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Introduction

Single nucleotide polymorphisms can aid in phylogenetic 
characterization of bacterial and viral isolates, tracking strains during 
an epidemic, forensic investigations, and correlating genotype to 
phenotype. Advanced sequencing technologies deliver dozens or even 
hundreds of microbial sequences at feasible costs. Bioinformatics for 
whole-genome analyses may bottleneck our ability to make sense of 
the flood of sequence data without rapid and scalable algorithms. 
This work describes a method to find SNPs and build phylogenies 
for large numbers of finished sequences and/or assembled draft 
contigs, and presents examples for a number of bacteria and viruses. 
It can handle many genomes at once, for example, all the available 
genomes in a viral family or a bacterial genus, and has been used 
to find thousands or millions of putative SNPs from hundreds of 
megabases of target sequences. No attempt is made to distinguish 
sequencing errors from SNPs, although the analysis results can be 
used to design assays to do so using cost-effective methods such as 
microarrays or sequencing of short specific regions. We work with 
all available assembled genomic sequence (from any platform) and 
do not assume that “raw” data is available that might potentially 
resolve sequencing or assembly errors on any particular genome. The 
goal here differs from that of other software like SOAPsnp [1] and 
others (see references in [1]), in that kSNP finds SNPs from among 
many assembled genomes and builds a SNP-based phylogeny, while 
SOAPsnp finds SNPs in unassembled raw sequencing read data from a 
single genome relative to another assembled reference.

Usually SNP finding begins with a multiple sequence alignment 
or many pairwise sequence alignments of a set of target sequences. 
We have been hard pressed to find software to keep pace with the 
memory required to build accurate alignments for dozens to hundreds 
of genome-length sequences in a feasible time frame. Instead, here 
we take advantage of fast, memory-efficient suffix array methods [2] 
and BLAST+ [3] to find putative SNP loci, and build a tree by either 
maximum likelihood [4] on a SNP allele matrix or neighbor joining [5] 
on a SNP hamming distance matrix. We string together these publicly 
available tools with a few short PERL scripts and Unix commands. 
Code is available on request from the authors.

Other studies limit the region(s) examined to a few genes or 
areas with known sequence variation. The kSNP approach scales to 
examine mutations across whole genomes, which should help to 
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Abstract
With the flood of whole genome finished and draft microbial sequences, analysts need faster, more scalable 

bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms 
(SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/
or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a 
SNP phylogeny in seconds to hours. It identified thousands of putative SNPs from all publicly available Filoviridae, 
Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. The SNP-based trees 
it generated were consistent with known taxonomy and trees determined in other studies. The approach described can 
handle as input hundreds of megabases of sequence in a single run. The algorithm kSNP is based on k-mer analysis 
using suffix arrays and requires no multiple sequence alignment.

uncover novel regions that correlate with phenotype outside of well-
characterized genes or non-coding sequence. It should also be useful 
in horizontal gene transfer studies, since one can examine SNPs 
across the entire genome. Although beyond the scope of this paper, 
microarrays with probes designed for all putative SNPs can be used to 
experimentally validate SNP alleles, identify sequencing errors, and 
characterize SNP alleles in unsequenced isolates to place them on a 
phylogeny (manuscript in preparation). 

Methods
The process is diagrammed in Figure 1. First, we enumerate all 

k-mer oligos in the set of input sequences, or targets; conceptually
this is all the subsequences from sliding a window of length k across
the targets, stepping by one base. This k-mer enumeration can be
efficiently performed with the suffix array code from [2]. We used
oligos of k=25. Reverse complements of oligos are added to the list,
so each oligo is represented in both directions to account for cases in
which sequences have an inversion or report opposing strands, but

Figure 1: 
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removing any duplicate oligos. We look for any candidate SNP base 
in the center, at position 13, by counting the number of oligos with 
the same up- and down-stream sequence surrounding the central 
position. For example, when k=25, the surrounding sequence 
is the 12 bases on both sides of the 13th base. If a surrounding 
sequence occurs more than once in the list of oligos from all targets, 
it represents a candidate SNP locus at the 13th position. Although 
alternative values of k also work, we chose k=25 for most of our 
calculations since oligos of this length are not frequently repeated 
within a genome, so it is usually suitable to uniquely characterize a 
locus. Moreover, it is amenable to SNP assay development such as 
for microarray probes. We omit cases where all 12 bases on either 
side of the candidate SNP are a homopolymer repeat. The process of 
finding candidate SNP k-mers can be parallelized by splitting up the 
candidate loci by the identity of their first few starting nucleotides. 
This representation of a SNP locus is based on surrounding sequence 
information rather than positional information in a genome, and 
it differs from traditional concepts of a SNP locus. It allows us to 
consider draft genomes which are available only as contig fragments 
in which positional information relative to the complete genome is 
not known.

Next, we prune out the putative SNPs from the candidate loci, 
eliminating any where the surrounding sequence occurs more than 
once but with a different central base (i.e. candidate SNP allele) in 
the same target genome, and also eliminating any where the SNP 
allele does not vary among the target genomes. We did not eliminate 
candidates that occur more than once in a genome with the same 
central base, since this allows us to use draft sequence with imperfect 
assembly and perhaps to handle unassembled reads that contain 
repeated sequence. We did this by representing each candidate 
locus by a blast query string containing two 12-mers with an “N” 
between them to indicate a variable base. Any sequence that is a 
reverse complement of another already on the candidate list is now 
eliminated from the queries, since BLAST will report both plus and 
minus strand hits. This is important since the targets might contain 
draft contig data in the minus direction. These candidate loci are the 
queries BLASTed against a database of the original input sequences. 
We used the BLAST+ [3] blastn algorithm with the following 
parameters: -task blastn-short  -outfmt ‘7 std qseq sseq’  -word_size 
12, and parsed the hits to eliminate those with conflicting mutations 
at the “N” position within a target sequence or with no variation 
among targets. If a different value of k is used, some of these settings 
need to be changed: for example, with k=15, we used –word_size 7 
–evalue 100. The BLAST output also gives relevant information about
SNP position and orientation in each target genome. We do not
require that there be a hit in every target, which is a crucial allowance
if we wish to include SNP loci from regions that may be deleted or
show greater variation in one of the targets, or are working with
draft data in which there might be sequencing gaps. If the 24 bases
of sequence surrounding a SNP position (12 on either side) are not

present in a target, the locus is considered absent in that target. 

The SNP-based Hamming distance between each pair of targets is 
computed as the number of loci at which their alleles differ. We used 
the neighbor algorithm of PHYLIP [5] to build an unrooted tree from 
the pairwise distance matrix, and visualized trees using Dendroscope.
[6] We do not claim that these trees are the most phylogenetically
accurate, but they are scalable and fast to compute for such large
analyses, and seem to give reasonable trees even in cases with many
missing loci. We also built SNP matrices by creating a SNP sequence
alignment listing the alleles in each genome, and used RAxML v7.2.7
[4] to create a maximum likelihood (ML) tree. The ML trees do not
generate accurate trees when there are many clade-specific (e.g.
species specific) loci that appear to be missing in other sequences,
so ML trees are poor for highly diverse target sets, although they do
better for analyses of a single species. The SNPs and Newick tree files
are available by request from the authors.

Analyses were performed on several example data sets. These 
contained complete genomes and plasmids, both finished and 
draft, downloaded from NCBI nt, reference, and genome projects 
databases, Baylor College of Medicine Sequencing Center, J. Craig 
Venter Institute, and the DOE Joint Genome Institute.  Sequence data 
for Escherichia coli and foot-and-mouth disease virus (FMDV) were 
downloaded in June 2010. Bacillus sequences were downloaded in 
April 2010. Filoviridae and Poxviridae sequences were downloaded 
in May 2010. All the data discussed in the results are available by 
contacting the authors. Calculations were performed on an AMD 
Opteron node with eight 2.4 GHz processors. A node with 16 GB of 
available memory was used for the virus runs, and 32 GB of memory 
for the bacteria. 

Results
Table 1 summarizes the kSNP analyses performed. From 

thousands to millions of SNP loci were found for each target group. 
Target set sizes ranged from 47 to 184 genomes, and up to 539 MB 
of sequence data. For the viral and plasmid targets, the analyses 
completed in seconds or minutes, and the bacterial genome targets 
completed in 2-14 hours. We will not present an in-depth analysis of 
the phylogenetics or examine genotype by phenotype correlations, as 
that is better performed by subject matter experts for each organism. 
Instead, we will illustrate results of this approach with examples for a 
wide array of organisms with substantial amounts of sequence data.

Filoviridae

Marburg and Ebola do not share any SNP loci. The Ebola genomes 
cluster into distinct species groups with a hamming distance 
tree (Figure 2A (included as supplementary data)). The Marburg 
Angola sequences also form a single clade, as do the Marburg Ravn 
sequences. However, the Marburg Uganda and DRC sequences fall 
into two distinct branches sequences, one very similar to the Ravn 

Number of sequences Target set size Number of SNP loci Time to complete Number of sequences that 
cannot be uniquely resolved

Filoviridae 47 884 KB 3,042 45 seconds 0
FMDV 245 2.0 MB 14,060 22 minutes 0
Poxviridae 117 21 MB 29,527 29 minutes 6
Bacillus genus genomes 107 539 MB 1,611,817 14 hrs, 8 minutes 2
Bacillus genus plasmids 113 9.4 MB 9,284 7 minutes 14
Escherichia coli genomes 63 316 MB 342,701 2 hrs, 36 minutes 0
Escherichia coli plasmids 123 7.5 MB 13,443 9 minutes 2

Table 1:
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sequences, and the other closely grouped with a South African 
“Ozolin” and distantly grouped with a handful of sequences including 
pp3/4 guinea pig variants, Musoke, Popp, and Ci67. There are 271 
homoplastic SNPs that do not conform to the branches of the 
tree. Recombination is known to occur in Filoviridae [7], and may 
contribute to the presence of homoplastic SNPs. Running the analysis 
with k=15 gives 4,725 SNP loci (compared to ~3K with k=25), 661 
homoplastic loci, and an identical hamming tree. 

The ML tree based on the SNPs matrix from the 25-mer analysis 
mixes the Sudan and Cote D’Ivore, and Reston and Bundibugyo 
sequences (Figure 2B (included as supplementary data)), while the 
Marburg sequences are classified according to the same topology as 
the hamming tree so are not shown. The 25-mer ML tree appears to 
be less accurate due to the preponderance of loci that appear to be 
“missing” in some genomes due to sequence variation surrounding 
the SNP that affects our method of distinguishing loci. The ML tree 
from the 15-mer analysis (Figure 2C (included as supplementary data)) 
is much more similar to the hamming tree. Simple hamming distance 
trees are less susceptible to biases from such “missing” loci than are 
maximum likelihood trees, so are perhaps more appropriate when 
the analysis contains highly diverse sequences from different species.

FMDV

Consistent with previous studies of multiple genes [8], members 
of the same serotypes do not always cluster together, according to 
the kSNP hamming tree (Figure 2A (included as supplementary data)) 
or the ML tree (Figure 2B (included as supplementary data)), although 
the hamming tree conforms to serotypes somewhat more closely 
than the ML tree, particularly for Asia and C serotypes . Analyses 
with k=15 are shown. The SNP tree indicates that in serotype O, 
the O_UKG 2001 sequences are closely related to one another, as 
are the O_UKG 2007 sequences, but these two groups are not closely 
related to each other. The O_UKG 2007 sequences cluster with some 
serotype O and A sequences from South America, while the O_UKG 
2001 sequences lie closer to some Asian sequences of serotype O 
and Asia1.  Other serotypes are likewise dispersed across the SNP 
tree. Only SAT1, SAT2, and SAT3 sequences cluster as a single SAT 
clade, although the three SAT serotypes are mixed up within the 
cluster. These analyses point to the difficulty of making a nucleotide-
based assay for serotype, since the SNP data are consistent with the 
known pattern that serotype and genotype are not tightly correlated 
across much of the FMDV genome. Previous studies have shown that 
analysis of just the VP1 gene, which codes for the antigenic outer 
capsid, does cluster the serotypes into distinct lineages. [8].

Using the oligo length of k=25, all 245 target sequences could 
be uniquely resolved, and ~14K SNP loci were found. With k=15, 
we found 16,992 SNP loci, and again all genomes could be uniquely 
resolved. The tree for k=15 clustered all the genomes according 
to serotype somewhat better than k=25 (not shown, but trees are 
available from the authors), particularly the Asia1 and C serotypes, 
although there were a higher fraction of homoplastic loci (SNPs that 
do not conform to the ML tree) for k=15 than k=25 (26% homoplastic 
for k=15, 21% homoplastic for k=25). 

Poxviridae

The Poxviridae kSNP analyses cluster the 117 genomes by species 
and strain, as expected (Figure 3 (included as supplementary data)). 
The phylogeny is virtually identical one for 53 strains recently 
determined by poxvirus experts at the US Centers for Disease Control 
and Prevention based on sequence alignments of 9 genes. [9] The 

variola sequences are split into the major and minor groups as in 
previous SNP analyses [10], and camelpox and taterapox cluster as 
nearest neighbors of the variolas. Rabbitpox is very similar to 
other vaccinia sequences, and their nearest neighbors appear to be 
horsepox and one strain of cowpox (GRI-90). Slightly more distance 
branches are the clade of monkeypox sequences and a couple more 
cowpox strains and ectromelia. Outside the Orthopox branch, the 
other genomes also cluster by species. This is not a rooted tree, so it 
should not be used to interpret ancestral versus derived sequences.

Out of the 117 genomes, only three pairs of sequences cannot be 
resolved using these SNPs: two of the vaccinia Modified Virus Ankara 
(MVA) sequences VAC_MVA-572 and VAC_MVA-BN; two of the variola 
sequences from Bangladesh VAR_Bangladesh1974_Shahzaman and 
VAR_Bangladesh1974_nur_islam; and another two of the variola 
sequences VAR_India1953_NewDelhi and VAR_Japan1946.

The ML tree (not shown) incorrectly places species relative to 
one another. This emphasizes the previous point that missing SNPs 
unduly affect ML trees, so that when diverse sequences of different 
species are being analyzed together, hamming trees may give more 
reasonable trees due to the effects of species-specific loci.

Bacillus

Three of the species, anthracis, subtilis, and licheniformis, are 
very homogeneous within the available genomes for that species, 
although relatively few licheniformis sequences are currently 
available (Figure 4 (included as supplementary data)). In contrast, 
cereus, thuringiensis, and other species show substantially more 
intraspecific variation, and may result from the challenge of placing 
a new isolate into a taxonomic group when sequence data is limited. 
The node containing the anthracis genomes is distinguished by 5,173 
species-specific SNPs (all anthracis genomes share the same allele 
at ~5K SNP loci), which could be useful for developing signatures 
for specific detection of anthracis.  There is one pair of genomes 
in this set that cannot be resolved based on SNPs: anthracis_Ames_
Ancestor and anthracis_A0248. According to the genome project 
information at NCBI for this strain (genome project ID 33543), “This 
strain (96-10355; K1256) is a human isolated from USAMRIID, Ohio”, 
and it was sequenced at the Los Alamos National Laboratory. The 
Ames Ancestor strain is the type strain (0581, A2084, genotype 
62, Group A3.b) for Bacillus anthracis, and is considered the “gold 
standard” according to the genome project information at NCBI 
(genome project ID 10784), and was sequenced at The Institute for 
Genomic Research in Rockville, MD. So these are different but similar 

Cluster Number Sequence
1 cereus_plasmid_pCER270
1 cereus_AH187_plasmid_pAH187_270
2 A2012_plasmid_pXO1
2 A0248_plasmid_pXO1
3 thuringiensis_miniplasmid
3 thuringiensis_canadensis_plasmid_pBMB2062-4ac
3 thuringiensis_tolworthi_plasmid_pBMB2062
4 Ames_Ancestor_plasmid_pXO2
4 A0248_plasmid_pXO2
4 A2012_plasmid_pXO2
5 cereus_plasmid_pBCXO1
5 cereus_G9241_plasmid_pBCXO1
6 A0193_plasmid_pXO2
6 WNA_USA6153_plasmid_pXO2

Table 2: Bacillus plasmids that cannot be resolved within the indicated clusters.
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isolates.  All other Bacillus genomes can be uniquely resolved based 
on SNPs. An analysis of Bacillus 16S rDNA sequences [11] showed a 
similar relationship among species, with the cereus, anthracis, and 
thuringiensis clustering into a diverse “cereus group”,  and the other 
species such as pumilus, lichenformis, and subtilis on a separate 
branch. 

The Bacillus plasmids do show clear pXO1 and pXO2 clusters 
(Figure 5 (included as supplementary data)). There are 1057 
homoplastic SNPs that do not map to nodes of the tree, highlighting 
the potentially complex lineages and horizontal gene transfer events 
that might have occurred. The 14 sequences that cannot be uniquely 
resolved are shown in Table 2. 

E. coli

Whole genome kSNP analyses show that the O157:H7 sequences
form a distinct clade. K-12 sequences cluster with DH1 and BW2952, 
and have as a near neighbor the enterotoxigenic ETEC_H10407 
sequence (Figure 6 (included as supplementary data)). The ML tree 
(shown) and the hamming distance tree (not shown) are virtually 
identical. As in an analysis by [12] our SNP results indicate that O55_
H7_CB9615 clusters closely with the O157:H7 sequences. Diamant et 
al. [12] created a phylogeny based on the sequences of 7 noncoding 
regions of approximately 200 bp each, some containing simple 
sequence repeats. They found that some isolates were not amplified 
by some of their primers, and others contained no variation among 
groups of isolates. For example, all the O157:H7 that they studied 
had completely identical sequences at the loci they examined, so 
they could not differentiate among them. In contrast, from our SNP 
analyses based on whole genome sequences, the O157:H7 are very 
similar but there are loci that enable discrimination at a finer scale, 
enabling isolate level discrimination of the available genomes. In fact, 
all the available E. coli genomes can be resolved based on putative 
SNPs. 

We created a tree for the available E. coli genomes using an in 
silico application of the assays described in [12], predicting amplicons 
from their primers and aligning and building a tree for the sequences 
of the combined 7 regions using Dialign with default parameters 
[13], shown in Figure 7 (included as supplementary data). Essentially, 
we simulated amplification and sequencing using the primers from 
Diamant for the sequenced genomes. This tree based on the 7 
regions from Subramanian et al. shows the O157:H7 genomes as 
three separate clusters, and it differs substantially from the SNP 
tree. Some of the differences may be due to gaps and errors in draft 
genomes, but real differences such as the absence of a given region 
or variations in primer binding sites also affect the relationships. 

For the plasmid data (Figure 8), only one pair of sequences cannot 
be uniquely resolved: 517-2H1_plasmid_pLEW517 and plasmid_
pLEW517. These have different lengths and are collected from 
different strains, but we found no SNP differences between them. 

Discussion
The SNPs uncovered by kSNP are putative, since some may be 

a result of sequencing errors and may need further validation, for 
example, by additional sequencing or SNP microarrays. For SNP 
analysis of a single gene or other relatively short set of sequences 
that one can comfortably align, SNP identification from an alignment 
is a better option, as it will uncover clustered SNPs within a 12 base 
proximity. The kSNP k-mer approach described here is intended for 
larger scale applications where there might hundreds of genomes 
with lengths up to the 5-10 megabase range. Indeed, the availability 

of more than one genome is an essential requirement of this method. 
For viruses that are too divergent to align well and if most variation 
is at a scale larger than single nucleotide differences, this approach 
might be valuable as a preliminary method to cluster sequences 
into a preliminary phylogeny as a guide to those subsets for which 
alignment might be feasible. For the plasmid analyses we have 
included, it may not be ideal, or even accurate, to analyze all plasmids 
together and draw them as part of the same tree since a common 
ancestor may be very distant, and some branches may not contain any 
of the same loci as a distant branch. However, this method enables 
a fast, first-pass clustering, since cluster-specific loci are identified 
which serve to group the sequences into related sets and  suggest 
relationships within those clusters. A subject matter expert can then 
separately examine branches of interest or pull out those SNP loci 
that differentiate key branches. 

One application of the kSNP approach is to determine SNP alleles 
that characterize a node. For example, there are 5,173 SNP loci for 
which all anthracis species share the same allele which differs from the 
alleles in non-anthracis Bacillus species.  These node-distinguishing 
SNPs may be useful for developing detection or genotyping 
assays. Another possible application for these SNP data is to guide 
decisions as to how to allocate efforts for genome sequencing: A 
SNP microarray designed from the output of kSNP can yield data to 
generate a phylogeny for multiple unsequenced isolates.  Using a 
microarray to detect SNP variants at known loci (from SNP analysis of 
available genomes) in an unsequenced isolate may be a relatively cost 
effective method to place the isolate on a phylogeny, and may help to 
determine whether it is of sufficient interest (e.g. novel) to merit the 
expense of sequencing. While this will not uncover novel SNP loci, it 
can suggest how similar an isolate is to other isolates at known SNP 
loci. We have also used kSNP to analyze a set of genomes before 
and after adding newly sequenced genomes to the mix, to rapidly 
determine if those new genomes contributed any novel SNP loci.

As reviewed in [14] and succinctly stated by [12], multilocus 
analysis enables one to “dilute the bias of individual loci”. Since 
the approach described here scales to entire genomes, resulting 
phylogenies should be less affected by regions that have undergone 
strong selection, deletions, or horizontal gene transfer (HGT) than 
other methods that rely on only a handful of genes. For the E. coli 
genomes, we found that a tree based on simulated amplification 
and sequencing of 7 regions selected by Diamant et al. [12] differed 
substantially from a tree based on whole-genome SNP analysis. The 
tree based on 7 regions did not cluster the O157:H7 sequences 
together, but broke them into 3 distant groups, in contrast to the 
whole-genome SNP tree which tightly clustered all the O157:H7 
sequences as a single group.

SNPs from HGT regions should show up as homoplastic SNPs that 
are inconsistent with the phylogenetic relationships of the whole 
genome SNP tree. Although beyond the scope of this work, SNPs in 
HGT regions might be distinguished from mutations or sequencing 
errors if HGT SNPs appear as blocks of SNPs in proximity on the 
genome that are consistent with an alternative tree. In other work, 
we are using results of kSNP as a starting point for such analyses 
(unpublished).

This method is an improvement from a previous approached 
developed by one of the authors [15] since that method demanded a 
consensus sequence for the initial input. Although with the previous 
method we were able to build a BLAST-based consensus for some 
target sets, and it was certainly more feasible than an approach 
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requiring a multiple sequence alignment, it still scaled poorly for 
dozens of genomes. We found that poor accuracy of the consensus 
affected our ability to identify putative SNPs, and we missed SNPs 
from any region that was not present in the reference genome around 
which we built the consensus.

Nevertheless, the method as described here will miss some 

SNPs that are less than 12 bases apart (or 1
2

k − , if other values of 

k are used). Adjacent mutations will be missed in many cases by this 
method. But it can find nearby SNPs in some cases. For example, if 
only the following two oligos are present in the targets, then neither 
of the positions in bold will be found as candidate SNPs:

ACTTTGTCATCAATCGAATCGGAGA 

ACTTTGTGATCAG TCGAATCGGAGA 

But if in addition, either one of the following oligos is also present 
in the enumerated list of k-mers and their reverse complements

ACTTTGTCATCAG TCGAATCGGAGA 

ACTTTGTGATCAA TCGAATCGGAGA 

then the candidate SNP at the 13th position should be found, although 
it will be counted as two separate loci for each surrounding sequence 
variant. Thus, SNPs in tight linkage disequilibrium which are less than 
12 bases apart can be missed by the method as described. Adding a 
“fuzzy” search that allows mismatches is a possible improvement to 
address this shortcoming, but it is more complicated and will reduce 
scalability of the algorithm. The proximity of SNPs that can be found 
is also affected by the choice of k in the initial oligo enumeration. 
Shorter k enables us to find SNPs in closer proximity to one another, 
but also increases the chance that the surrounding sequence will be 
present more than once in a target with a different central nucleotide, 
and thus be thrown out of the pool of putative SNPs. Shorter k may be 
appropriate for some highly variable targets like viruses, as appears 
to be the case for FMDV and Filoviridae for which more SNP loci were 
found and the resulting tree clustered genomes more consistently 
with serotype or species designations.  

It is possible that this approach could also be applied to identify 
protein differences at a large, whole-proteome scale by enumerating 
peptide k-mers. The suffix array algorithms, BLAST, and k-mer 
computations should work on the amino acid as well as the nucleotide 
alphabet. The value of k would need to be shorter than that for 
nucleotide sequence analysis, and would depend on the pattern 
length of peptide conservation and variation. An improvement we are 
currently implementing to improve speed and scalability to handle 
gigabases of raw, unassembled short reads from Illumina™ (San 
Diego, CA) or SOLID™ (Life Technologies, Carlsbad, CA) is to replace 
the BLAST+ step with MUMmer [16].

In conclusion, we describe kSNP, an approach for rapid, scalable 
SNP analysis of up to hundreds of bacterial or viral genomes, of either 
draft or finished quality. While the method will not find all SNPs in 
the data, particularly those that are in very close proximity, it will 
find a large number of them which can be used to build a phylogeny 
based on whole-genome analysis rather than being limited to a few 
genes. An advantage of scalable whole genome analysis is to avoid 
bias that might be present in some smaller regions that may have 
undergone horizontal gene transfer, strong selection, sequencing 
errors, or other processes. Applications of this kSNP approach could 
be to find sets of SNPs that map to a branch of interest or correlate 

with a notable phenotype, or to identify key node-distinguishing 
SNPs from which one can design SNP assays such as microarrays, PCR, 
or targeted sequencing. 
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