Scheduling 7-day Follow-up Appointments to Help Prevent Readmissions in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease

Ashwin Peres-Da-Silva¹, Ganga Vijayasiri⁴, Karly Hendee³, Nkiri Okammor³, Yiting Li³, Grace Jenq²,⁴ and David Bozaan²,⁴

¹Division of Hospitalist Medicine, California Pacific Medical Center, San Francisco, CA, USA
²Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, USA
³Veteran’s Administration, Ann Arbor Healthcare System, Ann Arbor, MI, USA
⁴Integrated Michigan Patient-Centered Alliance in Care Transitions, Michigan Medicine, Ann Arbor, MI, USA

Abstract

Objectives: Prior studies have shown that patients hospitalized for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) have a high hospital readmission rate and that close outpatient follow-up may reduce the need for hospital readmission. The objective of this study is to analyze the effect of scheduled 7-day post-hospital follow-up appointments on 30-day readmission in patients hospitalized with AECOPD.

Methods: A quasi-experimental, multicenter, prospective cohort design with retrospective observation as part of the Integrated Michigan Patient-Centered Alliance in Care Transitions (I-MPACT) was used. Each of the four participating hospitals in Michigan selected AECOPD as their target intervention and were incentivized to increase overall rates of scheduled 7-day post-hospital follow-up for all patients discharged in this target population using a pay-for-performance system. A random sample of patients discharged with AECOPD was included and patients were excluded if discharged or transferred to another hospital, left against medical advice, died during initial hospitalization, were known to have died within 30 days of discharge without readmission, or were discharged to a skilled nursing facility. Analyses were done using Pearson chi-square and multivariate logistic regression modeling.

Results: Of the 686 patients with a diagnosis of AECOPD, 29.5% (N=202) received a scheduled follow-up while 70.65% (N=484) did not. The sample was 57% female, 73% White, and 13% on Medicaid with a mean age of 66 years. Based on a risk-adjusted model, patients who received a 7-day post-hospital follow-up appointment had a 43% lower likelihood of readmission compared to patients who did not receive an appointment (OR=0.57; p=0.03). Additionally, patients who received a scheduled follow-up with a Primary Care Provider had a 53% lower likelihood of readmission compared to patients who did not receive a scheduled appointment (OR=0.47; p=0.01).

Conclusion: For patients hospitalized for AECOPD, scheduling outpatient follow-up appointments within 7 days of hospital discharge was associated with a reduction in 30-day hospital readmissions. Scheduling early post-hospital follow-up appointments for patients with AECOPD may reduce readmission rates.

Keywords: Acute exacerbation chronic obstructive pulmonary disease • Discharge planning • Hospital readmission • Quasi-experimental study design • Quality improvement • Care transitions • Early follow-up

Introduction

Hospital discharge is a complex process, requiring multidisciplinary coordination by hospital teams and outpatient providers as well as patient and their caregivers. Despite reimbursement strategies implemented by U.S. policymakers emphasizing high-quality discharge with corresponding low hospital readmission rates as a national priority, 30-day, all-cause readmissions remain unacceptably high, at 20%, with an annual cost of $18 billion to Medicare [1]. Patients hospitalized for AECOPD have a similar readmission rate and account for the third most common cause of hospital readmissions [2].

Studies have demonstrated that effective interventions that reduce hospital readmissions are complex, involve more than one discipline from both the inpatient and outpatient settings, and empower patients to meaningfully care for themselves [3-6]. Early follow-up care has received attention as an effective intervention, with evidence suggesting that the highest risk patients benefit from outpatient follow-up within 7 days of discharge [7]. Early follow-up allows a careful review of the discharge care plan and an opportunity to make any needed changes to prevent readmission [8].

However, a large systematic review of patients admitted for AECOPD or heart failure focusing on the effectiveness of 7-day follow-up after discharge noted a lack of large, methodologically robust studies demonstrating an improved outcome with this intervention [9]. In the current study, we analyzed the data registry of a large Collaborative Quality Initiative (CQI) to study the effect that scheduling a 7-day follow-up appointment had on 30-day all-cause readmissions after hospitalization for an AECOPD.

Research Methodology

We followed SQUIRE guidelines while conducting this quasi-experimental,
multicenter, prospective cohort study as part of the Integrated Michigan Patient-Centered Alliance in Care Transitions (I-MPACT). I-MPACT is a patient-centered Collaborative Quality Initiative (CQI) that engages hospitals, physician organizations, and patients throughout Michigan and supports the development and implementation of innovative approaches for improving care transitions. The collaborative is composed of numerous “clusters;” each of which consists of a hospital, a partnering outpatient provider organization(s) (PO), and a patient/caregiver team. Each cluster selects one predefined disease-specific target population and is incentivized to implement three different interventions aimed at reducing readmissions for this target population.

Intervention

Two of the three interventions (called “other”) are determined at the cluster level based on local gaps in the transition of care process collaboratively identified by the cluster team. A third intervention, increasing the rate of 7-day post-hospital follow-up with any outpatient provider, has been predetermined by the CQI as a required intervention for all participating clusters. Hospitals and POs collaborate on improving local transition of care processes and a pay-for-performance system rewards both entities specifically for increasing 7-day follow-up rates.

Measures and Definitions

An ongoing retrospective chart review by trained data abstractors conducted within a cluster’s electronic medical records (EMRs), which includes about 24 patients each month from the target population, is randomly generated from the cluster’s selected billing and coding data and confirmed via manual review of the EMRs. All abstractors are audited within the first three months of data abstraction and annually to spot check validity of data points including 7-day follow-up appointments. Registry data elements include patient demographics, presence of specific transition of care quality metrics, interventions deployed, outcomes, reason for readmission, and hospital characteristics. We studied the readmission rates for patients with AECOPD who were scheduled to receive a “7-day follow-up” compared to those who were not scheduled for “7-day follow-up” from four clusters from October 1, 2017, to March 30, 2019. Detailed patient and hospital characteristics were used as covariates for analysis (Tables 1 and 2), including patients who received the other I-MPACT intervention(s) (yes/no), race (White/Non-white), median neighborhood income (measured in quintiles), length of stay (LOS) (measured in days and categorized as 0-2, 3-4, 5-7, >7), and admissions in prior 180 days (0, 1, 2 or more). As noted, we focused on four clusters located in Michigan with COPD as their target population. Three out of four hospitals in the study are nonprofit; two are teaching hospitals, bed numbers ranged from 180-1, 100, and all are located in developing urban and urban settings. Five clusters in the CQI identified AECOPD as their target population; however, one of these clusters was excluded due to a significantly low (2%), 7-day follow-up intervention rate. Patients were excluded if they were discharged/transfered to another acute care hospital, left against medical advice, died during the initial hospitalization, were known to have died within 30 days of discharge without being readmitted, or were discharged to a skilled nursing facility (SNF), as the follow-up process for all of these patients differed from those discharged home.

For this study, all-cause hospital readmission is defined as all patients who were hospitalized and experienced an unplanned return to the hospital for any cause within 30 days of hospital discharge. In our analysis, we excluded planned readmissions and included readmissions related to progression of the same condition or comorbidity that caused the initial hospitalization; new condition not previously present and/or not present on the initial hospitalization; end of life; and other reasons.

Outcome

The primary outcome was a hospital readmission within 30 days of discharge. For patients with more than one readmission within 30 days, only the first event for each outcome was included and analyzed.

Statistical analysis

Sample characteristics were assessed using descriptive statistics on patient demographics, clinical factors, and transition of care elements including 7-day follow-up. Significant tests based on Pearson chi-square were used to evaluate whether patients who received a 7-day follow-up visit were significantly different from the sample of patients who did not receive a 7-day follow-up. More specifically, median income quintiles, length of stay (days), and admissions in prior 180 days were not significantly different from the sample of patients who did not receive a 7-day follow-up and therefore were not used as covariates for analysis.

Table 1.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Overall (N=686)</th>
<th>7 Day=Yes (N=202)</th>
<th>7 Day=No (N=484)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>392 (57.1)</td>
<td>125 (61.9)</td>
<td>267 (55.2)</td>
<td>0.105</td>
</tr>
<tr>
<td>White</td>
<td>501 (73.0)</td>
<td>157 (77.7)</td>
<td>344 (71.1)</td>
<td>0.074</td>
</tr>
<tr>
<td>Age quintiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st ≤ 54</td>
<td>92 (13.4)</td>
<td>30 (14.9)</td>
<td>62 (12.8)</td>
<td></td>
</tr>
<tr>
<td>2nd 55-64</td>
<td>218 (31.8)</td>
<td>68 (33.7)</td>
<td>150 (31.0)</td>
<td></td>
</tr>
<tr>
<td>3rd 65-74</td>
<td>205 (29.9)</td>
<td>65 (32.2)</td>
<td>140 (28.9)</td>
<td></td>
</tr>
<tr>
<td>4th 75-84</td>
<td>133 (19.4)</td>
<td>29 (14.4)</td>
<td>104 (21.5)</td>
<td></td>
</tr>
<tr>
<td>5th ≥ 85</td>
<td>38 (5.5)</td>
<td>10 (5.0)</td>
<td>28 (5.8)</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>237 (34.6)</td>
<td>67 (33.2)</td>
<td>170 (35.1)</td>
<td>0.623</td>
</tr>
<tr>
<td>Living alone</td>
<td>201 (29.3)</td>
<td>67 (33.2)</td>
<td>134 (27.7)</td>
<td>0.150</td>
</tr>
<tr>
<td>Medicaid</td>
<td>90 (13.1)</td>
<td>24 (11.9)</td>
<td>66 (13.6)</td>
<td>0.535</td>
</tr>
<tr>
<td>Median income quintiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st (14.2-32.8)</td>
<td>127 (18.5)</td>
<td>27 (13.4)</td>
<td>100 (20.7)</td>
<td>0.215</td>
</tr>
<tr>
<td>2nd (32.9-45.6)</td>
<td>147 (21.4)</td>
<td>46 (22.8)</td>
<td>101 (20.9)</td>
<td></td>
</tr>
<tr>
<td>3rd (45.8-53.4)</td>
<td>226 (32.9)</td>
<td>74 (36.8)</td>
<td>152 (31.4)</td>
<td></td>
</tr>
<tr>
<td>4th (54.0-66.0)</td>
<td>140 (20.4)</td>
<td>40 (19.8)</td>
<td>100 (20.7)</td>
<td></td>
</tr>
<tr>
<td>5th (68.2-128.0)</td>
<td>46 (6.7)</td>
<td>15 (7.4)</td>
<td>31 (6.4)</td>
<td></td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td></td>
<td></td>
<td></td>
<td>0.889</td>
</tr>
<tr>
<td>0-2</td>
<td>146 (21.3)</td>
<td>43 (21.3)</td>
<td>103 (21.3)</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>281 (38.1)</td>
<td>81 (40.1)</td>
<td>180 (37.2)</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>195 (28.4)</td>
<td>55 (27.2)</td>
<td>140 (28.9)</td>
<td></td>
</tr>
<tr>
<td>>7</td>
<td>84 (12.2)</td>
<td>23 (11.4)</td>
<td>61 (12.6)</td>
<td></td>
</tr>
</tbody>
</table>

*P-values for categorical patient measures are based on chi-square test, while p-values for continuous measures are based on linear regression.
follow-up. Multivariate logistic regression models were estimated to determine the effect of 7-day follow-up on readmission while adjusting for confounders. Multivariate model selection was done using stepwise logistic regression and 35 transition-of-care, demographic, clinical, and COPD-specific covariates, and hospital indicators (descriptive statistics are provided in Table 1). Stepwise model selection used forward-estimation and a p-value threshold of 0.1. However, this estimation process allowed 7-day follow-up, other I-MPACT interventions, and site indicators to be included in the model without being subjected to selection criteria. We estimated two models to determine the effect of provider follow-up on 30-day readmission. The first model tested the effect of scheduling a 7-day follow-up with any provider on 30-day readmission. We estimated a second model that tested the effect of scheduling with a specific provider type on 30-day readmission. All analyses were implemented using Stata software version 16.

Ethical and regulatory oversight

This study was reviewed by the Institutional Review Board at the University of Michigan (IRB# HUM00126940) and determined to be exempt.

Results

In total, 686 patients were included in the analysis. Tables 1 and 2 describe patient and clinical characteristics of these patients. Of these patients, 57% female, 73% White, and 13% were on Medicaid (Table 1). Mean age of the sample was 66 years. According to Table 2, 29.5% (N=202) patients had a scheduled follow-up appointment upon discharge while 70.7 (N=484) patients did not have a scheduled follow-up appointment upon discharge. Among patients receiving a 7-day follow-up, 73.8% (N=149) had an appointment scheduled

Table 2. Clinical characteristics overall and by 7 day scheduling status (N=686)*

<table>
<thead>
<tr>
<th>Variables</th>
<th>Overall</th>
<th>7 Day=Yes (N=202)</th>
<th>7 Day=No (N=484)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readmission</td>
<td></td>
<td></td>
<td></td>
<td>0.080</td>
</tr>
<tr>
<td>No</td>
<td>N (%) / Mean (SD)</td>
<td>560 (81.6) / 173 (85.6)</td>
<td>387 (80.0) / 134 (69.4)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>N (%) / Mean (SD)</td>
<td>126 (18.4) / 29 (14.4)</td>
<td>97 (20.0) / 48 (24.6)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>N (%) / Mean (SD)</td>
<td>686 (100.0) / 202 (100.0)</td>
<td>484 (100.0) / 232 (100.0)</td>
<td></td>
</tr>
</tbody>
</table>

Transition of Care (TOC) Elements

- Patient received other IMPACT intervention/s: 471 (68.7) / 153 (75.7) / 318 (65.7) 0.010
- Education about reason for hospitalization: 599 (87.3) / 188 (93.1) / 411 (84.9) 0.003
- Provided with name/number to call with concerns: 431 (62.8) / 140 (69.3) / 291 (60.1) 0.023
- COP identified in Discharge Summary: 499 (72.7) / 170 (84.2) / 329 (68.0) <0.001
- Clear Medication Discharge Instructions: 652 (95.0) / 196 (97.0) / 456 (94.2) 0.122
- Education on Warning Signs: 394 (57.4) / 137 (67.8) / 257 (53.1) <0.001
- Scheduled Pulmonary Rehabilitation: 241 (35.1) / 87 (43.1) / 154 (31.8) 0.005
- Discharged with home health: 420 (61.2) / 131 (64.9) / 289 (59.7) 0.208
- DS / AVS medication discrepancy: 533 (77.7) / 171 (84.7) / 362 (74.8) 0.005
- Admitted from Emergency Department: 642 (93.6) / 192 (95.1) / 450 (93.0) 0.312

ED visits in prior 180 days

- 0: 403 (58.8) / 108 (53.5) / 295 (61.0) 0.051
- 1: 159 (23.2) / 59 (29.2) / 100 (20.7) 0.123
- ≥2: 124 (18.1) / 35 (17.3) / 89 (18.4) 0.022

Admissions in prior 180 days

- 0: 356 (51.9) / 107 (53.0) / 249 (51.5) 0.876
- 1: 154 (22.5) / 41 (20.3) / 113 (23.4) 0.655
- ≥2: 176 (25.7) / 54 (26.7) / 122 (25.2) 0.566

Treated in Intensive Care Unit during admission

- 70 (10.2) / 19 (9.4) / 51 (10.5) 0.655

Discharged on opioids/narcotics

- 284 (41.4) / 87 (43.1) / 197 (40.7) 0.566

COPD labeled severe or oxygen requiring

- 355 (51.8) / 111 (55.0) / 244 (50.4) 0.278

Concomitant pneumonia

- 171 (24.9) / 47 (23.3) / 124 (25.6) 0.516

Patient goals addressed during hospitalization

- 22 (3.2) / 6 (3.0) / 16 (3.3) 0.820

Charlson Comorbidity Index (1-12)

- 3.20(2.04) / 3.26 (2.00) / 3.18 (2.05) 0.649

Social Determinants of Health (SDOH)

- Substance Abuse Status documented in DS: 82 (12.0) / 27 (13.4) / 55 (11.4) 0.461

Substance Abuse

- No history: 548 (79.3) / 169 (83.7) / 379 (78.3) 0.153
- Former: 45 (6.6) / 8 (4.0) / 37 (7.8) 0.655
- Current: 93 (13.6) / 25 (12.4) / 68 (14.1) 0.461
with a primary care provider (PCP), 8.4% (N=17) with a pulmonologist, and 17.8% (N=36) with a provider other than a PCP or pulmonologist. The average readmission rate among all patients was 18.4%. Some differences were also noted with regard to transition of care among patients who received a 7-day follow-up and some differences were also noted with regard to transition of care among patients who received a 7-day follow-up appointment after hospitalization for AECOPD. Two large cohort studies of patients with AECOPD who had a 30-day follow-up with PCP or pulmonologist demonstrated a decreased readmission rate [11,12], whereas a third cohort study found no effect on readmission rate but a substantially decreased 30-day mortality [13].

When analyzed by provider type, reduction in 30-day readmission was observed for scheduled appointments with PCPs but not for pulmonologists or other providers. Conflicting with this data, Gavish et al. found a protective effect in 3-month readmission for patients with AECOPD who had follow-up with a pulmonologist within 30 days [14]. However, our findings for pulmonologists and other providers is limited due to significantly lower numbers of scheduled appointments for those providers. A possible explanation for the low rate of follow-up with a pulmonologist is that access to pulmonology clinics is limited and was not specified as a requirement for participation in the CQI, but further studies will be helpful to address this issue.

We found that female patients had a lower rate of readmission, consistent with prior studies [15,16]. White patients in our study had a higher rate of readmission whereas a prior study found that African Americans hospitalized for AECOPD had a higher rate of readmission [15]. Additionally, our data suggests that patients in higher neighborhood income quintiles may have reduced readmission rates. We initially attempted to assess for more patient characteristics related to the social determinants of health (SDOH, Table 2) in the registry (substance abuse and depression), but we found SDOH content to be highly variable within each institution and across different clusters and EMRs. Further study is needed to examine the behavioral and socioeconomic aspects that may contribute to these findings. Longer LOS was associated with a higher rate of readmission, which has also been previously demonstrated [12,17]. A systematic review showed that comorbidities, previous exacerbations and hospitalizations, and increased LOS were significant risk factors for 30- and 90-day all-cause readmission post-index hospitalization with AECOPD [8]. There was a positive correlation between the Charlson Comorbidity Index and readmission rates, which is consistent with prior studies [18].

We also observed a higher readmission rate for patients who were identified as having a medication discrepancy between the document sent to the outpatient provider (discharge summary) and the written discharge instructions given to the patient. It is well established that deficits in communication and information transfer at hospital discharge are common and may adversely affect patient care [19]. A prior study demonstrated that 64% of patients used at least one medication that was not ordered by the physician at discharge, and 73% failed to use at least one medication according to the way it was ordered [20]. This is likely an issue that warrants further investigation or intervention to streamline and improve the transition of care at hospital discharge.

We acknowledge that there are numerous factors that play an important role in readmission. Additional interventions that have been shown to have a protective effect include early pulmonary rehabilitation [21], which ranks as one of the most cost-effective treatment strategies [8], and enrollment in a comprehensive AECOPD care plan [22]. In the future, it would likely be beneficial to incorporate early outpatient follow-up in a comprehensive discharge care plan. We plan to study how other local interventions including care management, medication reconciliation, and patient-tailored education interact with 7-day follow-up appointments with providers. We also plan to further engage patients and their caregivers by developing discharge instructions that emphasize the importance of early outpatient follow-up and encouraging patients to make early contact with their primary care team.
A major limitation in our study is that we were not able to ascertain whether patients attended their scheduled outpatient follow-up appointment, and therefore, we are only able to attribute the act of scheduling the appointment to the protective effect on readmission rates. While other studies have not found an association between 30-day readmission rate and attending a 7-day follow-up visit [23], this is the first study to our knowledge examining the association between the act of scheduling a 7-day follow-up visit and 30-day readmission. Scheduling the appointment alone engages the outpatient team and may have benefits regardless of whether the patient actually keeps the appointment. This engagement may trigger other downstream processes between the outpatient clinic and the patient that have the protective effect we see in this study. For example, scheduling an appointment may notify the outpatient provider team that the patient is in the hospital, which may cause the clinic to activate a discharge navigator or nurse to call the patient in the week after discharge. The scheduling of the appointment may also trigger the provider to review the discharge summary, evaluate the plan of care and review medications after hospitalization even if the patient is not present. Additionally, there are fewer inherent sampling biases with evaluating scheduled appointments compared to only “kept/attended” appointments that are based on outpatient claims data. Other studies that evaluate “kept/attended” appointments and the effect on readmissions potentially introduce selection bias, including only those patients who are more adherent, health aware, or do not have burdensome social factors limiting their ability to attend a scheduled follow-up appointment. In the future, we plan to capture kept appointments to determine their effect on readmission.

Another limitation in our study is that we did not capture or evaluate the difference in 7-day follow-up rates between patients seen by partnering POs versus those scheduled with non-partnering POs. If these rates of follow-up differed significantly between patients across these two groups, our findings may have been influenced by a strong and inherent collaboration between the partnering inpatient and outpatient teams that resulted in overall higher quality discharges and reduced readmissions.

Additional limitations include, as stated previously: there was a very small number of patients with scheduled 7-day follow-up with pulmonologists, making this data difficult to interpret. We would like to increase this number in future studies. There may have been uncaptured deaths (ie, not recorded in the EMR); therefore, reported deaths may be understated. We had difficulty interpreting data about “other” interventions due to the lack of details as to which “other” intervention the patient actually received. Due to smaller patient samples per site, we were unable to determine which other interventions were potentially making an impact by themselves or in conjunction with the 7-day follow-up. Also, clusters may have used slightly different definitions of AECOPD in their target population, resulting in the cluster not using the same billing and coding data during chart review and data abstraction. In addition, this study was unable to determine whether AECOPD was primary or secondary diagnosis for readmission. This study did not include collection of biomarkers to predict AECOPD exacerbation risk.

Our study has important clinical and health policy implications in that it highlights the significant impact that close outpatient follow-up can have on hospital readmission. Currently, access for post-hospital follow-up appointment within 7 days of hospital discharge is limited, as demonstrated by our low rate (29.5% scheduled), despite providing an additional pay-for-performance incentive for clusters that increased their rates of 7-day follow-up appointment. Scheduling such an appointment presents a challenge to...
coordinate between hospitals, patients, and outpatient providers, which leads to a lower percentage of patients receiving this intervention. From the health system perspective, access to scheduling a 7-day post-hospital appointment is currently limited due to high outpatient volumes, leading to limited availability of follow-up within 7 days of discharge, as well as a paucity of evidence, prior to this study, demonstrating the benefit of scheduling early follow-up appointment for patients admitted for AECOPD. From other qualitative data collected through patient surveys, our patients voiced concerns with identified barriers to attending outpatient appointments. These barriers included lack of transportation, financial concerns with copays, competing priorities, and other deficiencies in their social support system that make prioritization of close follow-up appointments difficult to achieve. Addressing these concerns from a health policy standpoint may improve early access to post-hospital follow-up and further reduce readmissions. We plan to further study the effect of 8-14 day follow-up appointments to determine if this time interval has comparable outcomes in patients with heart failure or chronic obstructive pulmonary disease: a systematic review." Ontario Health Technol Assess Ser 17 (2017): 1.

How to cite this article: Ashwin Peres-Da-Silva, Ganga Vijayasiri, Karly Hendee, Nkiri Okammar, Yiting Li, et al. "Scheduling 7-day Follow-up Appointments to Help Prevent Readmissions in Patients with Acute Exacerbation Chronic Obstructive Pulmonary Disease." J Pulm Respir Med 11:4 (2021): 535.