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Introduction
It is known that the absorption and the dispersion properties of a 

weak probe field can be modified effectively by atomic coherence and 
quantum interference [1-6]. Atomic coherence can be achieved by 
the strong coupling fields, the spontaneous emission and incoherent 
pumping fields. It is known that atomic coherence due to the coherent 
laser field has essential roles for modifying the optical properties of 
atomic systems such as spontaneously generated coherence (SGC) 
[2], lasing without inversion [3], modifying spontaneous emission [4], 
coherent population trapping (CPT) [6], optical bistability [7-11] and so 
on [12-17]. Furthermore, it has been shown that quantum interference 
arising from SGC [8] and incoherent pumping field [18] can be used 
for analyse of some interesting phenomena such as lasing without 
population inversion [5], optical bistability [18], and superluminal/
subluminal light propagation [19]. Similar phenomena involving 
quantum coherence in solid state systems such as semiconductor 
quantum wells (QWs) and quantum dots (QDs) [20], can also be 
occurred [21,22]. In the past decade, there has been an increasing 
interest in optical properties of quantum dot molecules (QDMs) and 
quantum wells (QWs), due to important role in optoelectronic devices. 
Recently, investigators have examined the effects of an external field 
and inter-dot tunnel coupling on the optical properties of QDs and 
QWs [23-29]. Quantum well semiconductors were chosen because of 
their advantage in flexible design, controllable interference strength, 
long dephasing times [30,31] large dephasing rates [~10ps-1] [32] and 
large electric dipole moment which make them suitable for application 
in the optoelectronic devices. Quantum coherence in a QW structure 
can be induced by electron tunnelling or applying a laser field [33,34]. 
Coherence induced by incoherent field and tunnel coupling in the 
QW system plays an important role in light-matter interaction and 
has found numerous implementations in semiconductor optics. On 
the other hand, coherent control [35-38] over the dispersive and 
absorptive properties of solid-state media such as photonic crystals 
and semiconductors has recently attracted a lot of attention [39-43]. 
Several proposals for quantum coherence and interference in QWs 
have been performed and analyzed. To utilize the tunnelling effect, an 

electron is excited by a laser field, then tunnels to the second QW by 
controlling the external voltage between the wells [44]. An interesting 
application of QWs is modification of light pulse to make a fast electro-
optical switch by controlling the propagation of a weak light pulse in a 
semiconductor system, which depends on the dispersive properties of 
the medium.

In this paper, we introduce a compact four level quantum wells 
system composed of two QWs. Then, we investigate effect of terahertz 
radiation, incoherent pumping field and tunnelling between QWs 
on the absorption, dispersion and the group velocity of a weak probe 
field. The required switching time when propagation of light changes 
from subluminal to superluminal and vice versa is also discussed. We 
find that the dispersion/absorption spectra of the probe pulse can be 
changed via the effect of terahertz radiation, incoherent pumping field 
and tunnelling effect. 

Model and Equations of Motion
In Figure 1, we consider a compact double coupled quantum well 

nanostructure which is fabricated using InGaAs/InP nanostructures in 
material grown by an attractive growth technique i.e., organometallic 
vapor phase epitaxy (OMVPE). The QWs consist of two periods of 
alternating InGaAs and InP layers .An incoherent pumping field 
and weak probe field are applied to first quantum well (QW1). The 
quantum well is designed so that its width is narrower in comparison 
to the other quantum well (QW2) and provides larger energy difference 
between the levels. For controlling of the tunnelling rate between QWs, 
the system is placed between two connected electrodes, as electrodes 
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are in contact to this system. By applying independently tunable gate 
voltages, electron tunnelling can easily be accomplished between QW1 
and QW2. Figure 1 shows the detailed band structure and energy levels 
of the system. Lower level 0  and upper level 1  are conducting band 
levels of QW1. Level 2  and level 3  are the excited conducting levels 
of the QW2 of the right of QW1. It is assumed that the energy difference 
of three excited levels and the lower level is large, so their tunneling 
couplings can be ignored. By applying a gate voltage the level 2  and 
the level 3  get closer to the level 1 . A weak tunable probe field of the 
frequency pω  with Rabi frequency . 2p E℘Ω =





  and an incoherent 
pumping field Λ are applied to the transition 0 1→ . Here, ℘



 is 
electric dipole moment and E is amplitude of the probe field laser. By 
forming the resonant coupling of the probe field with the QW1, an 
electron is excited from the 0  band to the 1  band of the QW1. By 
providing the tunnelling conditions the electron can be transferred to 
level 2  in QW2 and the terahertz radiation of frequency THzω  with 
Rabi frequency THzΩ  prompt the electron from the level 2  to the 
level 3 . The total Hamiltonian in the rotating-wave approximation 
method [45,46] which represents the interaction of the probe laser 
field, terahertz radiation and incoherent pumping field with the double 
coupled QWs system, can be expressed in the form of

5

12
0

( 0 1 0 1 1 2 2 3 . .p THzi t i t
j p THz

j

H E j j e T e H Cω ωε− −

=

 = + Ω +℘ + +Ω +  ∑     (1)

Where j jE ω=   denotes the energy of state i . ℘  Is the dipole 
moment of the atomic transition corresponding to the pumping of the 
electrons from level 0  to level 1 , and the electric field ε  implies the 
electrical amplitude of the incoherent pumping field. T12 Correspond to 
tunnelling between “QW1” and “QW2”. The tunnelling can be described 
by perturbation theory which can be given by Bardeen’s approach [47]. 
The density-matrix approach given by 

,i H
t
ρ ρ∂
= −   ∂ 

,                   (2)

Can be used to obtaining the density operator in an arbitrary 
multilevel QWs system. Substituting eqn. (1) in eqn. (2), the density 
matrix equations of motion can be expressed as

01 01 01 12 02 00 11( ) ( )p pi iT iρ δ ρ ρ ρ ρ= − Γ − Λ + − Ω −
,

02 12 01 12 02 02 03 12( ( ) / 2)p THz piT i i iρ ρ δ ω ρ ρ ρ= + + − Γ − Λ + Ω + Ω

,

03 02 12 23 03 03 13( ( ) / 2)THz p pi i iρ ρ δ ω ω ρ ρ= Ω + + + − Γ − Λ + Ω ,

12 02 12 12 12 13 12 11 22( / 2) ( )p THzi i i iTρ ρ ω ρ ρ ρ ρ= Ω − + Γ + Λ + Ω + − ,

13 03 12 12 23 13 13 12 23( ( ) / 2)p THzi i i iTρ ρ ρ ω ω ρ ρ= Ω + Ω − + + Γ + Λ − ,

23 12 13 23 23 22 33( ) ( )THz THziT i iρ ρ ω ρ ρ ρ= − − + Ω + Ω − ,

00 01 10 00 10 11 20 22 30 33( ) ( )piρ ρ ρ ρ γ ρ γ ρ γ ρ= − Ω − − Λ + + Λ + + ,

11 01 10 00 10 11 12 12 21( ) ( ) ( )pi iTρ ρ ρ ρ γ ρ ρ ρ= Ω − + Λ − + Λ + −
,

22 12 12 21 23 32 20 22( ) ( )THziT iρ ρ ρ ρ ρ γ ρ= − − + Ω − − ,

33 23 32 30 33( )THziρ ρ ρ γ ρ= − Ω − − ,                   (3)

Where ( , 0,1,2,3)mn m n m nρ = =  and ( 0,1,2,3)mm m m mρ = =  
represent the coherent terms and the population operators for the 
QWs, respectively. We get 12 10 20ω ω ω= −  and 23 20 30ω ω ω= − . The 
probe field detuning with respect to the QW transition frequencies is

10p pδ ω ω= − . The term 2 22( ) PΛ = ℘ Γ  is the incoherent pumping 
rate. The spontaneous emission rates for sub-band i , denoted by 

10γ , are due primarily to longitudinal optical (LO) phonon emission 
events at low temperature. The total decay rates ( )ij i jΓ ≠  are given 
by 0 0 02 dph

n n nγ γΓ = + , 0 0( ) 2 dph
mn n m mnγ γ γΓ = + + , , 1,2,3m n =  and 

m n≠ , here i j↔ , are the dephasing rates of the quantum coherence of 
the i j↔  pathway and determined by electron–electron, interface 
roughness, and phonon scattering processes. Usually, dph

mnγ  is the 
dominant mechanism in a semiconductor solid-state system. Eqn. (3) 
can be solved to obtain the steady state response of the medium. The 
susceptibility of the compact double QWs to the weak probe field is 
determined by coherence term 01ρ

 01
0

2N
E

χ ρ
ε
℘

= ,                    (4)

Where N is the carrier density in the proposed QWs system. 
Ssusceptibility comprise two parts, real and imaginary ( )iχ χ χ′ ′′= + . Note 
that the real part of the susceptibility χ′ correspond to the dispersion 
and imaginary part χ′′  correspond to absorption. The dispersion slope 
of the probe field has a major role in the group velocity. The group 
velocity gv

 of the light, which is propagates in the medium, given by 
Bardeen [48]:

1 2 ( ) 2 ( ( ) / )g
p p p p

cv
πχ ω πω χ ω ω

=
′ ′+ + ∂ ∂

,                 (5)

Eqn. (5) implies that for a negligible real part of susceptibility, the 
light propagation can be superluminal as a negative slope of dispersion, 
on the other hand, for positive dispersion slope, the light propagation 
in the medium can be subluminal.

Results and Discussion
Now, we analyze the numerical results of the above equations and 

discuss the transient and the steady-state behavior of the absorption 
and the dispersion. It is assumed that the system is initially in the 
ground state, i.e., ( )00 0 1ρ =  and ( )0 0ijρ =  (i, j=0, 1, 2, 3). We 
take typically slow dephasing rates 01 1 THzγΓ = =  and spontaneous 
emission 10 0.6 THzγ =  and other relevant parameters by the factor 
of these rates. Introduced rates are equivalent to dephasing times in 
the order of picoseconds. Here the according to the equation (5), the 
positive and negative dispersion slope are representing the propagation 
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Figure 1: Schematic of system, which shows the detailed band structure and 
quantized energy levels for proposed double coupled QW.
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of light subluminal and superluminal respectively.

Figure 2(a) shows the dispersion (dashed) and absorption (solid) 
properties of a probe field vs. probe field detuning pδ , in the absence 
of incoherent pumping field  Λand tunnelling effect. We observe that 
the absorption peak accompanies by a negative dispersion. Thus, 
superluminal light with large absorption propagates through the 
medium. In Figure 2(b), we show at the steady state behavior of the 
probe dispersion (dashed) and absorption (solid) in the presence of the 
first tunnelling effect T12 and absence of an incoherent pumping field. It 
can easily be seen that the absorption of the probe field reduced around 
zeros detuning probe field just by applying tunnelling rate 12 1T γ= . 
We find that the slope of dispersion is very sensitive to the tunnelling 
effect. When we increase T12 from 0 to 1γ, slope of dispersion changes 
from negative to positive. Figure 2(c) shows the effect of the terahertz 
radiation on the system, when keeping all other parameters fixed in 
Figure 2(b), and with applying the terahertz signal, the dispersion 
slope does not change, but tow windows transparency created that is 
accompanied by three absorption peaks. 

In Figure 3, we investigate the incoherent pumping field effect on 
the system. In Figure 2(a), we applied an incoherent pumping filed 
to condition of Figure 2(a) with values 8γΛ = . By increasing the 
incoherent pumping field Λ from 0 to 8γ, the absorption peak of the 
probe field becomes broaden, while the slope of the dispersion is still 
negative around the probe field detuning. Physically, by increasing 
the incoherent pump rate, the upper levels are populated, for this 

condition the probe absorption will reduce in transition 0 1→
, thus the peak maximum of the probe field absorption gets reduce. 
In Figure 3(b), by applying the tunnelling rate T12 mid incoherent 
pumping field, one absorption peak of the probe field is crated around 
zeros detuning probe field. By applying the incoherent pumping field, 
when keeping all other parameters fixed in Figure 2(b), the slope of 
dispersion changes from positive to negative that is shown in Figure 
2(b) and 3(b). This indicates that group velocity of light propagates, 
increasing from subluminal to superluminal through the medium. In 
Figure 3(c), we simultaneously apply the tunnelling rate T12 between 
QW1 and QW2 and the terahertz signal, while the incoherent pump 
rate is still Λ=8γ. We observe that the probe field absorption convert 
to probe gain, which is accompanied by positive dispersion slope i.e. 
the probe field propagation changes from superluminal to subluminal 
in medium by applying the incoherent field as shown in Figures 2(c) 
and 3(c). This is an important mechanism in which the probe field 
absorption and dispersion can be controlled by the incoherent pump 
field in the quantum well.

Now, we are interested in the dynamical behaviour of the 
dispersion slope due to this properties can be used as an electro-optical 
switch of group velocity from subluminal to superluminal or vice 
versa. We are interested in the required switching time for change of 
the light propagation from subluminal to superluminal or vice versa. 
Switching time for subluminal/superluminal light propagation is 
defined as the time to reach a steady-state from the superluminal state 
to the subluminal state and vice versa. Figure 4(a) shows the transition 
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Figure 4: Dynamical behaviour (a) and switching process (b) of dispersion slope for T12=(0, 1γ), THZ signal=off, Λ=0.Other parameters are as in Figure 2.

behaviour of the dispersion slope by consecutively switching the 
tunnelling rate from 12 0T =  to 12 1T γ=  and vice versa. By increasing 
the normalized time tγ  ( 10 1THzγ = Γ = ), the dispersion slope takes a 
steady negative values for 12 0T =  corresponding to superluminal light 
propagation, while it changed to negative on applying the terahertz 
signal which is corresponding to subluminal light propagation. In 
Figure 4(b), we plot the switching diagram of the dispersion slope for 

two different values of T12. The required switching time for propagation 
of the light from subluminal to superluminal is about 8ps and from 
superluminal to subluminal is about 12ps. Now, we investigate the 
effect of the incoherent pumping rate by consecutively switching 
incoherent pumping rate from 0Λ =  to 8γΛ =  and vice versa, while 
the tunnelling rate 0Λ = is fixed (Figure 5(a)). It is clearly find that the 
slope of the dispersion changes from positive to negative by adjusting 
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the incoherent field. For 0Λ =  the slope of the dispersion is positive 
corresponding to subluminal light propagation, while it changes to 
negative as the incoherent pumping changes from 0Λ =  to 8γΛ =  
corresponding to superluminal light propagation. The required 
switching time for change of the propagation light from subluminal 
to superluminal is about 3ps, and vice versa is 15ps (Figure 5(b)). 
This approach can be utilized to produce a switch operating only by 
controlling the tunnelling rate T12 and incoherent rate Λ. The transient 
behaviour of the probe absorption is displayed for two various rate of 
terahertz signal, while keeping 12 1T γ= and 8γΛ = fixed in Figure 6. 
We are looking for the required switching time for changing the light 
absorption case to the probe gain or vice versa by proper manipulating 
the tunnelling rate T12 and terahertz signal. Effect of the terahertz 
signal leads to a significant probe amplification of steady state probe 
absorption. Figure 6(a,b) shows that the required switching time from 
large absorption to probe gain case or vice versa is about 20γ.

Conclusion 
We investigated the transient and the steady-state behavior of a weak 

probe field in a compact double coupled QWs system with applying 
the tunnelling between QWs, terahertz signal and one incoherent 
pumping field. It is shown that the absorption and the dispersion of 
the probe field can be controlled by applying the tunnelling between 
QWs, terahertz radiation and incoherent pumping fields. It has also 

been shown that the medium can be used as an optical switch in which 
the propagation of the laser pulse can be controlled with tunnelling 
between QWs and the incoherent pumping field. We obtained the 
switching time; between 3 to 26 picosecond as a high speed optical 
switch is an important technique for quantum information, networks 
and communication.
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