alternatives based on analyzing each gene 
separately, in some cases by a large margin; ii) the same statistics can 
perform better than the commonly used SAM [6] statistic, provided 
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Figure 1: ROC curves for all the statistics under study in a single simulation with 3 replicates and 1000 genes. The hyperparameter 
values used to simulate the data were ν=2, β=1, γ=1 and τ=1. The ROC curves are grouped by statistical model to unclutter the 
displays. The curves for T and SAM are repeatedin each panel.
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Figure 2: Comparison of performance of T, SAM and the shrinkage statistics that perform best in independent (II) data. Each point represents the areas under 
the curve for two statistics for a particular simulated data set. In the plots above the diagonal, we report the areas when identifying genes with high signal to 
noise ratio, while in plots below the diagonal we report areas when identifying genes with large signal. The shrinkage statistics that perform best change across 
the two goals, and therefore different shrinkage statistics are shown above and below the diagonal. Because over-plotting points may lead to visually misleading 
results in some cases, we also print the percentages PU and PL of points lying above and below the diagonal, and the averages MX and MY of the horizontal 
and vertical variables.
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Figure 3: Heat maps of the results for data simulated from the four models, with sample size 3. The color encodes the sign of the difference between percentages PU 
and PL of points lying above and below the diagonal in Figure 2 for all pairs of statistics. Green indicates PU<PL, red indicates PU>PL, while yellow indicates those 
cases where the difference was less than 0.05. The best statistics to identify genes with large signal are labeled with purple, while the best statistics to identify reliably 
measured differentially expressed genes are labeled with blue. These results are further summarized in Table 4.

both goals, the best performing model is based on CI, suggesting that 
the model chosen to represent the abundance/noise relationship is less 
critical than that chosen for the signal/noise relationship. A complete 
set of such comparisons including IC, CI and CC is available in the 
supplementary materials on our website.

Rather than reproducing these plots for each of the simulation 
scenarios, we present, in Figure 3, “heat maps” synthesizing pairwise 
comparisons of estimators for the four simulation settings. For each 
pair of statistics, maps encode how often one statistics’ AUC is better 
than the other’s, allowing for rapid comparison of any two statistics 
on data generated under each of the four model families. To further 
summarize, the best performing statistics from the heat maps for 
sample sizes 3, 10 and 100 replicates are reported in Tables 4 and 5 (for 
partial AUC).

Overall, these results emphasize the importance of matching the 
statistic to the analysis goal: fold changes and tail probabilities appear 
to be the best statistics for estimating large signals changes. In contrast 
the signal-to-noise ratios and Bayes factors appear to be optimal for 
estimating reliably measured differential expression. Also, these result 
confirm the importance of shrinkage: in only one case did a T statistic 
out-perform other statistics to identify high signal changes while in 
no cases did fold change out-perform other statistics to identify high 

SNRs. IN shrinkage correctly identifying the appropriate modelling 
assumptions becomes increasingly important as the number of 
replicates increases. The SAM statistic performs well across models, 
though often worse than the best shrinkage statistics within a model.

To provide a bound on the improvement in performance that 
can be achieved by shrinkage, in Tables 4 and 5 we provide results 
obtained by plugging in the true values of the parameters of the 
genomic distributions instead of their estimates in the calculation of 
the statistics.

When there is no close form, we have used the conditional 
estimation by plugging in the posterior mode of 2

gσ . To verify how 
reasonable these real-time statistics are, we considered the Complete 
Conjugacy model where closed forms are available for all the statistics. 
We performed another set of simulation with exactly the same 
hyperparameters comparing the results based on CC.TP and CC.BF in 
two cases: one based on the conditional posterior of δg with posterior 
mode of 2

gσ plugged in, the other based on the marginal posterior of δg 
integrating out 2

gσ . Results are shown in the supplementary materials. 
Real-time statistics generally perform as well as the exact statistics, 
although there is a minority of cases in which the exact statistics does 
far better than real-time approximation, especially for tail probabilities.



Citation: Liu D, Parmigiani G, Caffo B (2014) Screening for Differentially Expressed Genes: Are Multilevel Models Helpful? J Biomet Biostat 5: 192. 
doi:10.4172/2155-6180.1000192

J Biomet Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Page 9 of 16

Volume 5 • Issue 2 • 1000192

nrep=10

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N CI.T CI.T CI.T CI.T CI.T CI.T IC.TP
CI.TP

IC.TP
CI.TP

IC.TP
CI.TP

IC.TP
CI.TP

IC.TP
CI.TP

IC.TP
CI.TP

Signal CI.F
*C.F

CI.F
*C.F

CI.TP
IC.TP

CI.F
*C.F

CI.F
*C.F

IC.TP *C.TP *C.TP IC.TP *C.TP *C.TP *C.TP

TT S/N CI.T CI.T T CI.T T CI.T 
T

CI.T T CI.T T IC.BF
*I.TP

IC.BF IC.BF 
CI.TP

I C . B F 
C I . B F 
II.TP

I C . B F 
C I . B F 
CI.TP

I C . B F 
C I . B F 
CI.TP

Signal CI.F CI.F *I.TP
IC.TP

CI.F *I.F *I.TP
IC.TP

CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP

nrep=10

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N *I.T *I.T II.T CI.T CI.T CI.T IC.BF
*I.TP

IC.BF
*I.TP

IC.BF
CI.TP

*I.TP IC.BF
*I.TP

IC.BF
*I.TP

Signal *I.TP
CI.F

*I.TP
CI.F

CI.F
CI.TP 
IC.TP

II.TP
IC.TP

CI.F
II.TP 
IC.TP

*I.TP
*.F IC.TP

*C.TP *C.TP *C.TP *C.TP CC.TP *C.TP

TT S/N *I.T *I.T II.T CI.T CI.T CI.T IC.BF
*I.TP

IC.BF
*I.TP

IC.BF 
CI.TP

IC.BF
*I.TP

IC.BF
*I.TP 
CI.BF

IC.BF 
CI.TP

Signal *I.TP
CI.F

*I.TP
CI.F

CI.F
CI.TP

II.TP
IC.TP

*I.TP *I.TP
*.F IC.TP

CC.TP CC.TP CC.TP CC.TP CC.TP CC.TP

nrep=100

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N II.T II.T
IC.BF

II.T CI.T
IC.BF

CI.T
IC.BF

CI.T IC.BF IC.BF IC.BF IC.BF
*I.BF

IC.BF IC.BF

Signal *I.F
*I.TP

*I.F
*I.TP

*I.F
*I.TP

*I.TP *I.TP
*.F

*I.TP
*.F

IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP

TT S/N II.T II.T 
IC.BF

II.T CI.T 
IC.BF

CI.T 
IC.BF

CI.T IC.BF IC.BF IC.BF IC.BF
*I.BF

IC.BF
*I.BF

IC.BF

Signal *I.F
*I.TP

*I.F
*I.TP

*I.F
*I.TP

*I.TP *I.TP
*.F

*I.TP
*.F

IC.TP IC.TP IC.TP IC.TP IC.TP IC.TP

Table 4: Summary  of best performing statistics by AUC. Here “model” is the true model used for simulation. Statistics  were evaluated  by their  ability  to identify  the top 
1%, 2% and  10% of genes with  large signals (labeled  Signal) and large signal-to-noise ratios (S/N). The rows labeled MM correspond  to parameter esti-mation using the 
method of moments while those labeled TT  correspond  to using the true hyperparameter. Instances where the best performing  statistic did not match the appropriate true 
model and goal are high- lighted  in red.  Instances  where the best  performing  statistic did not  match  the model but was consistent with goal are highlighted in blue.  A 
wildcard * indicates the statistic from either  the conjugate or indepen- dence model was the best performer.  For example, ”*C.F”  indicates that the CC.F  and IC.F statistics 
were roughly equivalent best performers.

Finally, we further investigated the seemingly counterintuitive 
result where the best performing statistic for the data simulated from 
the Complete Conjugacy model are the IC.TP, IC.BF for genes ranked 
by both signal alone and signal-to-noise ratio. This behavior persists at 
larger sample sizes. The reason for the counterintuitive behavior is that 
some of the hyperparameter combinations lead to simulated dataset 
that have diagnostic plots consistent with an IC model, in which case 
IC statistic performs well while the abundance-based shrinkage applied 
by the CC statistics leads to loss of some of the signal. Additional details 
are provided in the supplementary materials.

Experimental Results
Datasets

We analyzed two data sets. The first was reported by Tusher et al. 
[6] in the context of comparing radiated and unirradiated cell lines. A 
subset of the genes’ changes, identified based on the SAM statistic, were 

subsequently validated by independent essays. While the experiment 
includes some blocking, we analyze it here as though it were a two–
class comparison with 4 replicates.

The second data set is from an experiment reported by Dudley et al. 
[32]. They performed a so called “spike-in” experiment in which they 
selected 9 genes with very low natural expression and “spiked-in” Cy3-
labeled gene-specific oligonucleotides in increments from 0.5 fold to 
200 fold. Their experiment used cDNA microarrays including a total 
of 6307 genes, and had two replicates. We work from ratios of Cy3-
to-Cy5 channels, after normalization [33]. While spike in experiments 
are useful in that true fold changes are known, both the magnitudes of 
the changes, and the sparsity of changes in the genome are unlikely to 
be realistic.

Graphical diagnostics for conjugacy structure

We begin by investigating the relationship between signal, 
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abundance and noise by displaying boxplots of signal and abundance 
by noise level. These elaborate on ideas of Dudoit et al. [34] and Tusher 
et al. [6]. Figure 4 considers the Tusher data. An SN plot in which the 
location and dispersion of signal are stable across noise levels suggests 
the use of an independence model, while one in which the location 
and dispersion of signal increase with noise level suggests the use of 
a conjugate model. Thus, a constant box size indicates independence 
while an increasing box size indicates conjugacy. In simulated data 
(see Supplementary materials), the diagnostic plot clearly distinguishes 
conjugacy with respect to signal and noise as well as conjugacy with 
respect to abundance and noise.

Because results are sensitive to the type of transformation applied 
to the expression measurements, we display both the original scale and 
the cube root. Untransformed data show a pattern consistent with the 
conjugate model, while data transformed using the cube root appears 
consistent with the independent model. An alternative visualization to 
the SN plot is a simple scatterplot of signal versus noise. A limitation 

of this approach is that it can be difficult to establish whether increased 
variation in signal at different level of noise is due to a true relationship 
or simply to a higher number of genes at that noise level.

Figure 5 shows the spike-in data using three transformations. The 
original scale shows a marked positive relationship between estimated 
signal and noise, the cube root scale a mild positive relationship, and 
the logarithm an almost stable relationship, with some indication of 
larger variation in the signal at lower noise level. These figures do not 
inform us about absolute intensity, so the larger variation of signal at 
the low end after the log transformation is not the same as the well-
known “fishtail” effect observed in MVA plots.

In this data set the cube root transformation is the most effective 
in helping identify the truly differentially expressed genes, performing 
better than the commonly used log. In practical application one does 
not have the advantage of knowing the true changes when choosing a 
transformation. The important lesson here is, however, that choosing 

nrep=3

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N CI.T CI.T CI.T CI.T CI.T CI.T SAM SAM SAM SAM SAM SAM

Signal CI.F CI.F CI.F CI.F CI.F
*C.F

CI.F *C.F *C.F *C.F *C.F *C.F *C.F

Truth S/N CI.T CI.T CI.T T CI.T CI.T CI.T T CI.T CI.T CC.BF 
CC.T

CI.T CC.BF 
CC.T 
CI.T

CC.BF 
CC.T

Signal *I.F *I.F *I.F CI.F CI.F *I.F *C.F *C.F *C.F *C.F *C.F *C.F

nrep=10

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N *I.T *I.T II.T CI.T CI.T CI.T SAM SAM SAM SAM
CC.BF 
CC.T

SAM
CC.BF 
CC.T

SAM
CC.BF 
CC.T

Signal CI.F CI.F *I.F CI.F CI.F CI.F *C.F *C.F
CC.TP

*C.F *C.F *C.F *C.F

Truth S/N *I.T *I.T II.T CI.T CI.T CI.T CC.T 
CC.BF 
CI.T

CC.BF 
CC.T

CC.BF
*C.T

CC.BF 
CC.T CI.T

CC.BF 
CC.T CI.T

CC.BF 
CC.T

Signal CI.F CI.F *I.F CI.F CI.F CI.F *C.F *C.F *C.F *C.F *C.F *C.F

nrep=100

Model II CI IC CC

top % 1 2 10 1 2 10 1 2 10 1 2 10

MM S/N *I.T II.T II.T CI.T CI.T CI.T *C.T 
CC.BF
CI.T

*C.T 
CC.BF
CI.T

*C.T 
CC.BF

*C.T 
CC.BF
CI.T

*C.T 
CC.BF

*CC.T 
CC.BF

Signal *I.F *I.F *I.F *I.F *I.F *I.F *C.F *C.F *C.F *C.F *C.F *C.F

Truth S/N *I.T II.T II.T CI.T CI.T CI.T *C.T *C.T *C.T *C.T *C.T CC.T
CC.BF CC.BF CC.BF CC.BF CC.BF CC.BF
CI.T CI.T CI.T

Signal *I.F *I.F *I.F *I.F *I.F *I.F *C.F *C.F *C.F *C.F *C.F *C.F

Table  5: Best statistics for each simulation scenario with three replicates.  Here “model”  corresponds  to the true model used for simulation.  Statistics were 
differentiated in their ability  to identify the top 1%, 2% and 10% of genes with  large  signals  (labeled  Signal)  and  large  signal-to-noise  ratios  (S/N).  The  rows 
labeled “MM”  correspond  to parameter  estimation  using  the method  of moments.   Results  using  the actual  true parameter values (labeled  "Truth”) are also 
given.  Instances where the best statistic did not matching the appropriate true model and goal are highlighted in red.  Instances where the best statistic did not 
match the model but was consistent with goal are highlighted in blue.  The results highlight the importance of matching the statistic to the goal; in only one case 
did a T statistic out-perform other statistics to identify high signal changes while in no cases did a fold change out-perform other statistics to identify high SNRs.
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transformations based on convenient statistical properties such 
as variance stabilization does not necessarily improve, and could 
prejudice, our ability to detect signal.

These two datasets stress that both the independence of signal and 
noise and independence of signal-to-noise ratio and noise may need to 
be tackled in real applications. While transformation of the measured 
intensities may allow one to achieve independence, it is not clear that 
such transformations would be optimal in terms of gene screening.

Comparison of real-time statistics

Figure 6 shows pairwise scatterplots of the statistics CC.TP, II.F, 
and SAM for the two transformations in Figure 4. CC.TP and II.F are 
the two best performing real-time shrinkage statistics for identifying 
genes with large signal. The two best statistics for selecting reliably 
measured genes, CC.BF and II.T, are given in the supplementary 
materials. All the genes originally identified by Tusher et al. [6] receive 
high tail probability using both transformed and untransformed data, 
though additional genes also receive tail probability close to one. On 

the other hand, the correspondence between SAM and II.F is good after 
cube root transformation but not in the raw scale. In evaluating these 
results, one must keep in mind that only genes that exceeded a certain 
SAM threshold were validated independently in the study. Therefore, 
direct performance comparisons with SAM are not reliable here.

Figure 7 compare statistics in the spike-in data. For the log 
transformed data, we would expect a better performance from II.F 
than CC.TP based on the SN plot. In fact, the II.F statistics shrinks the 
effects excessively and gives a less efficient ranking. For the cube root 
transformed spike-in data we would expect and, in fact, see a better 
performance from CC.TP than II.F in Figure 7. For the untransformed 
spike–in data, results, shown in the supplementary materials, confirm 
the intuition from the exploratory plots that the conjugacy model 
should outperform the independence model. Figure 7 does show this 
result. In a close view of comparison between CC.TP and SAM on raw 
data (see Supplementary materials), CC.TP also clearly picks up all the 
spiked genes, while SAM does not. Spiked genes are genes have large 
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Figure 4: Signal-to-noise diagnostic plot for the Tusher  data under  two transformations. Genes identified by SAM are highlighted in red. The horizontal axis is 
the binned  gene specific variances. The vertical axis for the plots in the left column is the average expression across the two groups (abundance) while it is the 
the average  difference in expression  (signal)  for the right  column. Conjugacy  appears  appropriate for the raw data, and an independence  relationship appears  
appropriate for the transformed data.
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Figure 5: Signal to noise plot for the spike-in data under  three transformations.  Spiked-in  genes are high- lighted in red.  The horizontal axis is the binned 
gene specific variances while the vertical axis for the plots in the left column is the average expression across the two groups (abundance) while it is the 
the average dif- ference in expression (signal) for the right column.  The apparent relationships between abundance and noise and  signal and  noise clearly 
change  dependent  on the transformation  used.   While  conjugacy  appears  ap-propriate for the raw data, and independence  relationship appears  more 
appropriate for the log-transformed data.
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Figure 6: Comparisons of the II.F, CC.TP and SAM statistics on the Tusher data. Genes selected by SAM are highlighted in red for reference. Here the CC.F and 
II.TP statistics were identified from Tables 4, 5 and 6 as the optimal statistics for detecting large signal changes for the II and CC models. For this data set, the II 
model is supported under the cubic transformations while the CC model is supported for the raw data.

signals, so that poor performance of II.T and CC.BF is no surprise (see 
Supplementary materials).

This analysis warns of a potential danger in the use of multilevel 
modeling. Assuming that the signals follow a Gaussian law assumes 
that all genes are differentially expressed to some extent, and the goal 
is to either detect the largest signals or the largest reliably measured 
signals. This is realistic in case-control comparisons and in experiments 
in which the experimental intervention changes a large portion of 
the expression, as during cell division. In contrast, in this spike-in 
experiment, the distribution of signals is in fact degenerate at

0 for all but the 8 spiked in genes. Therefore, the statistics motivated 
by the Gaussian law on the signal are not validated from the data. 
While extreme, the spike-in situation may be relevant in practice when 
experimental intervention modifies a small set of genes involved in a 
very specialized pathway.

Diagnosing empirically whether the signal distribution is a mixture 
is difficult. Appropriate weight should be given to the biological 
circumstances of the experiment. For example, here an independence 

relationship is suggested for the signal and noise for the cubic and 
log transformed data. However, as the majority of the genes are 
biologically known to have no signal, these plots do not inform us 
on the question of interest. Furthermore, Figure 7 shows that the 
best complete independence statistics for identifying large signal and 
reliably measured signal changes, II.F and II.T, perform poorly for 
detecting the spiked-in genes. In summary, aggressively modelling the 
distribution of signals when the overwhelming majority of genes have 
no signal can produce poor results.

Conclusions
In this article we present a framework for interpreting, selecting, 

and estimating shrinkage based screening statistics used in the 
identification of differentially expressed genes. We also evaluated a 
representative set of these tools using both extensive simulations and 
controlled biological experiments in which the set of altered genes is 
known or partially known.

Our results emphasize two important practical concerns that are 
not receiving sufficient attention in applied work in this area. First, 
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Figure 7: Comparisons of fold change statistics II.F and CC.TP with SAM in the spike-in data. Spiked-in genes are highlighted in red. Here the CC.F and II.TP 
statistics were chosen from Tables 4, 5 and 6 as the optimal statistics for detecting large signal changes for the II and CC models. For this data, the II model is 
supported under the log transformations while the CC model is supported for the raw and cubic transformed data. The II.F statistic shrinks conservatively even for 
the log transformed data while SAM and CC.TP perform well for both transformed data sets. No statistic performs well on the original scale. 
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while shrinkage strategies based on multilevel models are able to 
improve selection performance, they require careful verification of the 
assumptions on the relationship between signal and noise. Incorrect 
specification of this relationship can negatively affect a selection 
procedure. Because this inter-gene relationship is generally identified 
in genomic experiments, we suggest a simple diagnostic plot to assist 
model checking. Secondly, no statistic performs optimally across two 
common categories of experimental goals: selecting genes with large 
changes, and selecting genes with reliably measured changes. Therefore, 
careful consideration of analysis goals is critical in the choice of the 
approach taken.

The commonly used SAM statistics emerges as a reasonable 
compromise between the two goals above and is, to some extent, 
automatically adaptive to different relationships between signal and 
noise. Improving on SAM is possible but requires careful validation of 
the assumptions about the upper level distribution. The assumption of 
conjugacy in the abundance dimension requires careful attention as it 
is not robust. In particular, estimators based on the CC assumption can 
be outperformed even on data generated under CC.

Our simulation analysis relies on the assumed normality of data. 
In practice, two aspects of it are critical. At the lower stage, in small 
samples, the functional form of the error distribution across samples 
is hard to assess. On the other hand, at the upper stage,normality 
can be checked, and transformations may help, although the caveats 
discussed in Section 4.3 should be considered. Alternative multilevel 
models have been studied, for example by Newton and Kendziorski 
[35] who consider gamma models, and M¨uller et al. [22], who extend 
those to mixtures of gamma models. While these alternatives are worth 
serious consideration, here we focus on Gaussian models and statistics 
motivated by the Gaussian setting, primarily because in this way we 
can practically investigate a variety of relevant statistics on a massive 
number of simulation scenarios.

Other interesting multilevel approaches have been proposed to 
analyze designs that are more complex than the two-group comparisons 
considered here. We refer the reader to Kerr et al. [36], Wolfinger et al. 
[37], Kooperberg et al. [38], Tai and Speed [9] and Wang et al. [40] for 
further details. Meta-analysis of multiple microarray studies is another 
area where multilevel models have proven helpful, as illustrated by 
Conlon [41] and Scharpf et al. [42].

In recent years gene expression is increasingly measured using 
technologies based on sequencing short read (RNA-seq) which 
coexist with the hybridization-based approaches that motivated this 
work. These technologies generate count data. Though the normal 
model is sometimes used and can perform reasonably after variance 
stabilization, differential expression is better analyzed statistically using 
poisson and negative binomial models as described in [43] or Rapaport 
et al. [44]. An effective effective approaches using multilevel models 
is included in the Bioconductor package described by Love et al. [45].

In our analysis we assumed that all genes on the array are potentially 
changed. This is realistic in case control designs across populations or 
comparison of cells at different stages of the cell cycle, regulation can 
be expected in a large number of genes, although differences will vary 
randomly and many genes will be changed by amounts that are smaller 
than noise. In tightly controlled experiments, such as a comparison of 
wildtype versus mutant species, or treated versus untreated cell lines, 
differential expression may only involve a small number of pathways 
and genes. While this situation can be reasonably handled in the 
framework considered here, it would be more accurately modeled by 

assuming that only a fraction of the genes are differentially expressed 
across groups A multilevel model could assume assume that a fraction 
of the δg are identically zero, while the rest are normally distributed 
[14].

Our focus here has been on simple and easy-to-compute statistics 
for gene selection. Multilevel models were used only to provide 
motivation and a conceptual framework for the derivation of the 
shrinkage statistics. More generally, multilevel models give raise to 
potentially more efficient strategies than those considered here, at the 
price of increased computational expense, for example by MCMC of 
MCEM. Systematic exploration of those in the thousands of data sets 
considered here would have been impractical. However, our results 
suggest that that appropriate shrinkage is a critical part of gene selection 
and this will hopefully encourage practitioners to consider these more 
computing intensive approaches as well.
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multilevel model

3. Number of replicates equal to 100

(a) Independence model

i. Top 1% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 97 Heat map, the summary of pairwise comparison among all statistics

• Figure 98 Pairwise comparison of T statistics, SAM and Best statistics motivatived by
multilevel model

B. True Hyperparameters
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• Figure 99 Heat map, the summary of pairwise comparison among all statistics

• Figure 100 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 101 Heat map, the summary of pairwise comparison among all statistics

• Figure 102 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 103 Heat map, the summary of pairwise comparison among all statistics

• Figure 104 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 105 Heat map, the summary of pairwise comparison among all statistics

• Figure 106 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 107 Heat map, the summary of pairwise comparison among all statistics

• Figure 108 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

(b) Independence of Signal and Noise model

i. Top 1% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 109 Heat map, the summary of pairwise comparison among all statistics

• Figure 110 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 111 Heat map, the summary of pairwise comparison among all statistics

• Figure 112 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 113 Heat map, the summary of pairwise comparison among all statistics

• Figure 114 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 115 Heat map, the summary of pairwise comparison among all statistics

• Figure 116 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 117 Heat map, the summary of pairwise comparison among all statistics

• Figure 118 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 119 Heat map, the summary of pairwise comparison among all statistics
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• Figure 120 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

(c) Independence of Abundance and Noise model

i. Top 1% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 121 Heat map, the summary of pairwise comparison among all statistics

• Figure 122 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 123 Heat map, the summary of pairwise comparison among all statistics

• Figure 124 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 125 Heat map, the summary of pairwise comparison among all statistics

• Figure 126 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 127 Heat map, the summary of pairwise comparison among all statistics

• Figure 128 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 129 Heat map, the summary of pairwise comparison among all statistics

• Figure 130 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 131 Heat map, the summary of pairwise comparison among all statistics

• Figure 132 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

(d) Complete Conjugacy model

i. Top 1% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 133 Heat map, the summary of pairwise comparison among all statistics

• Figure 134 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 135 Heat map, the summary of pairwise comparison among all statistics

• Figure 136 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

ii. Top 2% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 137 Heat map, the summary of pairwise comparison among all statistics

• Figure 138 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 139 Heat map, the summary of pairwise comparison among all statistics
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• Figure 140 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

iii. Top 10% genes are differential genes

A. Hyperparameters estimated by mothod of moment

• Figure 141 Heat map, the summary of pairwise comparison among all statistics

• Figure 142 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model

B. True Hyperparameters

• Figure 143 Heat map, the summary of pairwise comparison among all statistics

• Figure 144 Pairwise comparison of T statistics, SAM and Best statistics motivatived
by multilevel model
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1.2 Compare the difference between two definitions of CC.TP and CC.BF

1. Number of replicates equal to 3

(a) Figure 145 Top 1% genes are differential genes

(b) Figure 146 Top 2% genes are differential genes

(c) Figure 147 Top 10% genes are differential genes

2. Number of replicates equal to 10

(a) Figure 148 Top 1% genes are differential genes

(b) Figure 149 Top 2% genes are differential genes

(c) Figure 150 Top 10% genes are differential genes

3. Number of replicates equal to 100

(a) Figure 151 Top 1% genes are differential genes

(b) Figure 152 Top 2% genes are differential genes

(c) Figure 153 Top 10% genes are differential genes

1.3 Diagnostic plot of counter intuitive result from CC model

1. Compare CC.TP to IC.TP, CC.BF to IC.BF when data are simulated from CC model

(a) Number of replicates equal to 3

i. Figure 154 Top 1% genes are differential genes

ii. Figure 155 Top 2% genes are differential genes

iii. Figure 156 Top 10% genes are differential genes

(b) Number of replicates equal to 10

i. Figure 157 Top 1% genes are differential genes

ii. Figure 158 Top 2% genes are differential genes

iii. Figure 159 Top 10% genes are differential genes

(c) Number of replicates equal to 100

i. Figure 160 Top 1% genes are differential genes

ii. Figure 161 Top 2% genes are differential genes

iii. Figure 162 Top 10% genes are differential genes

2. Diagnostic plot of data simulated from CC model

(a) Figure 163 IC.TP does better than CC.TP

(b) Figure 164 CC.TP does better than IC.TP

3. Diagnostic plot of data simulated from IC model

(a) Figure 165 IC.TP does better than CC.TP

(b) Figure 166 CC.TP does better than IC.TP
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2 Figures
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Figure 1: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 2: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 3: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 4: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 5: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 6: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 7: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 8: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with true
hyperparameters plugged in.
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Figure 9: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 10: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 11: Heat map summary for simulations based on Independence model with number of replicates equal
to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 12: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.

22



Figure 13: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 14: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 15: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 16: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 17: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 18: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 19: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 20: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 21: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 22: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 23: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 24: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 25: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 26: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 27: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 28: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 29: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 30: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 31: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 32: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 33: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 34: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 35: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 36: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 37: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 38: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 39: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 40: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 41: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 42: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 43: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 44: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 45: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 46: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 47: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 48: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 3 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 49: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 50: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 51: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 52: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 53: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 54: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 55: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 56: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 57: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 58: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 59: Heat map summary for simulations based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 60: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.

70



Figure 61: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 62: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 63: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 64: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 65: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 66: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 67: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 68: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 69: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 70: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 71: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 72: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 73: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 74: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 75: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 76: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 77: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 78: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 79: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 80: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 81: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 82: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 83: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 84: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 85: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 86: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 87: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 88: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 89: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 90: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 91: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 92: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 93: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of
moments.
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Figure 94: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 95: Heat map summary for simulations based on Complete Conjugacy model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 96: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Complete Conjugacy model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 97: Heat map summary for simulations based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 98: The best statistics among all 18 statistics are selected and compared to the simple T statistics and
SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 99: Heat map summary for simulations based on Independence model with number of replicates equal
to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated with
true hyperparameters plugged in.
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Figure 100: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 101: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated by method of
moments.
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Figure 102: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 100 and top 2% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 103: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 104: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 105: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated by method of
moments.
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Figure 106: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates equal
to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method of moments.
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Figure 107: Heat map summary for simulations based on Independence model with number of replicates
equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 108: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence model with number of replicates
equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are calculated
with true hyperparameters plugged in.
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Figure 109: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 110: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 111: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 112: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 113: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 114: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 115: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 116: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.

126



Figure 117: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 118: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 119: Heat map summary for simulations based on Independence of Signal and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 120: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Signal and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 121: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 122: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 123: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 124: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.

134



Figure 125: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 126: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 127: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 128: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 129: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.
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Figure 130: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated
by method of moments.

140



Figure 131: Heat map summary for simulations based on Independence of Abundance and Noise model with
number of replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.

141



Figure 132: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Independence of Abundance and Noise model with
number of replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel
models are calculated with true hyperparameters plugged in.
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Figure 133: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 1% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 134: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 1% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 135: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 1% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.

145



Figure 136: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 1% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 137: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 2% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 138: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 2% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 139: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 2% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 140: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 2% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 141: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 10% genes to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 142: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 10% genes to be differential genes. Hyperparameters are estimated by method
of moments.
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Figure 143: Heat map summary for simulations based on Complete Conjugacy model with number of
replicates equal to 100 and top 10% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 144: The best statistics among all 18 statistics are selected and compared to the simple T statistics
and SAM score. This is the result of simulation based on Complete Conjugacy model with number of
replicates equal to 10 and top 10% genes to be differential genes. Statistics based on multilevel models are
calculated with true hyperparameters plugged in.
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Figure 145: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 146: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 147: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 3 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 148: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 149: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 150: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 10 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 151: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 1% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.

161



Figure 152: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 2% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 153: For Complete Conjugacy model, CC.TP and CC.BF are calculated in two ways, one based
on conditional posterior of δg with posterior mode of σ2

g plugged in (X axis), the other based on marginal
posterior of δg integrating out σ2

g (Y axis). The bottom row is the case to identify genes with large signal,
the top row is the case to identify genes with reliable measure. Simulation are based on number of replicates
equal to 100 and top 10% genes are considered to be differential genes. Hyperparameters are estimated by
method of moments.
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Figure 154: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 1% genes are differential genes.
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Figure 155: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 2% genes are differential genes.
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Figure 156: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 3 and
top 10% genes are differential genes.
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Figure 157: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 1% genes are differential genes.

167



Figure 158: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 2% genes are differential genes.
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Figure 159: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 10 and
top 10% genes are differential genes.
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Figure 160: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 1% genes are differential genes.
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Figure 161: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 2% genes are differential genes.
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Figure 162: IC.TP outperforms CC.TP on data simulated from Complete Conjugacy model, so does IC.BF
to CC.BF. The simulation is based on Complete Conjugacy model with number of replicates equal to 100
and top 10% genes are differential genes.
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Figure 163: Diagnostic of the counter intuitive result that IC.TP outperforms CC.TP on data simulated from
Complete Conjugacy model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP for all
data sets simulated from Complete Conjugacy model. Most of the time, IC.TP does equally well as CC.TP.
There are cases (red and green points) that IC.TP does significantly better than CC.TP. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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Figure 164: Diagnostic of the counter intuitive result that IC.TP outperforms CC.TP on data simulated from
Complete Conjugacy model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP for all
data sets simulated from Complete Conjugacy model. Most of the time, IC.TP does equally well as CC.TP.
The red points indicate cases when CC.TP does better than IC.TP. The green points is the case where the
difference between CC.TP and IC.TP is maximized. The hyperparamter space in log scale are plotted in
the second and third graph on the top row. Red and green points are mapped into these two graphs. The
diagnostic plot of data simulated from Complete Conjugacy model with the worse hyperparamter senario
(green case) are plotted in the second row. The three boxplots show the relationship between abundance
and noise, the relationship between signal and noise and the relationship between abundance and noise
respectively. Red points in the second row are the genes with large signal.
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Figure 165: Same plot as Figure ?? except that simulation is done based on Independence of Abundance
and Noise model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP. Most of the time,
IC.TP does equally well as CC.TP. The red points indicate cases when IC.TP does better than CC.TP. The
green points is the case where the difference between IC.TP and CC.TP is maximized. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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Figure 166: Same plot as Figure ?? except that simulation is done based on Independence of Abundance
and Noise model. The first graph on the top row is the scattor plot of IC.TP vs. CC.TP. Most of the time,
IC.TP does equally well as CC.TP. The red points indicate cases when CC.TP does better than IC.TP. The
green points is the case where the difference between CC.TP and IC.TP is maximized. The hyperparamter
space in log scale are plotted in the second and third graph on the top row. Red and green points are
mapped into these two graphs. The diagnostic plot of data simulated from Complete Conjugacy model with
the worse hyperparamter senario (green case) are plotted in the second row. The three boxplots show the
relationship between abundance and noise, the relationship between signal and noise and the relationship
between abundance and noise respectively. Red points in the second row are the genes with large signal.
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