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Introduction 
Microarray has been a major high-throughput assay method 

to display DNA or RNA abundance for a large number of genes 
concurrently. One of the main objectives for conducting microarray 
studies is to discover the genes whose expression levels are associated 
with a time-to-event outcome (also called a survival outcome regardless 
the type of event), such as time to progression or survival. Discovery 
of the prognostic genes should be made taking multiplicity into 
account, but also with enough statistical power to discover important 
genes successfully. Biological samples for these high-throughput 
experiments are costly and usually difficult to obtain, so that having 
too many samples will waste valuable resources, while having too few 
samples may lead to no meaningful scientific conclusions. Therefore, 
it is necessary for us to develop a sample size calculation method for 
gene discovery.

One important aspect in gene discovery using a microarray 
study is to adjust the false positivity for multiplicity of the genes. The 
statistical procedures with such adjustment are called multiple testing. 
There are two types of false positivity we control in multiple testing 
for gene discovery with microarray data. One is called the family wise 
error rate (FWER), which is defined as the probability to discover any 
genes when all the genes under consideration are not associated with 
the clinical outcome. The other is called the false discovery rate (FDR), 
which is defined as the proportion of unassociated genes among the 
discovered genes. It is well known that the multiple testing procedures 
controlling the FWER are so strict that they select too few genes. So, 
some investigators prefer the multiple testing methods controlling the 
FDR.

A few methods have been developed for building genomic classifiers. 
Most methods are focused on sample size calculations for predicting 
classes and are not applicable to censored outcomes data directly. Some 
have considered sample size estimations for gene discovery with FDR 
control. For example, Jung derives a sample size formula for the Storey’s 
procedure under a weak dependence assumption [1,2]. Liu and Hwang 
propose similar sample size formulae that can be used for comparison 
of multiple independent samples. Others have also considered power 
and sample size calculations under FDR control [3]. Dobbin and Simon 
present analytical formulae for determining the number of biological 
replicates needed for developing a predictive classifier [4]. However, 

none of these publications provides a comprehensive investigation of 
sample size estimation for discovery of genes whose expression levels 
are associated with a survival outcome.

In this paper, we consider discovering genes whose expression 
levels are associated with a survival outcome of patients. At first, 
we review multiple testing with a FDR control and Cox’s regression 
method based on a proportional hazards model [5]. And, we propose 
sample size and power calculation methods for microarray studies to 
discover genes using Cox’s regression method while controlling the 
FDR and for sample size calculation for gene discovery with a FWER 
control [6,7].

Methods 
False discovery rate 

Suppose that we conduct m multiple tests, of which the null 
hypotheses are true for m0 tests and the alternative hypotheses are 
true for 1 0( )= −m m m  tests. The tests declare that, of the m0 null 
hypotheses, A0 hypotheses are null (true negative) and R0 hypotheses 
are alternative (false rejection, false discovery or false positive). Among 
the m1 alternative hypotheses, A1 are declared null (false negative) 
and R0 are declared alternative (true rejection, true discovery or true 
positive). Table 1 summarizes the outcome of m hypothesis tests.

Benjamini and Hochberg defined the FDR as [8]

0FDR = E . 
 
 

R
R

(1)

Note that this expression is undefined if Pr(R = 0) > 0. To avoid this 
issue, Benjamini and Hochberg (1995) redefined the FDR as [8]

0FDR = Pr(R 0)E R 0 .
R

 > > 
 

R
(2)

These two definitions are identical if Pr(R = 0) = 0, in which case we 
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have 0( / 0)= >FDR E R R R  (≡ pFDR, which will be defined below).

If m = m0, then FDR=1 by any critical value with Pr(R = 0) = 0. 
Pointing out this issue, Storey defines the second factor in the right 
hand side of (2) as pFDR, [9]

0RpFDR = E R 0
R

 > 
 

and proposes to control this quantity instead of FDR. Storey claims 
that Pr(R > 0) ≈1 with a large m, so that pFDR is equivalent to FDR 
[2]. We accept this argument in this chapter and do not distinguish 
between FDR and pFDR. Hence, definitions (1) and (2) are considered 
to be equal.

Benjamini and Hochberg (1995)[8] propose a multi-step procedure 
to control the FDR at a specified level. However this is known to be 
conservative and the conservativeness increases in m0[10];

Suppose that, in the j-th testing, we reject the null hypothesis 
Hj if the p-value pj is smaller than or equal to 2 (0; 1). Assuming 
independence of the m p-values, we have

m

0 j j
j=1

m

j j j p
j=1

R = I(H true,H rejected)

= Pr (H true)PrH rejected H )+o (m),

∑

∑

Which equals m0α, where m-1op(m) → 0 in probability as m→∞[2]. 
Ignoring the error term, we have

0FDR( ) = ,
( )
αα
α

m
R                   

(3)

Where,
1

( ) ( )α α
=

= ≤∑m
jj

R I p . Given α, estimation of FDR by (3) 
requires estimation of m0.

For the estimation of m0, Storey assumes that the histogram of m 
p-values is a mixture of m0 p-values that are corresponding to the true 
null hypotheses and following U (0; 1) distribution, and m1 p-values 
that are corresponding to the alternative hypotheses and expected to 
be close to 0 [2]. Consequently, for a chosen constant λ away from 0, 
none (or few, if any) of the latter m1 p-values will fall above λ, so that 

thenumber of p-values above λ, 
1

( )λ
=

>∑m
jj

I p can be approximated 
by the expected frequency among the m0 p-values above λ from U (0, 1) 
distribution, i.e. 0 / (1 )λ−m . Hence, given λ, m0 is estimated by

1
0

( )
ˆ ( )

1

λ
λ

λ
=

>
=

−
∑m

jj
I p

m

By combining this m0estimator with (3), Storey (2002) obtains

10

1

( )ˆ ( )ˆ ( )
( ) (1 ) ( )

α λα λα
α λ α

=

=

>×
= =

− ≤

∑
∑

m
jj

m
jj

I pmFDR
R I p

For an observed p-value pj, Storey defines the q-value, the minimum 
FDR level at which we reject Hj, as [2]

inf ( )
α

α
≥

=


j
j p

q FDR

This formula is reduced to

( )=


j jq FDR p

if FDR(α) is strictly increasing in α, see Theorem 2 of Storey (2003) [9]. 
The appendix in Jung (2005) shows that this assumption holds if the 
powers function of the individual tests is concave in α, which is the case 
when the test statistics follow the standard normal distribution under 
the null hypotheses [1]. We rejectHj (or, equivalently, discover gene j) 
if qj is smaller than or equal to the prespecified FDR level.

The independence assumption among m test statistics is loosened 
to independence only among m0 test statistics corresponding to the 
null hypotheses [11], and to weak independence among all m test 
statistics [9,10]. These approaches are implemented in the statistical 
package called SAM [12].

Univariate Cox Regression 
Let zij denote the expression level of gene j(=1, …., m) for subject 

i(=1, …, n). In order to derive the asymptotic results for sample 
size calculation, we assume that the expression level is bounded in 
Section 2. For patient i, we also observe Xi, denoting the minimum of 
survival time Ti and censoring time Ci together with event indicator 

( )δ = ≤i i iI T C . We assume that Ti and Ci are independent.

In order to associate the survival time with the expression level of 
gene j, we assume that, given zij, Tihas a hazard function of

0( ) ( )exp( )λ λ β=i j ijt t z ,

whereλ0(t) is an unknown baseline hazard function and βjis the 
regression coefficient. By subtracting the sample mean and dividing by 
the standard deviation of gene j, we assume that zij has mean 0 and 
variance 1. In this case, βj denotes the log-hazard ratio between two 
groups of patients whose expression levels of gene j are one standard 
deviation apart. This regression model may not hold for all genes, but 
still provides a reasonable measure of relationship between survival 
time and each gene and the test statistic presented below controls the 
type I error [13,14].

By Cox (1972) the partial score and information functions are 
given by [5]

( )
( )1

0
1

1

( )
( )

β

β
β

′
∞ ′ ′′=

′
= ′′=

 
 = −
 
 

∑∑∫ ∑

i jn zn
i j ii

j ij in zi j
i ii

z Y t e
U z dN t

Y t e

and

2
2

1 1
0

1 1

( ) ( )( )
( ) ( )

( ) ( )

β β

β β

β
β

β
∞

= =

= =

  ∂   = − = −  ∂    

∑ ∑
∫ ∑ ∑

ij ij

ij ij

n nz z
ij i ij ij i i

j n nz z
i ii i

z Y t e z Y t eU
I dN t

Y t e Y t e

respectively, where ( ) ( )δ= ≤i i iN t I X t and ( ) ( )= ≥i iY t I X t denote 

the event and at-risk events, respectively, and 
1

( ) ( )
=

=∑n
ii

N t N t . 

The partial maximum likelihood estimator β̂ j  is obtained by solving 

( ) 0β =jU
, 

usually by using the Newton-Raphson methods.

By Anderson and Gill (1982), β̂ j  is a consistent estimator and 

Accepted hypothesis

True hypothesis Null Alternative Total

Null A0 A0 m0

Alternative A1 R1 m1

Total A R m

Table 1: Outcomes of m multiple tests.
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( )β̂ β−j jn  is asymptotically normal with mean 0 and its variance 

can be consistently estimated by ( )βj jn I  . The expression level of 

gene j is not associated with the survival time if 0β =j , and an over-
expression (under-expression) of gene j shortens the survival time if 

0β >j  (if 0β <j ). Hence, a two-sided test with marginal type I error 

rate α rejects : 0β =j jH  if 

1 2

ˆ

ˆ α

β
σ −>j

j

n
z

Where 2ˆ / (0)σ =j jn I   and 1 α−z  is the upper 100α-th percentile of 

N(0,1). Note that ˆ ˆβ σj jn  is asymptotically identical to the partial 

score test statistic (0) (0)j jU I .

Sample size and power calculation 

Let M0 and M1 denote the sets of genes for which the null and 
alternative hypotheses are true, respectively. Note that the cardinalities 
of M0 and M1 are m0 and m1, respectively. Since the estimated FDR is 
invariant to the order of the genes, we may rearrange the genes and 
set M1= {1, …,m1} and M0= {m1 + 1, …, m}. For large m and under 
independence (or weak dependence) among the test statistics, we have 
[6,11].

By Storey and Tibshirani (2001) and Jung (2005), for large m and 
under independence (or weak dependence) among the test statistics, 
we have

( ) ( )

1

0 1

0

(á) = E ( ) ( ) ( )

( ) ( ),

α α

α ξ α
∈

+ +

= + +∑
p

j p
j M

R R E R o m

m o m

where ( ) ( )α α∈= ∑ ≤
hh j M jR I p  for 0,1, ( ) ( )ξ α α= = ≤j jh P p  is the 

marginal power of the single α-test applied to gene 1∈j M . So, from 
(3), we have

1

0

0

( )
( )

αα
α ξ α∈

=
+ ∑ j M j

mFDR
m

                   
(4)

by omitting the error term.

Let Zjdenote the random variable for the expression level of gene j. 
From Appendix, we have

1 2( ) ,α σ β
ξ α

σ
−

 −
 = Φ
 
 

j j
j

j

z n

where ( ) 1 ( )Φ = −Φ   and ( )Φ   denotes the cumulative distribution 
function of the standard normal distribution,

){ }
){ }

){ }
){ } { }

2
2

2

0

( (
( ) ( ) ,

( (
σ

∞−

      = −       
∫

j j j j
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j j
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2
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0

(
( ( ) ,

(
σ
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    = −    
∫
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j j j
j

E Z F t Z
E Z F t Z G t dt

E F t Z

{ }0( ) exp ( )exp( )λ β= −j j jF t z t z and

0( ) ( )exp( ) ( )λ β=j j j jf t z t z F t z  are the survivor and probability 

density functions, respectively, of the survival time for a patient with 
gene expression level zj, and ( ) ( )= ≥G t P C t . Here the expectations 
are taken with respect to the distribution of expression level of gene 
j, Zj. These integrals are usually obtained numerically. Hence, (4) is 
expressed as

1

0

0 1 2

( )
(( )α

αα
α σ β σ ⋅

∈ −

=
+ ∑ Φ −j M j j j

mFDR
m z n

                
(5)

Note that FDR is decreasing in n and β j . Furthermore, by Jung 

(2005), FDR is increasing in α. If the effect sizes are equal among the 
prognostic genes, FDR is increasing in 0 0 /π = m m  and FDR increases 
from 0 to 0 /m m  as α increase from 0 to 1.

At the design stage of a study, m is determined when microarray 
chips are chosen for experiment and m1and 1{ , }β ∈j j M  are projected 
based on experience or from pilot data if any. The only variables 
undecided in (5) are α and n. With all other design parameters fixed, 
FDR is controlled at a certain level by the chosen α level. So, we want 
to find the sample size n that will guarantee a certain number, say r1(≤ 
m1),of true rejections with FDR controlled at a specified level ϕ .

In (5), the expected number of true rejections is

{ }
1

1 1 / 2( ) (( ) / ).α σα β σ−
∈

= Φ −∑ j j j
j M

E R z n
               

(6)

In multiple testing with FDR control, 1 1( ) /E R m  plays the role of 

the power of a conventional testing [15-17]. With 1( )E R  and the FDR 
level set at r1and ϕ , respectively, (5) is expressed as

0

0 1

.αϕ
α

=
+

m
m r

By solving this equation with respect to α, we obtain

1

0

.
(1 )
ϕα
ϕ

∗ =
−

r
m

Given *
0,αm  is the marginal type I error level for r1 true rejections 

with the FDR controlled at ϕ . With α and 1( )E R  replaced by *α and 

1r , respectively, (6) yields an equation ( ) 0=h n , where

1

11 / 2
( ) (( ) / ) .

α σ
β σ∗−

∈

= Φ − −∑
j

j j
j M

h n z n r
                   

(7)

We obtain the sample size by solving this equation using a 
numerical approach such as the bisection method. The final sample size 
may be chosen by rounding up the solution.

If we do not have prior information on the effect sizes, we may 
want to assume equal effect sizes 0β β=j  for all 

1∈j M . Let 2σ  and 2σ  denote 2σ j and 2σ j , respectively, obtained 
by replacing β j  with 0β . Then, (7) is reduced to

1 0 11 / 2
( ) (( ) / )

α σ
β σ∗−

= Φ − −h n m z n r

and, by solving ( ) 0=h n , we obtain a closed form formula:

2
1 / 2 1

2
0

( )
1,α β

σ σ

β
∗ ∗− −

 +
= + 
  

z z
n

                    

(8)
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where *
1 0/ { (1 )}α ϕ ϕ= −r m  and *

1 11 /β− = r m . Note that (8) is the 
conventional sample size formula when we want to detect an effect size 
of 0β  with power *1 β−  while controlling the type I error level at *α .

Some practical distributional models for sample size 
calculation: Above sample size formula requires calculation of 2σ j  
and 2σ j  which depend of the distributions of survival time, censoring 
time and gene expression data. So, for a sample size calculation, we 
need to specify these distributions as accurately as possible. Suppose 
that there exist a database and a matching specimen bank to be used 
for a new microarray study. Once a sample size is calculated, we will 
randomly select the required number of patients from the database 
and specimen bank for the study. An exponential distribution can be 
uniquely specified by one parameter, the hazard rate, and the family 
of exponential distributions t real survival data relatively well. So, we 
often specify the survival distributions using an exponential model 
for which 0 0( )λ λ=t , a constant over time. If the expression data are 
standardized for a mean of 0 and a standard deviation of 1 for each 
gene, then we may approximate 0λ  by the hazard rate estimated from 
the patients in the database. If pilot data are available, we may estimate 

1m  and β j  by their estimates. Otherwise, 1m  may be specified based 
on the experience from previous studies and β j  at a reasonable or 
clinically meaningful level. For example, 0.5β =j  means that the 
hazard ratio of two patients whose expression levels of gene j are 0.5 
standard deviation apart is 1.65(= e0.5).

Suppose that the patients were accrued to the database with a 
constant rate over time period a and followed for additional period b. 
Then, the censoring distribution is U(b, a + b) with survivor function

1
( ) 1 ( ) /

0

≤
= + − < ≤ +
 > +

if t b
G t b t a if b t a b

if t a b

Another approach may be to estimate ( )G t  from the database 
using the Kaplan-Meier estimator obtained by switching the role of 
censoring and event.

For bounded and standardized gene expression data, we may 
assume the truncated normal distribution with mean 0 and variance 1. 
The probability density function of the truncated normal distribution 
with mean 0 and variance 1 and truncated at ±κ is given as

1 ( / )( )
2 ( / ) 1

φ
κ

−

=
Φ −
s z sf z

s

Where ( )φ ⋅  is the probability density function of the standard 
normal distribution and ( 0)s >  satisfies

22 / ( / )[1 ] 1
2 ( / ) 1
κ φ κ

κ
− =

Φ −
s s s

s

Based on these distributional assumptions, our sample size 
calculation proceeds as follows:

(A) Specify the input parameters: 

ϕ  = FDR level 

r1 = number of true rejections

Distribution of standardized gene expression data 

m = total number of genes for testing

m1 = number of prognostic genes (m0 = m - m1)

{ }1,β ∈j j M = regression coefficients for the prognostic genes

0λ = baseline hazard rate

a and b = accrual and additional follow-up periods, respectively

(B) Obtain the required sample size: 

1. If the effect sizes are constant 0β β=j for 1∈j M , then calculate 

σ  and σ and calculate n by Otherwise, calculate σ j  and σ j  for 

1∈j M , and calculate n by solving

*

1

11 / 2
(( ) / ) 0

α
σ β σ

−
∈

Φ − − =∑ j j j
j M

z n r

Where *
1 0/ { (1 )}α ϕ ϕ= −r m .

Example 1: We assume 1 1( , , , ) (4000,40,1,30,0.1)ϕ =m m r , 

( , ) (5,2)=a b . Suppose that the standardized expression data of each 
gene has a normal distribution truncated at ±2 (i.e. κ = 2), which can 
be obtained by truncating N (0, s2) with s2 = 1.90, and the hazard rate 
of a patient with gene expression z is specified as 0( ) exp( )λ λ β= zt z  
with 0 1λ =  and 0 0.5β =  for all m1 = 40 prognostic genes. Under 
the assumptions on the survival and censoring distributions and 
the truncated expression data, we have 1.135σ = and 1.123σ = . 
Furthermore, we have

* 324 0.1 0.842 10
3960 (1 0.1)

α −×
= = ×

× −

and1 - β* = 1 – 30/40 = 0.75, so that *1 / 2
3.339

α−
=z  and *1

0.674
β−

=z . 
Hence, from (8), the required sample size is given as

2

2

(1.135 3.339 1.123 0.674)[ ] 1 83
0.5

× + ×
= + =n

Discussions 
In this paper, we have considered discovery of genes whose 

expression levels are associated with a survival endpoint, and proposed 
sample size and power calculation methods for microarray studies that 
will be analyzed using the discovery method. We related the expression 
level of each gene with the survival outcome using a univariate Cox 
regression model and discovered genes by controlling the FDR to adjust 
for the multiplicity of genes. The proposed method is to calculate the 
sample size for a specified number of true discoveries while controlling 
the FDR at a given level. The input variables to be pre-specified are total 
number of genes for testing m, projected number of prognostic genes 
m1, the baseline hazard rate λ0, and the effectsizesβj(the log-hazard 
rates between two patient groups whose gene expression levels are one 
standard deviation apart) for the prognostic genes. The method does 
not require any heavy computation, such as Monte Carlo simulations, 
so that we get a sample size in a second. Especially, if the effect sizes 
among the prognostic genes are identical, we have a closed form 
formula that can be calculated using a scientific calculator and a normal 
distribution table. The proposed method can be used to design a new 
study based on the parameter values estimated from pilot data.

The proposed methods can be used for other types of high-
throughput biomarker study, such as genome wide association studies 
or gene sequencing studies, with minor modifications. The computer 
program for sample size calculation available from the author.
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